Show simple item record

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorAgulles Pedrós, Luis
dc.contributor.authorCoy López, Julián Andrés
dc.date.accessioned2022-10-25T15:05:52Z
dc.date.available2022-10-25T15:05:52Z
dc.date.issued2022-10-20
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82448
dc.descriptionilustraciones, fotografías a color, gráficas
dc.description.abstractEn el presente proyecto se estima la dosis impartida por radiación ionizante en el gel dosimétrico con formulación MAGIC. Este ha sido comúnmente utilizado para la medición de dosis de radiación superiores a 1 cGy por medio de técnicas de regresión entre los valores de tasa de relajación y dosis. El gel se caracteriza por estar compuesto de ácido metacrilico, usado en fantomas equivalentes a tejido blando. El radioisotopo 99mTc se utiliza para irradiar y así calibrar las muestras del gel con diferentes valores de dosis en el rango de dosis bajas (µSv-mSv). Se propone realizar regresiones lineales entre las mediciones teniendo en cuenta la desviación estándar en la medida y el valor de los ajustes con el (χ2/DoF), tal que se obtenga una mejor evaluación del ajuste. Se presenta un método que selecciona las zonas de las muestras del gel que ofrecen mayor fiabilidad en los datos y mejora la correlación entre dosis nominal y tasa de relajación. A través del método por píxel se obtiene 60 % de probabilidad de que los resultados medidos coincidan con el modelo propuesto, la sensibilidad del gel es de (1.2±0.4)×10−3 [ms−1 mGy−1 ], con incertidumbre relativa de 33%. Los resultados conseguidos permiten establecer que el gel polimérico MAGIC puede calibrarse con buena correlación a través de una regresión lineal para valores de dosis superiores a 0.8 mGy. No obstante, en el límite de dosis bajas el error sistemático de la estabilidad térmica del gel puede afectar su precisión y desempeño. (Texto tomado de la fuente)
dc.description.abstractIn this project, the imparted dose by ionizing radiation is measured in the dosimetric gel of MAGIC formulation. It has been widely used for measurement of radiation doses greater than 1 cGy through regression techniques between the measured values of relaxation rate and dose. The gel is composed of methacrylic acid, this is the main component in equivalent soft tissue phantoms. The 99mTc radioisotope is used to irradiate and calibrate the gel samples with different dose values in the low dose range (Sv − mSv). It is proposed to carry out linear regressions of measurements, taking into account the standard deviations and the (χ2/DoF) values of the adjustments, such that a better evaluation of the adjustment is obtained. A method is shown to select the regions of the samples that offer greater confidence in the data and let us improve the correlation between the nominal dose and the relaxation rate. Through the pixel method, a probability of 60 % between measured values and the proposed method is found, the gel sensitivity is (1.20.4) × 10−3 [ms−1 mGy−1 ], with a relative uncertainty of 33 %. The results allow establishing that the MAGIC polymeric gel can be calibrated with good correlation for dose values greater than 0.8 mGy. However, in the low dose limit, the systematic error in the thermal stability of the gel can affect its precision and performance.
dc.format.extentix, 78 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleDistribución de dosis de radiación gamma en gel radiosensible a través de imágenes de resonancia magnética nuclear
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Física Médica
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Física Médica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Física
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesHelber Cortés. Implementación de un Dosímetro en Gel para Verificación Dosimétrica de Tratamientos con RapidArcTM. Tesis de maestría en física médica, Universidad Nacional de Colombia, 2014.
dc.relation.referencesAndrea et al. 2d dose distribution images of a hybrid low field mri-gamma detector. AIP Conference Proceedings, (1753) 080012:1–5, 2016.
dc.relation.referencesAndrea Abril. MRI-gamma Detector Hybrid System. Tesis de Doctorado, Universidad Nacional de Colombia, 2017.
dc.relation.referencesPedro Dorado. Dosis de radiación. Consejo de Seguridad Nacional, SDB 0407:1–15, 2010.
dc.relation.referencesC. Baldock. Polymer gel dosimetry. Institute of Physics and Engineering in Medicine, 55:1–86, 2010.
dc.relation.referencesY Deene. A basic study of some normoxic polymer gel dosimeters. Physics in Medicine and Biology, 47:3441–3463, 2002.
dc.relation.referencesAndrea Espinosa. Dosimetría en gel por imágenes de resonancia magnética. Trabajo Final de Maestría en Física Médica, Bogotá, 2019.
dc.relation.referencesM.G. Stabin. Radiation dosimetry in nuclear medicine. Applied Radiation and Isotopes, 50:73–87, 1999.
dc.relation.referencesHS1 et al. Yoon. Initial results of simultaneous pet/mri experiments with an mri compatible silicon photomultiplier pet scanner. Journal of Nuclear Medicine, 53:608– 614, 2012.
dc.relation.referencesThomas Beyer. Mr/pet hybrid imaging for the next decade. Magnetom Flash, Siemens:19–29, 2010.
dc.relation.referencesSimon Cherry. The integration of positron emission tomography with magnetic resonance imaging. Proceedings of the IEEE, 96:416–438, 2008.
dc.relation.referencesThomas Yankeelov. Simultaneous pet-mri in oncology: a solution looking for a problem? Magnetic Resonance Imaging, 30:1342–1356, 2012.
dc.relation.referencesChristian Goetz. Spect low-field mri system for small-animal imaging. The Journal of Nuclear Medicine, 49:88–93, 2008.
dc.relation.referencesA. Boni. A polyacrylamide gamma dosimeter. Radiation Research Society, 14:374–380, 1961.
dc.relation.referencesJ. Pavoni. What happens when spins meet for ionizing radiation dosimetry? American Institute of Physics, 1753:080023(1–6), 2016.
dc.relation.referencesB. Farhood. Dosimetric characteristics of passag as a new polymer gel dosimeter with negligible toxicity. Radiation Physics and Chemistry, 147:91–100, 2018.
dc.relation.referencesAmerican Association of Physicists in Medicine. Acceptance testing and quality assurance procedures for magnetic resonance imaging facilities. AAPM report, 100:1–6, 2010.
dc.relation.referencesScott Bagwell et al. A linearised hp -finite element framework for acousto- magnetomechanical coupling in axisymmetric mri scanners. International Journal for Numerical Methods in Engineering, 112(10):1, 2017.
dc.relation.referencesChristakis Constantinides. Magnetic Resonance Imaging. Taylor and Francis Group, Boca Raton, 2014.
dc.relation.referencesGeneral Electric Healthcare. Signa explorer technical data. General Electric Company, 1:1–28, 2014.
dc.relation.referencesMarinus Vlaardingerbroek. Magnetic Resonance Imaging. Springer, Berlin-Heidelberg, 2003.
dc.relation.referencesAndrew Webb. Magnetic Resonance Technology. Royal Society of Chemistry, Cambridge, 2013.
dc.relation.referencesEloy Calvo. Resonancia Magnética para Técnicos. Independently Published, España, 2014.
dc.relation.referencesMalcolm H. Levitt. Basics of nuclear magnetic resonance, 2008.
dc.relation.referencesCarlos Rodrigues. NMR of liquid Crystal Dendrimers. Pan Stanford Publishing, Singapore, 2017.
dc.relation.referencesLuis Caro. Principios básicos de resonancia nuclear magnética. Morfolia, Universidad Nacional de Colombia, 1:26–33, 1991.
dc.relation.referencesMiroslava Cuperlovic. Experimental methodology. NMR Metabolomics in Cancer Research, 3:139–213, 2013.
dc.relation.referencesKumar Anil. Nmr fourier zeugmatography. Journal of Magnetic Resonance, 18:69–83, 1975.
dc.relation.referencesVadim Kuperman. Magnetic Resonance Imaging. Academic Press, San Diego, 2005.
dc.relation.referencesAlfred Horowitz. MRI Physics for Radiologists. Springer Verlag, Nueva York, 1992.
dc.relation.referencesWilliam Oldendorf. Basics of Magnetic Resonance Imaging. Martinus Nijhoff Publishing, Boston, 1988.
dc.relation.referencesY Deene. Essential characteristics of polymer gel dosimeters. Journal of Physics, Conf. Ser. 3 34:34–57, 2004.
dc.relation.referencesDeene et al. Y. De. Mathematical analysis and experimental investigation of noise in quantitative magnetic resonance imaging applied in polymer gel dosimetry. Signal processing, 70:85–101, 1998.
dc.relation.referencesShankar Vallabhajosula. Molecular Imaging. Springer, Heidelberg, 2009.
dc.relation.referencesJhon Prince. Comments on equilibrium, transient equilibrium, and secular equilibrium in serial radioactive decay. Journal of Nuclear Medicine, 20:162–164, 1979.
dc.relation.referencesPeter F. Sharp. Practical Nuclear Medicine. Springer–Verlag,3rd edition, London, 2005.
dc.relation.referencesBianca Costa. Technetium-99m metastable radiochemistry for pharmaceutical applications: old chemistry for new products. JOURNAL OF COORDINATION CHEMISTRY, 72:1–24, 2019.
dc.relation.referencesPillai Mra et al. Sustained availability of tc-99m: Possible paths forward. Journal of Nuclear Medicine, 54(2):1, 2012.
dc.relation.referencesEsam Hussein. Radiation Mechanics principles and practice. Elsevier Science, Oxford, 2007.
dc.relation.referencesKenneth Krane. Introductory Nuclear Physics. John Wiley and Sons, USA, 1988.
dc.relation.referencesW. Heitler. The quantum theory of radiation. University press, Oxford, 1960.
dc.relation.referencesPaula Ramos. Estudio de Rayos X de la Evolución de Cáncer de Mama en un Modelo Murino. Universidad de los Andes, monografía, Bogotá, 2019.
dc.relation.referencesNIST. mass attenuation coefficients. National Institute of Standards and Technology, NIST database:1, 2022.
dc.relation.referencesNath et al. Ravinder. Dosimetry of interstitial brachytherapy sources: Recomendations of the aapm radiation therapy commitee task group 43. Medical Physics, 22:210–221, 1995.
dc.relation.referencesCheng B et al. Saw. Review of aapm task group 43 reccomendations of interstitial brachytherapy sources dosimetry. Medical Dosimetry, 23:259–263, 1998.
dc.relation.referencesJohn Bevelacqua. Contemporary Health Physics. Wiley-VCh Verlag, Weinheim, 2009.
dc.relation.referencesAAPM task group. Specification of Brachytherapy source strength. American Association of Physicist in Medicine, New York, 1987.
dc.relation.referencesJohn Taylor. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books, Sausalito, 1997.
dc.relation.referencesBhisham Gupta. Statistics and probability with applications for engineers and scientists using minitab, R and JMP. John Wiley and Sons, USA, 2020.
dc.relation.referencesRoger Sapsford. Data Collection and Analysis. SAGE publications, London, 2006.
dc.relation.referencesCiro Ramirez. Estadística y muestreo. Ecoe ediciones, Bogotá, 2008.
dc.relation.referencesAlvaro Tucci. Radiodiagnostico y radioterapia. Lulu, United Kingdom, 2012.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembRayos gamma
dc.subject.lembGamma rays
dc.subject.lembEspectrometría de rayos gamma
dc.subject.lembGamma ray spectrometry
dc.subject.proposalDetector Híbrido
dc.subject.proposalHybrid detector
dc.subject.proposalIRM
dc.subject.proposalMRI
dc.subject.proposalGel polimérico
dc.subject.proposalPolymeric Gel
dc.subject.proposalTasa de relajación
dc.subject.proposalRelaxation rate
dc.title.translatedGamma radiation dose distribution in dosimetric gel by magnetic resonance imaging
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit