Show simple item record

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorRomero Castro, Edgar Eduardo
dc.contributor.authorArias Vesga, Christian Leonardo
dc.date.accessioned2023-01-13T20:00:00Z
dc.date.available2023-01-13T20:00:00Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82925
dc.descriptionIlustraciones, fotografías a color, imágenes, gráficas
dc.description.abstractEste estudio presenta una novedosa estrategia para caracterizar y eliminar la señal no nuclear (ruido) en las imágenes histopatológicas teñidas con hematoxilina y eosina (H&E), un paso de preprocesamiento para mejorar los métodos tradicionales de segmentación de núcleos. Cualquier estructura no nuclear es mapeada a un espacio de Noiselet a diferentes niveles de resolución, donde un clasificador es entrenado para reconocer los coeficientes de Noiselet de esta proyección. El enfoque propuesto se evaluó con dos conjuntos de datos de múltiples órganos anotados manualmente, comparando la segmentación de los núcleos obtenida por un algoritmo de Watershed más el enfoque presentado con el método de Watershed solamente. (Texto tomado de la fuente)
dc.description.abstractThis study presents a novel strategy to characterize and remove non-nuclei signal (noise) in histopathological images stained with hematoxylin and eosin (H&E), a preprocessing step to improve traditional nuclei segmentation methods. Any non nuclei structure is mapped to a Noiselet space at different resolution levels, where a classic classifier is trained to recognize the Noiselet coefficients of this projection. The proposed approach was evaluated with two multi-organ datasets manually annotated, comparing the nuclei segmentation obtained by a Watershed algorithm plus the presented approach against the watershed method alone.
dc.format.extentxi. 37 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
dc.subject.meshPatología
dc.subject.meshPathology
dc.titleNon-Nuclei Tissue Characterization of Histopathological Images: A Processing Step to Improve Nuclei Segmentation Methods
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Ingeniería Biomédica
dc.contributor.educationalvalidatorMoncayo Martinez Ricardo Alexander
dc.contributor.researchgroupCim@Lab
dc.description.degreelevelMaestría
dc.description.researchareaDigital Pathology
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.repoRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesJ. Arevalo, A. Cruz-Roa, et al., “Histopathology image representation for automatic analysis: A state-of-the-art review,” Revista Med, vol. 22, no. 2, pp. 79–91, 2014.
dc.relation.referencesA. Heindl, S. Nawaz, and Y. Yuan, “Mapping spatial heterogeneity in the tumor microenvironment: a new era for digital pathology,” Laboratory investigation, vol. 95, no. 4, pp. 377–384, 2015.
dc.relation.referencesM. Veta, J. P. Pluim, P. J. Van Diest, and M. A. Viergever, “Breast cancer histopathology image analysis: A review,” IEEE transactions on biomedical engineering, vol. 61, no. 5, pp. 1400–1411, 2014.
dc.relation.referencesH. Irshad, A. Veillard, L. Roux, and D. Racoceanu, “Methods for nuclei detection, segmentation, and classification in digital histopathology: a review—current status and future potential,” IEEE reviews in biomedical engineering, vol. 7, pp. 97–114, 2013.
dc.relation.referencesS. Salsabili, A. Mukherjee, E. Ukwatta, A. D. Chan, S. Bainbridge, and D. Grynspan, “Automated segmentation of villi in histopathology images of placenta,” Computers in Biology and Medicine, vol. 113, p. 103420, 2019.
dc.relation.referencesA. B. Hamida, M. Devanne, J. Weber, C. Truntzer, V. Derangère, F. Ghiringhelli, G. Forestier, and C. Wemmert, “Deep learning for colon cancer histopathological images analysis,” Computers in Biology and Medicine, vol. 136, p. 104730, 2021.
dc.relation.referencesA. J. Carrigan, A. Charlton, E. Foucar, M. W. Wiggins, A. Georgiou, T. J. Palmeri, and K. M. Curby, “The role of cue-based strategies in skilled diagnosis among pathologists,” Human Factors, p. 0018720821990160, 2021.
dc.relation.referencesP. Naylor, M. Laé, F. Reyal, and T. Walter, “Segmentation of nuclei in histopathology images by deep regression of the distance map,” IEEE transactions on medical imaging, vol. 38, no. 2, pp. 448–459, 2018.
dc.relation.referencesX. Zhou and S. T. Wong, “Informatics challenges of high-throughput microscopy,” IEEE Signal Processing Magazine, vol. 23, no. 3, pp. 63–72, 2006.
dc.relation.referencesM. N. Gurcan, L. E. Boucheron, A. Can, A. Madabhushi, N. M. Rajpoot, and B. Yener, “Histopathological image analysis: A review,” IEEE reviews in biomedical engineering, vol. 2, pp. 147–171, 2009.
dc.relation.referencesM. Salvi and F. Molinari, “Multi-tissue and multi-scale approach for nuclei segmentation in h&e stained images,” Biomedical engineering online, vol. 17, no. 1, pp. 1–13, 2018.
dc.relation.referencesS. Naik, S. Doyle, S. Agner, A. Madabhushi, M. Feldman, and J. Tomaszewski, “Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology,” in 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 284–287, IEEE, 2008.
dc.relation.referencesH. Hiary, R. S. Alomari, M. Saadah, and V. Chaudhary, “Automated segmentation of stromal tissue in histology images using a voting bayesian model,” Signal, Image and Video Processing, vol. 7, no. 6, pp. 1229–1237, 2013.
dc.relation.referencesT. Hayakawa, V. Prasath, H. Kawanaka, B. J. Aronow, and S. Tsuruoka, “Computational nuclei segmentation methods in digital pathology: a survey,” Archives of Computational Methods in Engineering, vol. 28, no. 1, pp. 1–13, 2021.
dc.relation.referencesX. Li, Y. Wang, Q. Tang, Z. Fan, and J. Yu, “Dual u-net for the segmentation of overlapping glioma nuclei,” Ieee Access, vol. 7, pp. 84040–84052, 2019.
dc.relation.referencesM. Veta, J. P. Pluim, P. J. Van Diest, and M. A. Viergever, “Corrections to “breast cancer histopathology image analysis: A review”[may 14 1400-1411],” IEEE Transactions on Biomedical Engineering, vol. 61, no. 11, pp. 2819–2819, 2014.
dc.relation.referencesC. Jung, C. Kim, S. W. Chae, and S. Oh, “Unsupervised segmentation of overlapped nuclei using bayesian classification,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 12, pp. 2825–2832, 2010.
dc.relation.referencesS. Sornapudi, R. J. Stanley, W. V. Stoecker, H. Almubarak, R. Long, S. Antani, G. Thoma, R. Zuna, and S. R. Frazier, “Deep learning nuclei detection in digitized histology images by superpixels,” Journal of pathology informatics, vol. 9, 2018.
dc.relation.referencesP. Wang, X. Hu, Y. Li, Q. Liu, and X. Zhu, “Automatic cell nuclei segmentation and classification of breast cancer histopathology images,” Signal Processing, vol. 122, pp. 1– 13, 2016.
dc.relation.referencesF. R. Hirsch, A. Spreafico, S. Novello, M. D. Wood, L. Simms, and M. Papotti, “The prognostic and predictive role of histology in advanced non-small cell lung cancer: a literature review,” Journal of Thoracic Oncology, vol. 3, no. 12, pp. 1468–1481, 2008.
dc.relation.referencesK. Dimitropoulos, P. Barmpoutis, T. Koletsa, I. Kostopoulos, and N. Grammalidis, “Automated detection and classification of nuclei in pax5 and h&e-stained tissue sections of follicular lymphoma,” Signal, Image and Video Processing, vol. 11, no. 1, pp. 145–153, 2017.
dc.relation.referencesJ. S. Meyer, C. Alvarez, C. Milikowski, N. Olson, I. Russo, J. Russo, A. Glass, B. A. Zehnbauer, K. Lister, and R. Parwaresch, “Breast carcinoma malignancy grading by bloom–richardson system vs proliferation index: reproducibility of grade and advantages of proliferation index,” Modern pathology, vol. 18, no. 8, p. 1067, 2005.
dc.relation.referencesS. Akbar, L. Jordan, A. M. Thompson, and S. J. McKenna, “Tumor localization in tissue microarrays using rotation invariant superpixel pyramids,” in 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 1292–1295, IEEE, 2015.
dc.relation.referencesJ. S. Thomas, D. Lamb, T. Ashcroft, B. Corrin, C. Edwards, A. Gibbs, W. Kenyon, R. Stephens, and W. Whimster, “How reliable is the diagnosis of lung cancer using small biopsy specimens? report of a ukcccr lung cancer working party.,” Thorax, vol. 48, no. 11, pp. 1135–1139, 1993.
dc.relation.referencesE. A. Perez, V. J. Suman, N. E. Davidson, S. Martino, P. A. Kaufman, W. L. Lingle, P. J. Flynn, J. N. Ingle, D. Visscher, and R. B. Jenkins, “Her2 testing by local, central, and reference laboratories in specimens from the north central cancer treatment group n9831 intergroup adjuvant trial,” Journal of Clinical Oncology, vol. 24, no. 19, pp. 3032– 3038, 2006.
dc.relation.referencesJ. M. Userpater, M. D. Ferder, P. Inserta, I. Y. Stella, L. F. Ferder, and F. Inserra, “Aplicación del análisis de imágenes computarizado en la histopatología renal,” Rev. Nefrol. Diál. y Transp, vol. 23, no. 4, pp. 139–144, 2003.
dc.relation.referencesP. Robbins, S. Pinder, N. De Klerk, H. Dawkins, J. Harvey, G. Sterrett, I. Ellis, and C. Elston, “Histological grading of breast carcinomas: a study of interobserver agreement,” Human pathology, vol. 26, no. 8, pp. 873–879, 1995.
dc.relation.referencesA. Belsare and M. Mushrif, “Histopathological image analysis using image processing techniques: An overview,” Signal & Image Processing, vol. 3, no. 4, p. 23, 2012.
dc.relation.referencesG. Meijer, J. Beliën, P. Van Diest, and J. Baak, “Origins of... image analysis in clinical pathology.,” Journal of clinical pathology, vol. 50, no. 5, p. 365, 1997.
dc.relation.referencesL. Romano, M. Ferder, I. Stella, F. Inserra, and L. Ferder, “High correlation in renal tissue between computed image analysis and classical morphometric analysis,” Journal of histotechnology, vol. 19, no. 2, pp. 121–123, 1996.
dc.relation.referencesP. Lambin, R. T. Leijenaar, T. M. Deist, J. Peerlings, E. E. De Jong, J. Van Timmeren, S. Sanduleanu, R. T. Larue, A. J. Even, A. Jochems, et al., “Radiomics: the bridge between medical imaging and personalized medicine,” Nature reviews Clinical oncology, vol. 14, no. 12, pp. 749–762, 2017.
dc.relation.referencesL. Oakden-Rayner, “The rebirth of cad: how is modern ai different from the cad we know?,” 2019.
dc.relation.referencesJ.-M. Chen, Y. Li, J. Xu, L. Gong, L.-W. Wang, W.-L. Liu, and J. Liu, “Computeraided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review,” Tumor Biology, vol. 39, no. 3, p. 1010428317694550, 2017.
dc.relation.referencesR. Dapson and R. Horobin, “Dyes from a twenty-first century perspective,” Biotechnic & Histochemistry, vol. 84, no. 4, pp. 135–137, 2009.
dc.relation.referencesJ. K. Chan, “The wonderful colors of the hematoxylin–eosin stain in diagnostic surgical pathology,” International journal of surgical pathology, vol. 22, no. 1, pp. 12–32, 2014.
dc.relation.referencesD. Wittekind, “Traditional staining for routine diagnostic pathology including the role of tannic acid. 1. value and limitations of the hematoxylin-eosin stain,” Biotechnic & histochemistry, vol. 78, no. 5, pp. 261–270, 2003.
dc.relation.referencesH. Fox, “Is h&e morphology coming to an end?,” Journal of clinical pathology, vol. 53, no. 1, pp. 38–40, 2000.
dc.relation.referencesK. Larson, H. H. Ho, P. L. Anumolu, and T. M. Chen, “Hematoxylin and eosin tissue stain in mohs micrographic surgery: a review,” Dermatologic surgery, vol. 37, no. 8, pp. 1089–1099, 2011.
dc.relation.referencesM. H. Ross and W. Pawlina, Histology. Lippincott Williams & Wilkins, 2006.
dc.relation.referencesM. Titford, “Progress in the development of microscopical techniques for diagnostic pathology,” Journal of histotechnology, vol. 32, no. 1, pp. 9–19, 2009.
dc.relation.referencesD. Onder, S. Zengin, and S. Sarioglu, “A review on color normalization and color deconvolution methods in histopathology,” Applied Immunohistochemistry & Molecular Morphology, vol. 22, no. 10, pp. 713–719, 2014.
dc.relation.referencesD. Grube, “Constants and variables in immunohistochemistry,” Archives of histology and cytology, vol. 67, no. 2, pp. 115–134, 2004.
dc.relation.referencesS. Rashid, M. Fraz, and S. Javed, “Multiscale dilated unet for segmentation of multiorgan nuclei in digital histology images,” in 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), pp. 68–72, IEEE, 2020.
dc.relation.referencesC. Le Bozec, M.-C. Jaulent, E. Zapletal, D. Heudes, and P. Degoulet, “A visual coding system in histopathology and its consensual acquisition.,” in Proceedings of the AMIA Symposium, p. 306, American Medical Informatics Association, 1999.
dc.relation.referencesA. M. Khan, H. ElDaly, and N. M. Rajpoot, “A gamma-gaussian mixture model for detection of mitotic cells in breast cancer histopathology images,” Journal of pathology informatics, vol. 4, no. 1, p. 11, 2013.
dc.relation.referencesM. K. K. Niazi, G. Beamer, and M. N. Gurcan, “Detecting and characterizing cellular responses to mycobacterium tuberculosis from histology slides,” Cytometry Part A, vol. 85, no. 2, pp. 151–161, 2014.
dc.relation.referencesA. M. Khan, N. Rajpoot, D. Treanor, and D. Magee, “A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution,” IEEE Transactions on Biomedical Engineering, vol. 61, no. 6, pp. 1729–1738, 2014.
dc.relation.referencesL. He, L. R. Long, S. Antani, and G. R. Thoma, “Histology image analysis for carcinoma detection and grading,” Computer methods and programs in biomedicine, vol. 107, no. 3, pp. 538–556, 2012.
dc.relation.referencesM. Paramanandam, M. O’Byrne, B. Ghosh, J. J. Mammen, M. T. Manipadam, R. Thamburaj, and V. Pakrashi, “Automated segmentation of nuclei in breast cancer histopathology images,” PloS one, vol. 11, no. 9, p. e0162053, 2016.
dc.relation.referencesJ. D. Bancroft and M. Gamble, Theory and practice of histological techniques. Elsevier health sciences, 2008.
dc.relation.referencesD. Komura and S. Ishikawa, “Machine learning methods for histopathological image analysis,” Computational and structural biotechnology journal, vol. 16, pp. 34–42, 2018.
dc.relation.referencesS. Cascianelli, R. Bello-Cerezo, F. Bianconi, M. L. Fravolini, M. Belal, B. Palumbo, and J. N. Kather, “Dimensionality reduction strategies for cnn-based classification of histopathological images,” in International conference on intelligent interactive multimedia systems and services, pp. 21–30, Springer, 2018.
dc.relation.referencesP.-Y. Tsang, “Multi-resolution image segmentation using geometric active contours,” Master’s thesis, University of Waterloo, 2004.
dc.relation.referencesH. Irshad, S. Jalali, L. Roux, D. Racoceanu, L. J. Hwee, G. Le Naour, and F. Capron, “Automated mitosis detection using texture, sift features and hmax biologically inspired approach,” Journal of pathology informatics, vol. 4, no. Suppl, 2013.
dc.relation.referencesH. Fujita, “Ai-based computer-aided diagnosis (ai-cad): the latest review to read first,” Radiological physics and technology, vol. 13, no. 1, pp. 6–19, 2020.
dc.relation.referencesN. Kumar, R. Verma, S. Sharma, S. Bhargava, A. Vahadane, and A. Sethi, “A dataset and a technique for generalized nuclear segmentation for computational pathology,” IEEE transactions on medical imaging, vol. 36, no. 7, pp. 1550–1560, 2017.
dc.relation.referencesH. Qu, P. Wu, Q. Huang, J. Yi, Z. Yan, K. Li, G. M. Riedlinger, S. De, S. Zhang, and D. N. Metaxas, “Weakly supervised deep nuclei segmentation using partial points annotation in histopathology images,” IEEE transactions on medical imaging, vol. 39, no. 11, pp. 3655–3666, 2020.
dc.relation.referencesH. Sajid and S.-C. S. Cheung, “Background subtraction for static & moving camera,” in 2015 IEEE International Conference on Image Processing (ICIP), pp. 4530–4534, IEEE, 2015.
dc.relation.referencesR. Wang and S.-i. Kamata, “Stain-refinement and boundary-enhancement weight maps for multi-organ nuclei segmentation,” in 2020 Joint 9th International Conference on Informatics, Electronics & Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 1–7, IEEE, 2020.
dc.relation.referencesS. J. Keenan, J. Diamond, W. Glenn McCluggage, H. Bharucha, D. Thompson, P. H. Bartels, and P. W. Hamilton, “An automated machine vision system for the histological grading of cervical intraepithelial neoplasia (cin),” The Journal of pathology, vol. 192, no. 3, pp. 351–362, 2000.
dc.relation.referencesS. Baheerathan, F. Albregtsen, and H. E. Danielsen, “New texture features based on the complexity curve,” Pattern Recognition, vol. 32, no. 4, pp. 605–618, 1999.
dc.relation.referencesP. W. Hamilton, P. H. Bartels, D. Thompson, N. H. Anderson, R. Montironi, and J. M. Sloan, “Automated location of dysplastic fields in colorectal histology using image texture analysis,” The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, vol. 182, no. 1, pp. 68–75, 1997.
dc.relation.referencesR. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MATLAB. Pearson Education India, 2004.
dc.relation.referencesJ.-R. Dalle, H. Li, C.-H. Huang, W. K. Leow, D. Racoceanu, and T. C. Putti, “Nuclear pleomorphism scoring by selective cell nuclei detection.,” in WACV, 2009.
dc.relation.referencesO. Sertel, U. V. Catalyurek, H. Shimada, and M. N. Gurcan, “Computer-aided prognosis of neuroblastoma: Detection of mitosis and karyorrhexis cells in digitized histological images,” in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1433–1436, IEEE, 2009.
dc.relation.referencesA. M. Khan, H. El-Daly, E. Simmons, and N. M. Rajpoot, “Hymap: A hybrid magnitudephase approach to unsupervised segmentation of tumor areas in breast cancer histology images,” Journal of pathology informatics, vol. 4, no. Suppl, 2013.
dc.relation.referencesP.-W. Huang and Y.-H. Lai, “Effective segmentation and classification for hcc biopsy images,” Pattern Recognition, vol. 43, no. 4, pp. 1550–1563, 2010.
dc.relation.referencesC. Jung and C. Kim, “Segmenting clustered nuclei using h-minima transform-based marker extraction and contour parameterization,” IEEE transactions on biomedical engineering, vol. 57, no. 10, pp. 2600–2604, 2010.
dc.relation.referencesM. Veta, A. Huisman, M. A. Viergever, P. J. van Diest, and J. P. Pluim, “Markercontrolled watershed segmentation of nuclei in h&e stained breast cancer biopsy images,” in 2011 IEEE international symposium on biomedical imaging: from nano to macro, pp. 618–621, IEEE, 2011.
dc.relation.referencesZ. Peng, S. Qu, and Q. Li, “Interactive image segmentation using geodesic appearance overlap graph cut,” Signal Processing: Image Communication, vol. 78, pp. 159–170, 2019.
dc.relation.referencesM. Teena, A. Manickavasagan, A. Mothershaw, S. El Hadi, and D. Jayas, “Potential of machine vision techniques for detecting fecal and microbial contamination of food products: a review,” Food and Bioprocess Technology, vol. 6, no. 7, pp. 1621–1634, 2013.
dc.relation.referencesR. Coifman, F. Geshwind, and Y. Meyer, “Noiselets,” Applied and Computational Harmonic Analysis, vol. 10, no. 1, pp. 27–44, 2001.
dc.relation.referencesJ. Xu, X. Luo, G. Wang, H. Gilmore, and A. Madabhushi, “A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images,” Neurocomputing, vol. 191, pp. 214–223, 2016.
dc.relation.referencesE. M. de Kruijf, J. G. van Nes, C. J. van de Velde, H. Putter, V. T. Smit, G. J. Liefers, P. J. Kuppen, R. A. Tollenaar, and W. E. Mesker, “Tumor–stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple negative carcinoma patients,” Breast cancer research and treatment, vol. 125, no. 3, pp. 687–696, 2011.
dc.relation.referencesY. Chen, L. Zhang, W. Liu, and X. Liu, “Prognostic significance of the tumor-stroma ratio in epithelial ovarian cancer,” BioMed research international, vol. 2015, 2015.
dc.relation.referencesM. Peikari, S. Salama, S. Nofech-Mozes, and A. L. Martel, “A cluster-then-label semisupervised learning approach for pathology image classification,” Scientific reports, vol. 8, no. 1, pp. 1–13, 2018.
dc.relation.referencesL. Hou, V. Nguyen, A. B. Kanevsky, D. Samaras, T. M. Kurc, T. Zhao, R. R. Gupta, Y. Gao, W. Chen, D. Foran, et al., “Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images,” Pattern recognition, vol. 86, pp. 188–200, 2019.
dc.relation.referencesO. Sertel, J. Kong, U. V. Catalyurek, G. Lozanski, J. H. Saltz, and M. N. Gurcan, “Histopathological image analysis using model-based intermediate representations and color texture: Follicular lymphoma grading,” Journal of Signal Processing Systems, vol. 55, no. 1-3, p. 169, 2009.
dc.relation.referencesB. Vandana and P. Antony, “Automated segmentation using histopathology images as a diagnostic confirmatory tool in detection of bone cancer,” International Journal of Computer Applications, vol. 57, no. 11, 2012.
dc.relation.referencesB. van Ginneken, S. Kerkstra, and J. Meakin, “Grand challenges in biomedical image analysis,” 2018.
dc.relation.referencesK. Tomczak, P. Czerwinska, and M. Wiznerowicz, “The cancer genome atlas (tcga): an immeasurable source of knowledge,” Contemporary oncology, vol. 19, no. 1A, p. A68, 2015.
dc.relation.referencesK. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S. Phillips, D. Maffitt, M. Pringle, et al., “The cancer imaging archive (tcia): maintaining and operating a public information repository,” Journal of digital imaging, vol. 26, no. 6, pp. 1045–1057, 2013.
dc.relation.referencesM. Macenko, M. Niethammer, J. S. Marron, D. Borland, J. T.Woosley, X. Guan, C. Schmitt, and N. E. Thomas, “A method for normalizing histology slides for quantitative analysis,” in 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1107–1110, IEEE, 2009.
dc.relation.referencesT. Howley, M. G. Madden, M.-L. O’Connell, and A. G. Ryder, “The effect of principal component analysis on machine learning accuracy with high dimensional spectral data,” in International Conference on Innovative Techniques and Applications of Artificial Intelligence, pp. 209–222, Springer, 2005.
dc.relation.referencesM. Veta, P. J. Van Diest, R. Kornegoor, A. Huisman, M. A. Viergever, and J. P. Pluim, “Automatic nuclei segmentation in h&e stained breast cancer histopathology images,” PloS one, vol. 8, no. 7, p. e70221, 2013.
dc.relation.referencesP. Tadrous, “Digital stain separation for histological images,” Journal of microscopy, vol. 240, no. 2, pp. 164–172, 2010.
dc.relation.referencesN. Kumar, R. Verma, D. Anand, Y. Zhou, O. F. Onder, E. Tsougenis, H. Chen, P. A. Heng, J. Li, Z. Hu, et al., “A multi-organ nucleus segmentation challenge,” IEEE transactions on medical imaging, 2019.
dc.relation.referencesW. Hu, H. Sheng, J. Wu, Y. Li, T. Liu, Y. Wang, and Y. Wen, “Generative adversarial training for weakly supervised nuclei instance segmentation,” in 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3649–3654, IEEE, 2020.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCélulas - patología
dc.subject.lembCells - pathology
dc.subject.proposalEnfermedad del cáncer
dc.subject.proposalhistopatología
dc.subject.proposaleliminación de señal de ruido
dc.subject.proposaltransformación Noiselet
dc.subject.proposalseñal de núcleos
dc.subject.proposalcancer disease
dc.subject.proposalhistopathology
dc.subject.proposalnoise signal removal
dc.subject.proposalNoiselet transformation
dc.subject.proposalnuclei signal
dc.title.translatedCaracterización de tejidos no nucleares de imágenes histopatológicas: un paso de procesamiento para mejorar los métodos de segmentación de núcleos
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPersonal de apoyo escolar


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit