Show simple item record

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorHurtado Heredia, Rafael Germán
dc.contributor.authorMuñoz Lancheros, Gustavo Adolfo
dc.descriptionilustraciones, gráficas, tablas
dc.description.abstractEste trabajo consta de dos partes. En la primera se aplicó el formalismo de entropía para grado nodal y la fortaleza nodal en la teorı́a de redes complejas al primer movimiento de ajedrez a las olimpiadas de la FIDE, el congreso internacional de Hastings y un compendio histórico de partidas; para ello se construyó una representación de la apertura del juego del ajedrez a través de un grafo dirigido y valuado, el cual permite caracterizar propiedades emergentes de la evolución de las estrategias del juego. En la segunda parte se aplicó un modelo mecánico-estadı́stico aunado con las entropías de grado nodal y fortaleza nodal de la red a la apertura de los grandes maestros Anatoly Karpov, Garry Kasparov y Magnus Carlsen. Con las medidas de entropı́as se encontraron relaciones entre el primer movimiento con el resultado de las partidas, sucesos relevantes en la historia del ajedrez, y los cambios y la moda del uso de estrategias. Con el modelo mecánico-estadístico se encontró una forma de inferir la intencionalidad de los jugadores.
dc.description.abstractThis paper consists of two parts. In the first part, the entropy formalism for nodal degree and nodal strength in the theory of complex networks was applied to the first chess move to the FIDE Olympiads, the Hastings International Congress and a historical compendium of games; for this purpose, a representation of the chess opening was constructed through a directed and valued graph, which allows characterizing emergent properties of the evolution of the strategies of the game. In the second part, a mechanistic-statistical model coupled with the nodal degree entropies and nodal strength of the network was applied to the opening of the grandmasters Anatoly Karpov, Garry Kasparov and Magnus Carlsen. With the entropy measures, relationships were found between the first move with the outcome of the games, relevant events in the history of chess, and the changes and fashion of the use of strategies. With the mechanical-statistical model we found a way to infer the intentionality of the players.
dc.format.extentxv, 69 páginas
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados al autor, 2022
dc.subject.ddc790 - Deportes, juegos y entretenimiento
dc.titlePropiedades emergentes de la apertura del juego de ajedrez
dc.typeTrabajo de grado - Maestría
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Física
dc.contributor.researchgroupGrupo de Física Teórica
dc.description.degreenameMagíster en Ciencias - Física
dc.description.researchareaRedes Complejas
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.publisher.departmentDepartamento de Física
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesShannon CE. XXII. Programming a computer for playing chess. The London, Edin- burgh, and Dublin Philosophical Magazine and Journal of Science. 1950;41(314):256– 275.
dc.relation.referencesRudolph-Lilith M. ChessY: A Mathematica toolbox for the generation, visualization and analysis of positional chess graphs. SoftwareX. 2019;9:39–43.
dc.relation.referencesAlmeira N, Schaigorodsky AL, Perotti JI, Billoni OV. Structure constrained by meta- data in networks of chess players. Scientific reports. 2017;7(1):1–10.
dc.relation.referencesBlanch A, Aluja A, Cornadó MP. Sex differences in chess performance: Analyzing participation rates, age, and practice in chess tournaments. Personality and Individual Differences. 2015;86:117–121.
dc.relation.referencesBlasius B, Tönjes R. Zipf’s law in the popularity distribution of chess openings. Physical Review Letters. 2009;103(21):218701.
dc.relation.referencesRocha FT, Da Silva LR, Cesar FHG, Giraldi GA, Thomaz CE. Chess Experience and EEG Brain Cortical Organisation: An Analysis Using Entropy, Multivariate Statistics and Loreta Sources. In: 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). IEEE; 2017. p. 185–192.
dc.relation.referencesMurray HJR. A History of Chess: The Original 1913 Edition. Skyhorse; 2015. Available from:
dc.relation.referencesCapablanca JR. Fundamentos del ajedrez. Club de Ajedrez. Editorial Fundamentos; 1984. Available from:
dc.relation.referencesGrau RG. Tratado general de ajedrez: rudimentos. Tratado general de ajedrez. Editorial la Casa del Ajederz; 2000. Available from: snSVRAAACAAJ.
dc.relation.referencesBronstein D. El ajedrez de torneo. Club de ajedrez. Fundamentos; 2000. Available from:
dc.relation.referencesEstrada E. The Structure of Complex Networks: Theory and Applications. EBSCO ebook academic collection. OUP Oxford; 2012. Available from:
dc.relation.referencesWiedermann M, Donges JF, Kurths J, Donner RV. Mapping and discrimination of networks in the complexity-entropy plane. Physical Review E. 2017;96(4):042304.
dc.relation.referencesNievergelt J. Information content of chess positions. 1977;(62):13–15.
dc.relation.referencesKoza JR, Poli R. Genetic programming. In: Search methodologies. Springer; 2005. p. 127–164.
dc.relation.referencesMcKenzie P. Full chess retrieval. 1994;.
dc.relation.referencesZhang B, Chen B, Peng Jl. The Entropy of Artificial Intelligence and a Case Study of AlphaZero from Shannon’s Perspective. arXiv preprint arXiv:181205794. 2018;.
dc.relation.referencesSquartini T, Garlaschelli D. Maximum-Entropy Networks: Pattern Detection, Network Reconstruction and Graph Combinatorics. Understanding Complex Systems. Sprin- ger International Publishing; 2017. Available from: books?id=gOs_DwAAQBAJ.
dc.relation.referencesNewman M. Networks. OUP Oxford; 2018. Available from:
dc.relation.referencesPark J, Newman ME. 2004;70(6):066117. Statistical mechanics of networks. Physical Review E.
dc.relation.referencesSquartini T, Garlaschelli D. Analytical maximum-likelihood method to detect patterns in real networks. New Journal of Physics. 2011;13(8):083001.
dc.relation.referencesBreznik K, Batagelj V. 2011;40(4):225–239. FIDE Chess Network. Austrian Journal of Statistics.
dc.relation.referencesRibeiro HV, Mendes RS, Lenzi EK, del Castillo-Mussot M, Amaral LA. Move-by-move dynamics of the advantage in chess matches reveals population-level learning of the game. PLoS One. 2013;8(1):e54165.
dc.relation.referencesKrivov SV. Optimal dimensionality reduction of complex dynamics: the chess game as diffusion on a free-energy landscape. Physical Review E. 2011;84(1):011135.
dc.relation.referencesPng JHC. Understanding the Elephant: A Xiangqi Primer Part 1: History of Xiangqi. Understanding the Elephant: A Xiangqi Primer. Rui xing tu shu gu fen you xian gong si; 2016. Available from:
dc.relation.referencesAverbakh Y, Kasparov G. A History of Chess: From Chaturanga to the Present Day. Russell Enterprises, Incorporated; 2012. Available from: co/books?id=uJBXDwAAQBAJ.
dc.relation.referencesLuis FJ, Manuel GJ, Luis FA. Una historia de ajedrez mendocino. Editorial Dunken; 2013. Available from:
dc.relation.referencesShenk D. The Immortal Game: A History of Chess. Profile; 2011. Available from:
dc.relation.referencesForbes D. The History of Chess: From the Time of the Early Invention of the Game in India Till the Period of Its Establishment in Western and Central Europe. W. H. Allen & Company; 1860. Available from: J_9dAAAAcAAJ.
dc.relation.referencesFalkener E. Games Ancient and Oriental and How to Play Them: Being the Games of the Ancient Egyptians; The Hiera Gramme of the Greeks, the Ludus Latrunculorum of the Romans and the Oriental Games of Chess, Draughts, Backgammon and Magic Squares (Classic Reprint). Fb&c Limited; 2017. Available from: co/books?id=voXVswEACAAJ.
dc.relation.referencesGanzo J. Historia general del ajedrez. R. Aguilera; 1970. Available from: https: //
dc.relation.referencesBird HE. Chess History and Reminiscences. Alpha Editions; 2021. Available from:
dc.relation.referencesGolombek H. Chess: A History. Putnam; 1976. Available from:
dc.relation.referencesCastro FLC. Mitologia Del Ajedrez. Edicomunicación, S.A.; 2000. Available from:
dc.relation.referencesChairman Abdulrahim VAKH Mahdi. FIDE ARBITERS’ COMMISSION ARBITERS’ MANUAL 2021; 2021.
dc.relation.referencesBlanco H UJ. Arbitraje del Ajedrez para Docentes. Gráficas Linero S.R.L; 1999.
dc.relation.referencesBartelski W. OlimpBase the encyclopaedia of team chess;. Accessed: 2021-11-17. https: //
dc.relation.referencesby MH Themes MMWT. Congress history;. Accessed: 2022-2-7. http://
dc.relation.referencesChess Player’s Chronicle. v. 16. R. Hastings.; 1855. Available from: https://books.
dc.relation.referencesCommission TQ. Regulations for the FIDE Online Olympiad; 2021.
dc.relation.referencesKasparov G. Cómo la vida imita al ajedrez. Bestseller. Penguin Random House Grupo Editorial México; 2016. Available from: MDsiDAAAQBAJ.
dc.relation.referencesCapablanca JR. Artes y Secretos De Ajedrez. Editorial Quetzal; 2009.
dc.relation.referencesInternational Chess Federation;. Accessed: 2021-11-17.
dc.relation.referencesKarolyi T, Karpov A, Aplin N. Endgame Virtuoso Anatoly Karpov. New in Chess; 2007.
dc.relation.referencesKasparov G. Garry Kasparov on My Great Predecessors, Part Five. Everyman chess. Everyman Chess; 2006. Available from: TduzxQEACAAJ.
dc.relation.referencesKarolyi T, Aplin N. Endgame Virtuoso: Anatoly Karpov. New in Chess; 2007. Available from:
dc.relation.referencesKasparov G. Garry Kasparov on Modern Chess: Kasparov V Karpov, 1988-2009. Every- man chess. Everyman Chess; 2010. Available from: books?id=Eb2WSQAACAAJ.
dc.relation.referencesKasparov G, Wade B, Speelman J. EL AJEDREZ COMBATIVO DE KASPAROV. Colección Caissa. Paidotribo; 2002. Available from: books?id=3l0BI7Db33gC.
dc.relation.referencesMartin A. Garri Kasparov. Barcelona: Martinez Roca; 1986.
dc.relation.referencesAgdestein S. How Magnus Carlsen Became the Youngest Chess Grandmaster in the World: The Story and the Games. New in Chess; 2013. Available from: https://
dc.relation.referencesMykhalchyshyn A. Fighting chess with Magnus Carlsen. Hombrechtikon/Zurich: Edition Olms; 2012.
dc.relation.referencesLatora V, Nicosia V, Russo G. Complex Networks: Principles, Methods and Ap- plications. Complex Networks: Principles, Methods and Applications. Cambridge University Press; 2017. Available from: qV0yDwAAQBAJ.
dc.relation.referencesDorogovtsev SN, Mendes JFF. Evolution of Networks: From Biological Nets to the Internet and WWW. OUP Oxford; 2013. Available from:
dc.relation.referencesGarlaschelli D, Loffredo MI. Generalized bose-fermi statistics and structural correlations in weighted networks. Physical review letters. 2009;102(3):038701.
dc.relation.referencesFornito A, Zalesky A, Bullmore E. Fundamentals of brain network analysis. Academic Press; 2016.
dc.relation.referencesSethna JP. Statistical Mechanics: Entropy, Order Parameters, and Complexity: Second Edition. Oxford Master Series in Physics. OUP Oxford; 2021. Available from: https: //
dc.relation.referencesAmit DJ, The OUOI, Verbin Y. Statistical Physics: An Introductory Course. Statistical Physics: An Introductory Course. World Scientific Publishing Company; 1999. Available from:
dc.relation.referencesShannon C. lJ A mathematical theory of communication. Bell System Tech. J. 27, 379- 423, 623-656 (1948).-[2. Certain results in coding theory for noisy channels Inform and Controll. 1957;p. 6–25.
dc.relation.referencesOmar YM, Plapper P. A Survey of Information Entropy Metrics for Complex Networks. Entropy. 2020;22(12):1417.
dc.relation.referencesZenil H, Kiani NA, Tegnér J. A review of graph and network complexity from an algorithmic information perspective. Entropy. 2018;20(8):551.
dc.relation.referencesNi C, Yang J, Kong D. Sequential seeding strategy for social influence diffusion with im- proved entropy-based centrality. Physica A: Statistical Mechanics and its Applications. 2020;545:123659.
dc.relation.referencesQiao T, Shan W, Yu G, Liu C. A novel entropy-based centrality approach for identifying vital nodes in weighted networks. Entropy. 2018;20(4):261.
dc.relation.referencesDehmer M, Mowshowitz A. A history of graph entropy measures. Information Sciences. 2011;181(1):57–78.
dc.relation.referencesLee MJ, Lee E, Lee B, Jeong H, Lee DS, Lee SH, et al. Uncovering hidden de- pendency in weighted networks via information entropy. Physical Review Research. 2021;3(4):043136.
dc.relation.referencesWang L, Dai W, Luo G, Zhao Y. A Novel Approach to Support Failure Mode, Effects, and Criticality Analysis Based on Complex Networks. Entropy. 2019;21(12):1230.
dc.relation.referencesSquartini T, Garlaschelli D. Analytical maximum-likelihood method to detect patterns in real networks. New Journal of Physics. 2011;13(8):083001.
dc.relation.referencesPark J, Newman ME. 2004;70(6):066117. Statistical mechanics of networks. Physical Review E.
dc.relation.referencesBargigli L. Statistical ensembles for economic networks. Journal of Statistical Physics. 2014;155(4):810–825.
dc.relation.referencesSquares. PGN mentor;. Accessed: 2022-1-14.
dc.relation.referencesHome of the dutch rebel;. Accessed: 2022-1-14.
dc.relation.referencesJay, Erik.; 2005. Accessed: 2022-1-14.
dc.relation.referencesHassabis D. Artificial intelligence: Chess match of the century. 2017;544(7651):413–414. Nature.
dc.relation.referencesMunshi J. A method for comparing chess openings. Available at SSRN 2415203. 2014;.
dc.relation.referencesWillard Gibbs J. Elementary Principles of Statistical Mechanics. Scribner’s, New York. 1902;.
dc.relation.referencesRosenkrantz R. Where do we stand on maximum entropy?(1978). In: ET Jaynes: Papers on probability, statistics and statistical physics. Springer; 1989. p. 210–314.
dc.relation.referencesTribus M. Thermostatics and thermodynamics. 1961;.
dc.relation.referencesKatz A. Principles of statistical mechanics: the information theory approach. WH Freeman; 1967.
dc.relation.referencesKarmeshu J. Entropy measures, maximum entropy principle and emerging applications. vol. 119. Springer Science & Business Media; 2003.
dc.relation.referencesHarte J. Maximum entropy and ecology: a theory of abundance, distribution, and energetics. OUP Oxford; 2011.
dc.relation.referencesSmith CR, Grandy Jr WT. Maximum-Entropy and bayesian methods in inverse pro- blems. vol. 14. Springer Science & Business Media; 2013.
dc.relation.referencesKing DM, Strantzen JB. Maximum entropy of cycles of even period. 152. American Mathematical Soc.; 2001.
dc.relation.referencesHenryk G. The method of maximum entropy. vol. 29. World scientific; 1995.
dc.relation.referencesaynes ET. Information theory and statistical mechanics. 1957;106(4):620. Physical review.
dc.relation.referencesJaynes ET. Information theory and statistical mechanics. II. 1957;108(2):171. Physical review.
dc.relation.referencesJaynes ET. On the rationale of maximum-entropy methods. Proceedings of the IEEE. 1982;70(9):939–952.
dc.relation.referencesWu N. The maximum entropy method. vol. 32. Springer Science & Business Media; 2012.
dc.subject.lembAjedrez-estrategia y tácticas
dc.subject.proposalRedes Complejas
dc.subject.proposalComplex Network
dc.subject.spinesTeoría de grafos
dc.subject.spinesGraphic Schema Theory
dc.title.translatedEmergent properties of the chess game opening.

Files in this item


This item appears in the following Collection(s)

Show simple item record

Reconocimiento 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit