dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.contributor.advisor | Lizarazo Marriaga, Juan Manuel |
dc.contributor.advisor | Arango Londoño, Juan Fernando |
dc.contributor.author | Salazar Mayorga, Luis Felipe |
dc.date.accessioned | 2023-02-21T15:49:17Z |
dc.date.available | 2023-02-21T15:49:17Z |
dc.date.issued | 2023-02-18 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83535 |
dc.description | ilustraciones, fotografías (principalmente a color) |
dc.description.abstract | El cemento pórtland adicionado con caliza y arcilla calcinada (LC3) es un material capaz
de desarrollar propiedades mecánicas comparables al cemento pórtland ordinario (OPC),
de permitir la obtención de una microestructura densa y rica en aluminatos que mejora la
resistencia del concreto al ataque por cloruros y la reacción álcali sílice (RAS), y trae
beneficios ambientales, técnicos y económicos a la sociedad. En este trabajo se evaluó la
resistencia a la corrosión debida a la carbonatación en concretos fabricados con cementos
LC3 encontrando que esta fue directamente proporcional al factor clínker del cemento,
particularmente en condición acelerada. Los cementos LC3 fueron formulados ajustando
su contenido de SO3 mediante la evaluación del proceso de hidratación en la pasta de
cemento. Las pruebas de carbonatación fueron ejecutadas mediante métodos acelerados
en la pasta, mortero y concreto, y también se desarrollaron pruebas en condición natural.
También, se estudió el efecto de la carbonatación sobre la resistencia a la compresión del
mortero, encontrando un buen desempeño para cementos con mayores factores clínker.
El estado del acero de refuerzo en concretos expuestos a carbonatación natural y
acelerada fue evaluado mediante las técnicas electroquímicas de resistencia a la
polarización lineal (LPR) y espectroscopia de impedancia electroquímica (EIS),
evidenciando que los efectos de la carbonatación acelerada en la reducción de la
resistencia eléctrica de los concretos LC3 y la presencia de corrosión del acero inician
antes de que el frente de carbonatación alcance la superficie de la barra de acero.
Adicionalmente, la evaluación de la corrosión mostró que los concretos con cementos
adicionados en grandes proporciones son más vulnerables a la corrosión debida a la
carbonatación, existiendo un mayor riesgo en aquellos con menores factores clínker. (Texto tomado de la fuente) |
dc.description.abstract | Portland cement blended with limestone and calcined clay (LC3) is a material capable of developing mechanical properties comparable to ordinary Portland cement (OPC), allowing a dense microstructure rich in aluminates to be obtained that improves the resistance of concrete to attack by chlorides and the alkali silica reaction, and brings environmental, technical and economic benefits to society. In this work, the resistance to corrosion due to carbonation in concrete made with LC3 cements was evaluated finding that it was directly proportional to the clinker factor of the cement, particularly in the accelerated condition. LC3 cements were formulated by adjusting their SO3 content by evaluating the hydration process in the cement paste. Carbonation tests were carried out using accelerated methods on paste, mortar and concrete, although tests were also carried out in natural conditions. Also, the effect of carbonation on the compressive strength of the mortar was studied, finding a good performance for cements with higher clinker factors. The state of reinforcing steel in concrete exposed to natural and accelerated carbonation was evaluated by electrochemical techniques of linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS), showing that the effects of accelerated carbonation on the reduction of the electrical resistance of the LC3 concrete and the presence of steel corrosion begin before the carbonation front reaches the surface of the steel bar. Additionally, the corrosion evaluation showed that concretes with cements blended in large proportions are more vulnerable to corrosion due to carbonation, with a higher risk in those with lower clinker factors. |
dc.format.extent | xxxi, 265 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.subject.ddc | 690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicos |
dc.title | Evaluación de la resistencia a la corrosión debida a carbonatación en concretos con cementos pórtland adicionados con caliza y arcilla calcinada |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Estructuras |
dc.contributor.researchgroup | GIES – Grupo de investigación en análisis, diseño y materiales |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magister en Ingeniería - Estructuras |
dc.description.researcharea | Materiales para construcción |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ingeniería |
dc.publisher.place | Bogotá, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Y. Dhandapani, T. Sakthivel, M. Santhanam, R. Gettu, and R. G. Pillai,
“Mechanical properties and durability performance of concretes with Limestone
Calcined Clay Cement (LC3),” Cem Concr Res, vol. 107, pp. 136–151, May 2018,
doi: 10.1016/j.cemconres.2018.02.005. |
dc.relation.references | A. Alujas, R. Fernández, R. Quintana, K. L. Scrivener, and F. Martirena,
“Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination
temperature and impact of calcination products on OPC hydration,” Appl Clay Sci,
vol. 108, pp. 94–101, 2015, doi: 10.1016/j.clay.2015.01.028. |
dc.relation.references | F. Avet, R. Snellings, A. Alujas Diaz, M. ben Haha, and K. Scrivener, “Development
of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic
reactivity of calcined kaolinitic clays,” Cem Concr Res, vol. 85, pp. 1–11, 2016, doi:
https://doi.org/10.1016/j.cemconres.2016.02.015. |
dc.relation.references | K. Scrivener, F. Martirena, S. Bishnoi, and S. Maity, “Calcined clay limestone
cements (LC3),” Cem Concr Res, vol. 114, pp. 49–56, 2018, doi:
10.1016/j.cemconres.2017.08.017. |
dc.relation.references | F. Zunino, F. Martirena, and K. Scrivener, “Limestone calcined clay cements
(LC3),” ACI Mater J, vol. 118, no. 3, pp. 49–60, May 2021, doi:
10.14359/51730422. |
dc.relation.references | S. Rathnarajan, B. S. Dhanya, R. G. Pillai, R. Gettu, and M. Santhanam,
“Carbonation model for concretes with fly ash, slag, and limestone calcined clay -
using accelerated and five - year natural exposure data,” Cem Concr Compos, vol.
126, Feb. 2022, doi: 10.1016/j.cemconcomp.2021.104329. |
dc.relation.references | S. Rathnarajan and R. Pillai, “Carbonation rate and service life of reinforced
concrete systems with mineral admixtures and special cements,” 2017. |
dc.relation.references | Q. D. Nguyen and A. Castel, “Reinforcement corrosion in limestone flash calcined
clay cement-based concrete,” Cem Concr Res, vol. 132, no. February, 2020, doi:
10.1016/j.cemconres.2020.106051. |
dc.relation.references | M. Sharma, S. Bishnoi, F. Martirena, and K. Scrivener, “Limestone calcined clay
cement and concrete: A state-of-the-art review,” Cem Concr Res, vol. 149, Nov.
2021, doi: 10.1016/j.cemconres.2021.106564. |
dc.relation.references | K. L. Scrivener, V. M. John, and E. M. Gartner, “Eco-efficient cements: Potential
economically viable solutions for a low-CO2 cement-based materials industry,”
Cem Concr Res, vol. 114, pp. 2–26, Dec. 2018, doi:
10.1016/j.cemconres.2018.03.015. |
dc.relation.references | P.-C. Aitcin, Binders for Durable and Sustainable Concrete. New York: Taylor &
Francis, 2008. |
dc.relation.references | K. Scrivener et al., “Impacting factors and properties of limestone calcined clay
cements (LC3),” Green Mater, vol. 7, no. 1, pp. 3–14, Jul. 2018, doi:
10.1680/jgrma.18.00029. |
dc.relation.references | S. Bishnoi, S. Maity, A. Mallik, S. Joseph, and S. Krishnan, “Pilot scale
manufacture of limestone calcined clay cement : The Indian experience Limestone
Calcined Clay Cement View project LC3-Limestone Calcined Clay Cement View
project Soumen Maity Special iSSue-Future cements,” The Indian Concrete
Journal, vol. 88, no. 77, pp. 22–28, 2014. |
dc.relation.references | A. C. Emmanuel, P. Haldar, S. Maity, and S. Bishnoi, “Second pilot production of
limestone calcined clay cement in India: The experience,” Indian Concrete Journal,
vol. 90, no. 5, pp. 57–63, 2016. |
dc.relation.references | R. Matallana, El concreto fundamentos y nuevas tecnologías. Constructora
Conconcreto, Corona, 2019. |
dc.relation.references | A. Poursaee, Corrosion of steel in concrete structures. Woodhead Publishing,
2016. |
dc.relation.references | NACE International, “Corrosion costs and preventive strategies in the United
States,” 2002, [Online]. Available: http://impact.nace.org/documents/ccsupp.pdf |
dc.relation.references | U. M. Angst, “Challenges and opportunities in corrosion of steel in concrete,” Mater
Struct, vol. 51, no. 4, p. 20, 2018, doi: 10.1617/s11527-017-1131-6. |
dc.relation.references | nternational Energy Agency, “Technology Roadmap - Low-Carbon Transition in
the Cement Industry,” 2018. |
dc.relation.references | World Business Council for Sustainable Development, “Cement Sustainability
Initiative, Getting the Numbers Right, Project Emissions Report 2014,” 2016. |
dc.relation.references | S. Sánchez Berriel et al., “Assessing the environmental and economic potential of
Limestone Calcined Clay Cement in Cuba,” J Clean Prod, vol. 124, pp. 361–369,
Jun. 2016, doi: 10.1016/j.jclepro.2016.02.125. |
dc.relation.references | Y. Cancio Díaz et al., “Limestone calcined clay cement as a low-carbon solution to
meet expanding cement demand in emerging economies,” Dev Eng, vol. 2, pp. 82–
91, 2017, doi: 10.1016/j.deveng.2017.06.001 |
dc.relation.references | B. Lothenbach, K. Scrivener, and R. D. Hooton, “Supplementary cementitious
materials,” Cem Concr Res, vol. 41, pp. 1244–1256, Dec. 2011, doi:
10.1016/j.cemconres.2010.12.001. |
dc.relation.references | V. L. Bonavetti, V. F. Rahhal, and E. F. Irassar, “Studies on the carboaluminate
formation in limestone filler-blended cements,” Cem Concr Res, vol. 31, no. 6, pp.
853–859, 2001, doi: 10.1016/S0008-8846(01)00491-4. |
dc.relation.references | L. M. Vizcaíno-Andrés, S. Sánchez-Berriel, S. Damas-Carrera, A. PérezHernández,
K.
L.
Scrivener,
and
J.
F.
Martirena-Hernández,
“Industrial
trial
to
produce
a
low
clinker,
low
carbon
cement,”
Materiales de
Construcción,
vol.
65,
no317,
Mar.
2015,
doi:
10.3989/mc.2015.00614. |
dc.relation.references | R. Fernandez, F. Martirena, and K. L. Scrivener, “The origin of the pozzolanic
activity of calcined clay minerals: A comparison between kaolinite, illite and
montmorillonite,” Cem Concr Res, vol. 41, no. 1, pp. 113–122, 2011, doi:
10.1016/j.cemconres.2010.09.013. |
dc.relation.references | A. M. Rashad, “Metakaolin as cementitious material: History, scours, production
and composition-A comprehensive overview,” Constr Build Mater, vol. 41, pp. 303–
318, 2013, doi: 10.1016/j.conbuildmat.2012.12.001. |
dc.relation.references | A. T. Bakera and M. G. Alexander, “Use of metakaolin as a supplementary
cementitious material in concrete, with a focus on durability properties,” RILEM
Technical Letters, vol. 4, pp. 89–102, May 2019, doi:
10.21809/rilemtechlett.2019.94. |
dc.relation.references | M. Antoni, J. Rossen, F. Martirena, and K. Scrivener, “Cement substitution by a
combination of metakaolin and limestone,” Cem Concr Res, vol. 42, pp. 1579–
1589, 2012, doi: 10.1016/j.cemconres.2012.09.006. |
dc.relation.references | B. Lothenbach, G. le Saout, E. Gallucci, and K. Scrivener, “Influence of limestone
on the hydration of Portland cements,” Cem Concr Res, vol. 38, pp. 848–860,
2008, doi: 10.1016/j.cemconres.2008.01.002. |
dc.relation.references | C. Rodríguez and J. I. Tobón, “Influence of calcined clay/limestone, sulfate and
clinker proportions on cement performance,” Constr Build Mater, vol. 251, p.
119050, 2020, doi: 10.1016/j.conbuildmat.2020.119050. |
dc.relation.references | F. Zunino and K. Scrivener, “Factors influencing the sulfate balance in pure phase
C3S/C3A systems,” Cem Concr Res, vol. 133, Jul. 2020, doi:
10.1016/j.cemconres.2020.106085. |
dc.relation.references | F. Zunino and K. Scrivener, “The influence of the filler effect on the sulfate
requirement of blended cements,” Cem Concr Res, vol. 126, Dec. 2019, doi:
10.1016/j.cemconres.2019.105918. |
dc.relation.references | A. Campos Silva, G. Fajardo, and J. Mendoza Rangel, “Estudio del
comportamiento del avance de la carbonatación del concreto reforzado en
ambiente natural y acelerado,” Concreto y Cemento: Investigación y Desarrollo,
vol. 8, no. 1, pp. 14–34, 2016. |
dc.relation.references | L. Bertolini, B. Elsener, P. Pedeferri, and R. P. Polder, Corrosion of steel in
concrete: prevention, diagnosis, repair. Weinheim: Wiley-VCH, 2004. |
dc.relation.references | A. Licor, “Evaluación de la carbonatación en hormigones elaborados con cemento
de bajo carbono LC3,” Universidad Central Marta Abreu de Las Villas, 2016.
[Online]. Available: https://dspace.uclv.edu.cu/handle/123456789/7393 |
dc.relation.references | A. A. Elgalhud, R. K. Dhir, and G. S. Ghataora, “Carbonation resistance of
concrete: Limestone addition effect,” Magazine of Concrete Research, vol. 69, no.2, pp. 84–106, Jan. 2017, doi: 10.1680/jmacr.16.00371. |
dc.relation.references | Y. D. Cárdenas, E. D. Caballero, and J. F. Martirena-Hernandez, “Evaluation of
Carbonation in Specimens Made with LC3 Low Carbon Cement,” in RILEM
Bookseries, vol. 22, 2020. doi: 10.1007/978-3-030-22034-1_35. |
dc.relation.references | M. S. H. Khan, Q. D. Nguyen, and A. Castel, “Carbonation of limestone calcined
clay cement concrete,” RILEM Bookseries, vol. 16, pp. 238–243, 2018, doi:
10.1007/978-94-024-1207-9_38. |
dc.relation.references | R. Gettu et al., “Summary of 4-years of Research at IIT Madras on Concrete with
Limestone Calcined Clay Cement (LC3),” in International Conference on
Sustainable Materials, Systems and Structures, 2019, pp. 449–456. |
dc.relation.references | J. F. Arango Londoño, Patología de la Construcción: fundamentos, En edición.
2022. |
dc.relation.references | V. Shah and S. Bishnoi, “Analysis of Pore Structure Characteristics of Carbonated
Low-Clinker Cements,” Transp Porous Media, vol. 124, no. 3, pp. 861–881, 2018,
doi: 10.1007/s11242-018-1101-7. |
dc.relation.references | V. Shah, K. Scrivener, B. Bhattacharjee, and S. Bishnoi, “Changes in
microstructure characteristics of cement paste on carbonation,” Cem Concr Res,
vol. 109, pp. 184–197, Jul. 2018, doi: 10.1016/j.cemconres.2018.04.016. |
dc.relation.references | S. Rathnarajan and R. Pillai, “Determination of pH threshold of corrosion initiation
in cementitous systems with supplementary cementitious materials,” Chennai, Mar.
2018. |
dc.relation.references | E. Cabrera, A. Alujas, B. Elsener, and J. F. Martirena-Hernandez, “Preliminary
Results on Corrosion Rate in Carbonated LC3 Concrete,” in RILEM Bookseries,
vol. 22, Springer Netherlands, 2020, pp. 293–298. doi: 10.1007/978-3-030-220341_33. |
dc.relation.references | STM International, “ASTM C125-21a Concrete and Concrete Aggregates.” 2021.
doi: 10.1520/C0125-21A. |
dc.relation.references | S. Kosmatka, B. Kerkhoff, W. Panarese, and J. Tanesi, Diseño y control de
mezclas de concreto. Skokie: Portland Cement Association, 2004. |
dc.relation.references | Asociación Colombiana de Productores de Concreto - ASOCRETO, Tecnología del
concreto Materiales, Propiedades y Diseño de Mezclas Tomo 1. Bogotá D.C.,
2018. |
dc.relation.references | K. Mehta and P. J. M. Monteiro, CONCRETE Microstructure, Properties and
Materials, 4th ed. New York: McGraw-Hill Education, 2014. |
dc.relation.references | H. M. Owaid, R. B. Hamid, and M. R. Taha, “A review of sustainable supplementary
cementitious materials as an alternative to all-portland cement mortar and
concrete,” Aust J Basic Appl Sci, vol. 6, no. 9, 2012. |
dc.relation.references | Z. Li, Advanced Concrete Technology. Hoboken: John Wiley & Sons, INC., 2011. |
dc.relation.references | ASTM International, “ASTM C618-19 Standard Specification for Coal Fly Ash and
Raw or Calcined Natural Pozzolan for Use in Concrete.” 2019. doi: 10.1520/C061819. |
dc.relation.references | S. S. Reddy and M. A. K. Reddy, “LIME CALCINED CLAY CEMENT (LC3): A
Review,” in IOP Conference Series: Earth and Environmental Science, Aug. 2021,
vol. 796, no. 1. doi: 10.1088/1755-1315/796/1/012037. |
dc.relation.references | ASTM International, “ASTM C150/C150M-21 Standard Specification for Portland
Cement.” 2021. doi: 10.1520/C0150_C0150M-21. |
dc.relation.references | ASTM International, “ASTM C595/C595M-21 Standard Specification for Blended
Hydraulic Cements.” 2021. doi: 10.1520/C0595_C0595M-21. |
dc.relation.references | ASTM International, “ASTM C1157/C1157M-20 Standard Performance
Specification for Hydraulic Cement.” ASTM Standards, 2020. doi:
10.1520/C1157_C1157M-20. |
dc.relation.references | C. P. Rodríguez Hidalgo, “Evaluación de la interacción en el uso conjunto de un
material arcilloso activado térmicamente, caliza y sulfato sobre la cinética de
hidratación y desempeño mecánico del cemento,” Universidad Nacional de
Colombia, 2019. |
dc.relation.references | METTLER TOLEDO, “Determination of calcium sulfate dihydrate and hemihydrate
in cement,” 2010. [Online]. Available: www.mt.com |
dc.relation.references | F. Zunino and K. Scrivener, “The reaction between metakaolin and limestone and
its effect in porosity refinement and mechanical properties,” Cem Concr Res, vol.
140, 2021, doi: 10.1016/j.cemconres.2020.106307. |
dc.relation.references | M. A. Giraldo and J. I. Tobón, “Evolución mineralógica del cemento Pórtland durante el proceso de hidratación,” Dyna (Medellin), vol. 73, no. 148, pp. 69–81, 2006. |
dc.relation.references | L. E. Romero Robles, “Evaluación de factores que afectan la aparición de etringita secundaria como simulación del envejecimiento de mezclas de concreto y su papel dentro de procesos de expansión y agrietamiento,” in 10th Latin American and Caribbean Conference for Engineering and Technology, Jul. 2012. |
dc.relation.references | S. Krishnan, A. C. Emmanuel, and S. Bishnoi, “Hydration and phase assemblage of ternary cements with calcined clay and limestone,” Constr Build Mater, vol. 222, pp. 64–72, Oct. 2019, doi: 10.1016/j.conbuildmat.2019.06.123. |
dc.relation.references | L. M. Vizcaíno Andrés, M. G. Antoni, A. A. Diaz, J. F. Martirena Hernández, and K. L. Scrivener, “Effect of fineness in clinker-calcined clays-limestone cements,” Advances in Cement Research, vol. 27, no. 9, pp. 546–556, Oct. 2015, doi: 10.1680/adcr.14.00095. |
dc.relation.references | L. C. Lopera Agudelo, “Los principales fenómenos en la reacción del cemento hidráulico,” Jun. 2021. https://alion.com.co/reaccion-del-cemento-hidraulico/#:~:text=En%20el%20cemento%2C%20ocurre%20principalmente,la%20reducci%C3%B3n%20en%20la%20resistencia. (accessed Jul. 22, 2022). |
dc.relation.references | D. Jansen, F. Goetz-Neunhoeffer, B. Lothenbach, and J. Neubauer, “The early hydration of Ordinary Portland Cement (OPC): An approach comparing measured heat flow with calculated heat flow from QXRD,” Cem Concr Res, vol. 42, no. 1, pp. 134–138, Jan. 2012, doi: 10.1016/j.cemconres.2011.09.001. |
dc.relation.references | Z. Li, D. Lu, and X. Gao, “Analysis of correlation between hydration heat release and compressive strength for blended cement pastes,” Constr Build Mater, vol. 260, Nov. 2020, doi: 10.1016/j.conbuildmat.2020.120436. |
dc.relation.references | F. Yousuf, X. Wei, and J. Zhou, “Monitoring the setting and hardening behaviour of cement paste by electrical resistivity measurement,” Constr Build Mater, vol. 252, Aug. 2020, doi: 10.1016/j.conbuildmat.2020.118941. |
dc.relation.references | L. Chi, Z. Wang, S. Lu, H. Wang, K. Liu, and W. Liu, “Early assessment of hydration and microstructure evolution of belite-calcium sulfoaluminate cement pastes by electrical impedance spectroscopy,” Electrochim Acta, vol. 389, Sep. 2021, doi: 10.1016/j.electacta.2021.138699. |
dc.relation.references | L. Liu et al., “Study on hydration reaction and structure evolution of cemented paste backfill in early-age based on resistivity and hydration heat,” Constr Build Mater, vol. 272, Feb. 2021, doi: 10.1016/j.conbuildmat.2020.121827. |
dc.relation.references | ASTM International, “ASTM C563-20 Standard Guide for Approximation of Optimum SO3 in Hydraulic Cement Using Compressive Strength.” 2020. doi: 10.1520/C0563-20. |
dc.relation.references | Instituto Colombiano de Normas Técnicas (ICONTEC), “GTC 302 Cementos. Guía para determinar el contenido óptimo aproximado de SO3 en el cemento hidráulico.” 2020. |
dc.relation.references | H. Maraghechi, F. Avet, H. Wong, H. Kamyab, and K. Scrivener, “Performance of Limestone Calcined Clay Cement (LC3) with various kaolinite contents with respect to chloride transport,” Materials and Structures/Materiaux et Constructions, vol. 51, no. 5, Oct. 2018, doi: 10.1617/s11527-018-1255-3. |
dc.relation.references | S. Narayanan and G. Muniasamy, “STRENGTH CHARACTERISTICS OF HIGH TICS OF HIGH PERFORMANCE LIME CALCINED CLAY CLAY CEMENT (LC3) CONCRETE,” International Journal of Civil Engineering and Technology (IJCIET), vol. 9, no. 13, pp. 1883–1889, 2018. |
dc.relation.references | V. Shah, A. Parashar, G. Mishra, S. Medepalli, S. Krishnan, and S. Bishnoi, “Influence of cement replacement by limestone calcined clay pozzolan on the engineering properties of mortar and concrete,” Advances in Cement Research, vol. 32, no. 3, pp. 101–111, Aug. 2018, doi: 10.1680/jadcr.18.00073. |
dc.relation.references | Apsa and R. Rao, “Performance of Limestone Calcined Clay Cement,” International Journal of Recent Technology and Engineering (IJRTE), vol. 7, no. 6C2, 2019. |
dc.relation.references | G. Mishra, A. C. Emmanuel, and S. Bishnoi, “Influence of temperature on hydration and microstructure properties of limestone-calcined clay blended cement,” Mater Struct, vol. 52, no. 5, Oct. 2019, doi: 10.1617/s11527-019-1390-5. |
dc.relation.references | S. Rengaraju, L. Neelakantan, and R. G. Pillai, “Investigation on the polarization resistance of steel embedded in highly resistive cementitious systems – An attempt and challenges,” Electrochim Acta, vol. 308, pp. 131–141, Jun. 2019, doi: 10.1016/j.electacta.2019.03.200. |
dc.relation.references | J. Ston and K. Scrivener, “Basic creep of limestone–calcined clay cements: An experimental and numerical approach,” Theoretical and Applied Fracture Mechanics, vol. 103, Oct. 2019, doi: 10.1016/j.tafmec.2019.102270. |
dc.relation.references | F. Avet, E. Boehm-Courjault, and K. Scrivener, “Investigation of C-A-S-H composition, morphology and density in Limestone Calcined Clay Cement (LC3),” Cem Concr Res, vol. 115, pp. 70–79, Jan. 2019, doi: 10.1016/j.cemconres.2018.10.011. |
dc.relation.references | Y. Dhandapani and M. Santhanam, “Investigation on the microstructure-related characteristics to elucidate performance of composite cement with limestone-calcined clay combination,” Cem Concr Res, vol. 129, no. December 2019, p. 105959, 2020, doi: 10.1016/j.cemconres.2019.105959. |
dc.relation.references | N. Nair, K. Mohammed Haneefa, M. Santhanam, and R. Gettu, “A study on fresh properties of limestone calcined clay blended cementitious systems,” Constr Build Mater, vol. 254, p. 119326, 2020, doi: 10.1016/j.conbuildmat.2020.119326. |
dc.relation.references | Q. D. Nguyen, T. Kim, and A. Castel, “Mitigation of alkali-silica reaction by limestone calcined clay cement (LC3),” Cem Concr Res, vol. 137, no. June, p. 106176, 2020, doi: 10.1016/j.cemconres.2020.106176. |
dc.relation.references | F. Bahman-Zadeh, A. A. Ramezanianpour, and A. Zolfagharnasab, “Effect of carbonation on chloride binding capacity of limestone calcined clay cement (LC3) and binary pastes,” Journal of Building Engineering, vol. 52, p. 104447, Jul. 2022, doi: 10.1016/j.jobe.2022.104447. |
dc.relation.references | M. Santhanam, R. Pillai, and Y. Dhandapani, “Recent Research on Limestone Calcined Clay Cement (LC3) at IIT Madras,” 2018. |
dc.relation.references | F. A. Zunino Sommariva, “Limestone calcined clay cements (LC3): raw material processing, sulfate balance and hydration kinetics,” École Polytecnhique Fédérale de Lausanne, Lausanne, 2020. |
dc.relation.references | D. Sánchez de Guzmán, Durabilidad y Patología del Concreto, Segunda. Bogotá: Asociación Colombiana de Productores de Concreto - ASOCRETO, 2017. |
dc.relation.references | W. Stumm and J. J. Morgan, AQUATIC CHEMISTRY Chemical Equilibria and Rates in Natural Waters, vol. Third Edition. John Wiley & Sons, INC., 1995. |
dc.relation.references | S. von Greve-Dierfeld et al., Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC, vol. 53, no. 6. 2020. doi: 10.1617/s11527-020-01558-w. |
dc.relation.references | E. F. Félix, R. Carrazedo, and E. Possan, “Análise paramétrica da carbonatação em estruturas de concreto armado via Redes Neurais Artificiais,” Revista ALCONPAT, vol. 7, no. 3, pp. 302–316, 2017, doi: 10.21041/ra.v7i3.245. |
dc.relation.references | K. T. Kunal Tongaria, S. M. S.Mandal, and D. M. Devendra Mohan, “A Review on Carbonation of Concrete and Its Prediction Modelling,” Journal of Environmental Nanotechnology, vol. 7, no. 4, pp. 75–90, 2018, doi: 10.13074/jent.2018.12.184325. |
dc.relation.references | V. Papadakis, C. Vayenas, and M. Fardis, “Fundamental Modeling and Experimental Investigation of Concrete Carbonation,” ACI Mater J, vol. 88, no. 4, pp. 363–373, 1991. |
dc.relation.references | Y. F. Houst and F. H. Wittmann, “Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste,” Cem Concr Res, vol. 24, no. 6, pp. 1165–1176, 1994, doi: 10.1016/0008-8846(94)90040-X. |
dc.relation.references | P. L. Valdez-Tamez, A. Durán-Herrera, G. Fajardo-San Miguel, and C. A. Juárez-Alvarado, “Influencia de la carbonatación en morteros de cemento Pórtland y ceniza volante,” Ingeniería, investigación y tecnología, vol. 10, no. 1, pp. 39–49, 2009, doi: 10.22201/fi.25940732e.2009.10n1.005. |
dc.relation.references | N. V. Rao and T. Meena, “A review on carbonation study in concrete,” in IOP Conference Series: Materials Science and Engineering, Dec. 2017, vol. 263, no. 3. doi: 10.1088/1757-899X/263/3/032011. |
dc.relation.references | J. L. Omen Bolaños and O. Bolaños, “Influencia de los materiales cementantes suplementarios (SCMs) en concretos con agregados reciclados (RAC),” Universidad Nacional de Colombia, Bogotá, 2021. |
dc.relation.references | R. Montani, “La carbonatación, enemigo olvidado del concreto,” Instituto Mexicano del Cemento y del Concreto, A.C, 2000. https://www.imcyc.com/revista/2000/dic2000/carbonatacion.htm (accessed Jul. 22, 2022). |
dc.relation.references | N. Singh and S. P. Singh, “Reviewing the Carbonation Resistance of Concrete,” Journal of Materials and Engineering Structures, vol. 3, pp. 35–57, 2016. |
dc.relation.references | B. Šavija and M. Luković, “Carbonation of cement paste: Understanding, challenges, and opportunities,” Constr Build Mater, vol. 117, pp. 285–301, 2016, doi: 10.1016/j.conbuildmat.2016.04.138. |
dc.relation.references | W. Ashraf, “Carbonation of cement-based materials: Challenges and opportunities,” Constr Build Mater, vol. 120, pp. 558–570, Jun. 2016, doi: 10.1016/j.conbuildmat.2016.05.080. |
dc.relation.references | M. Richardson, Fundamentals of Durable Reinforced Concrete. Taylor & Francis Group, 2002. |
dc.relation.references | J. M. Lizarazo Marriaga, “Elementos básicos de durabilidad del concreto: Corrosión del refuerzo,” En edición., 2018. |
dc.relation.references | K. Tuutti, Corrosion of steel concrete. Stockholm: Swedish Cement and Concrete Research Institute, 1982. |
dc.relation.references | L. Bertolini, “Steel corrosion and service life of reinforced concrete structures,” Structure and Infrastructure Engineering, vol. 4, no. 2, pp. 123–137, Apr. 2008, doi: 10.1080/15732470601155490. |
dc.relation.references | DURAR, Manual de inspección, evaluación y diagnóstico de corrosión de estructuras de hormigón armado, 2nd ed. 1998. |
dc.relation.references | P. R. D. L. Helene, “Contribuição ao estudo da corrosão en armaduras de concreto armado,” Universidade de São Paulo Escola Politécnica, São Paulo, 1993. |
dc.relation.references | Portland Cement Association (PCA), “Types and Causes of Concrete Deterioration,” Portland Cement Association - Concrete Information, vol. PCA R & D Se, pp. 1–16, 2002. |
dc.relation.references | P. Helene and F. Pereira, Manual de Rehabilitación de Estructuras de Hormigón. CYTED, 2003. |
dc.relation.references | J. Broomfield, Corrosion in concrete steel, no. april. Taylor & Francis Group, 2007. |
dc.relation.references | ASTM International, “ASTM C109/C109M-20b Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens),” 2020. 2021. doi: 10.1520/C0109_C0109M-20B. |
dc.relation.references | Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), “NTC 6270:2018 CEMENTOS. MÉTODO DE ENSAYO PARA MEDIR EL CALOR DE HIDRATACIÓN DE MATERIALES CEMENTANTES HIDRÁULICOS USANDO CALORIMETRÍA DE CONDUCCIÓN ISOTÉRMICA.” 2018. |
dc.relation.references | ASTM International, “ASTM C1702: Standard Test Method for Measurement of Heat of Hydration of Hydraulic Cementitious Materials Using Isothermal Conduction Calorimetry,” 2017, doi: 10.1520/C1702-17. |
dc.relation.references | Instituto Colombiano de Normas Técnicas (ICONTEC), “NTC 1377:2021 Concretos. Elaboración y curado de especímenes de concreto para ensayos en el laboratorio.” 2021. |
dc.relation.references | ASTM International, “ASTM C192/C192M-19 Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory.” 2019. doi: 10.1520/C0192_C0192M-19. |
dc.relation.references | Instituto Colombiano de Normas Técnicas (ICONTEC), “NTC 673:2021 Concretos. Método de ensayo de resistencia a la compresión de especímenes cilíndricos de concreto.” 2021. |
dc.relation.references | ASTM International, “ASTM C39/C39M-21 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.” 2021. doi: 10.1520/C0039_C0039M-21. |
dc.relation.references | Instituto Colombiano de Normas Técnicas (ICONTEC), “NTC 6041:2019 CEMENTOS. MÉTODO DE ENSAYO PARA DETERMINAR LA CONTRACCIÓN POR SECADO DEL MORTERO QUE CONTIENE CEMENTO HIDRÁULICO.” 2019. |
dc.relation.references | ASTM International, “ASTM C596-18 Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement.” 2018. doi: 10.1520/C0596-18. |
dc.relation.references | L. N. Peña Leal, “Desarrollo de un sistema semi-adiabático para medir calor de hidratación de pastas de cemento y morteros.,” Universidad Nacional de Colombia, Bogotá, 2011. |
dc.relation.references | British Standards Institution (BSI), “BS EN 196-9:2003 Methods of testing cement - Heat of hydration. Semi-adiabatic method.” 2004. |
dc.relation.references | S. D. Peñaranda Sanjuan, “Metodología para la medición de la hidratación del cemento adicionado con ceniza volante a partir de impedancia electroquímica (En edición),” Universidad Nacional de Colombia, Bogotá D.C., 2022. |
dc.relation.references | A. F. Sosa Gallardo and J. L. Provis, “Electrochemical cell design and impedance spectroscopy of cement hydration,” J Mater Sci, vol. 56, no. 2, pp. 1203–1220, Jan. 2021, doi: 10.1007/s10853-020-05397-6. |
dc.relation.references | H. Magar, R. Hassan, and A. Mulchandani, “Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications,” Sensors, vol. 21, 2021, doi: 10.3390/s21196578. |
dc.relation.references | F. Iloro, L. Traveesa, and N. Ortega, “Correlación entre carbonatación natural y acelerada del hormigón con distintos cementos,” in VII Congreso Internacional - 21a Reunión Técnica de la AATH “Ing. Nélida del Valle Castría,” 2016, pp. 333–340. |
dc.relation.references | British Standards Institution (BSI), “BS EN 12390-12:2020 Determination of the carbonation resistance of concrete — Accelerated carbonation method.” 2020. |
dc.relation.references | M. D. Newlands, “Development of a simulated natural carbonation test and durability of selected CEM II concretes,” Univesity of Dundee, 2001. |
dc.relation.references | Gamry Instruments, “Potentiostat Fundamentals,” 2022. https://www.gamry.com/application-notes/instrumentation/potentiostat-fundamentals/ (accessed Jun. 04, 2022). |
dc.relation.references | Gamry Instruments, “Faraday Cage: What Is It? How Does It Work?,” 2022. https://www.gamry.com/application-notes/instrumentation/faraday-cage/ (accessed Jun. 04, 2022). |
dc.relation.references | ASTM International, “ASTM C876-15 Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Corrosion Potentials of Uncoated Reinforcing Steel in Concrete.” 2015. doi: 10.1520/C0876-15. |
dc.relation.references | E. Mccafferty, Introduction to Corrosion Science. Springer Sciencie+ Business Media, 2010. doi: 10.1007/978-1-4419-0455-3. |
dc.relation.references | A. M. Aguirre-Guerrero, R. Mejía-De-Gutiérrez, and M. J. R. Montês-Correia, “Corrosion performance of blended concretes exposed to different aggressive environments,” Constr Build Mater, vol. 121, pp. 704–716, Sep. 2016, doi: 10.1016/j.conbuildmat.2016.06.038. |
dc.relation.references | A. F. Barragán Ramos, “Durability Performance Assessment of Fly Ash Concrete Using Fine Recycled Aggregates,” Universidad Nacional de Colombia, Bogotá D.C., 2021. |
dc.relation.references | ASTM International, “ASTM G59-97(2020) Standard test method for conducting potentiodynamic polarization resistance measurements.” 2014. doi: 10.1520/G0059-97R14.2. |
dc.relation.references | A. D. Obando Ramírez, “Propuesta de procedimientos de las técnicas: ruido electroquímico, resistencia a la polarización e impedancia electroquímica usadas en la medición de la corrosión del refuerzo en el concreto reforzado,” Universidad Nacional de Colombia, Bogotá D.C., 2013. |
dc.relation.references | F. J. Rodríguez Gómez, “Técnicas electroquímicas de corriente directa para la medición de la velocidad de corrosión,” México D.F. |
dc.relation.references | American Concrete Institute (ACI), “ACI PRC-211.1-91 Selecting Proportions for Normal-Density and High Density Concrete - Guide.” 2002. |
dc.relation.references | ICONTEC, “NTC 121:2021 Especificación de desempeño para cemento hidráulico.” |
dc.relation.references | ICONTEC, “NTC 5806:2019 ALAMBRE DE ACERO LISO Y GRAFILADO Y MALLAS LECTROSOLDADAS PARA REFUERZO DE CONCRETO.” |
dc.relation.references | Instituto Colombiano de Normas Técnicas (ICONTEC), “NTC 221:2019 Cementos. Método de ensayo para determinar la densidad del cemento hidráulico.” 2019. |
dc.relation.references | ASTM International, “ASTM C188-17 Standard Test Method for Density of Hydraulic Cement.” 2017. doi: 10.1520/C0188-17. |
dc.relation.references | Instituto Colombiano de Normas Técnicas (ICONTEC), “NTC 33:2019 Cementos. Método de ensayo para determinar la finura del cemento hidráulico por medio del aparato Blaine de permeabilidad al aire.” 2019. |
dc.relation.references | ASTM International, “ASTM C204-18E01 Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus,” 2018, doi: 10.1520/C0204-18E01. |
dc.relation.references | Instituto Colombiano de Normas Técnicas (ICONTEC), “NTC 110:2019 CEMENTOS. CANTIDAD DE AGUA REQUERIDA PARA LA CONSISTENCIA NORMAL DE UNA PASTA DE CEMENTO HIDRÁULICO.” 2019. |
dc.relation.references | ASTM International, “ASTM C187-16 Standard Test Method for Amount of Water Required for Normal Consistency of Hydraulic Cement Paste.” 2016. doi: 10.1520/C0187-16. |
dc.relation.references | Instituto Colombiano de Normas Técnicas (ICONTEC), “NTC 118:2019 Cementos. Método de ensayo para determinar el tiempo de fraguado del cemento hidráulico mediante aguja de vicat.” 2019. |
dc.relation.references | ASTM International, “ASTM C191-19 Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle.” 2019. doi: 10.1520/C0191-19. |
dc.relation.references | Instituto Colombiano de Normas Técnicas (ICONTEC), “NTC 220:2021 Cementos. Determinación de la resistencia de morteros de cemento hidráulico a la compresión, usando cubos de 50 mm o 2 pulgadas de lado.” 2021. |
dc.relation.references | ASTM International, “ASTM C778-17.2 Standard Specification for Standard Sand.” 2017. doi: 10.1520/C0778-17.2. |
dc.relation.references | ASTM International, “ASTM C33/C33M-16 Specification for Concrete Aggregates.” 2016. doi: 10.1520/C0033_C0033M-16. |
dc.relation.references | ASTM Internnational, “ASTM C40/C40M-20 Standard Test Method for Organic Impurities in Fine Aggregates for Concrete.” 2020. doi: 10.1520/C0040_C0040M-20. |
dc.relation.references | Instituto Colombiano de Normas Técnicas (ICONTEC), “NTC 92:2019 MÉTODO DE ENSAYO PARA LA DETERMINACIÓN DE LA DENSIDAD VOLUMÉTRICA (MASA UNITARIA) Y VACÍOS EN AGREGADOS.” 2019. |
dc.relation.references | ASTM International, “ASTM C29/C29M-17A Standard Test Method for Bulk Density (‘Unit Weight’) and Voids in Aggregate.” 2017. doi: 10.1520/C0029_C0029M-17A. |
dc.relation.references | Instituto Colombiano de Normas Técnicas (ICONTEC), “NTC 78:2019 MÉTODO DE ENSAYO PARA DETERMINAR POR LAVADO EL MATERIAL QUE PASA EL TAMIZ 75 µm (No. 200) EN AGREGADOS MINERALES.” 2019. |
dc.relation.references | ASTM International, “ASTM C117-17 Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing.” ASTM International, 2020. doi: 10.1520/C0117-17. |
dc.relation.references | Instituto Colombiano de Normas Técnicas (ICONTEC), “NTC 1776:2019 MÉTODO DE ENSAYO PARA DETERMINAR EL CONTENIDO TOTAL DE HUMEDAD EVAPORABLE POR SECADO DE LOS AGREGADOS.” 2019. |
dc.relation.references | ASTM International, “ASTM C566-19 Standard Test Method for Total Evaporable Moisture Content of Aggregate by Drying,” 2019. doi: 10.1520/C0566-19. |
dc.relation.references | Instituto Colombiano de Normas Técnicas (ICONTEC), “NTC 237:2020 Método de ensayo para determinar la densidad relativa (gravedad especifica) y la absorción del agregado fino.” 2020. |
dc.relation.references | ASTM International, “ASTM C128-15 Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate.” 2015. doi: 10.1520/C0128-15. |
dc.relation.references | Instituto Colombiano de Normas Técnicas (ICONTEC), “NTC 176:2019 Método de ensayo para determinar la densidad relativa (gravedad específica) y la absorción del agregado grueso.” 2019. |
dc.relation.references | ASTM International, “ASTM C127-15 Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate.” 2016. doi: 10.1520/C0127-15. |
dc.relation.references | ASTM International, “ASTM C494/C494M-19 Standard Specification for Chemical Admixtures for Concrete.” 2019. doi: 10.1520/C0494. |
dc.relation.references | Invesa, “Pintura Epóxica,” 2017. https://www.invesa.com/product/pintura-epoxica/ (accessed Aug. 09, 2022). |
dc.relation.references | ASTM International, “ASTM C305-14 Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency.” 2014. doi: 10.1520/C0305-14. |
dc.relation.references | ASTM International, “ASTM C1437-20 Standard Test Method for Flow of Hydraulic Cement Mortar.” 2020. doi: 10.1520/C1437-20. |
dc.relation.references | ASTM International, “ASTM C143/C143M-20 Standard Test Method for Slump of Hydraulic-Cement Concrete.” 2020. doi: 10.1520/C0143_C0143M-20. |
dc.relation.references | ASTM International, “ASTM C31/C31M-21 Standard Practice for Making and Curing Concrete Test Specimens in the Field.” 2020. doi: 10.1520/C0031_C0031M-21. |
dc.relation.references | ASTM International, “ASTM C511-19 Standard Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes.” 2019. doi: 10.1520/C0511-19. |
dc.relation.references | ASTM International, “ASTM C642-21 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete.” 2021. doi: 10.1520/C0642-21. |
dc.relation.references | ASTM International, “ASTM C1202-19 Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration.” 2019. doi: 10.1520/C1202-19. |
dc.relation.references | DiEs, “Cámaras de estabilidad climáticas carbonatación CO2.” Itagüi, 2022. |
dc.relation.references | W. Navidi, Estadística para ingenieros y científicos. México D.F.: Mc Graw Hill, 2006. |
dc.relation.references | Gamry Instruments, “Reference 600+ Potentiostat/Galvanostat/ZRA Operator’s Manual,” 2019. [Online]. Available: www.gamry.com/service-support/ |
dc.relation.references | J. Bermúdez, “Inhibición de la corrosión del acero embebido en mortero de cal al emplear Aloe vera como anticorrosivo,” Universidad Nacional de Colombia, Bogotá D.C., 2020. |
dc.relation.references | ASTM International, “ASTM E178-21 Standard Practice for Dealing With Outlying Observations.” 2021. doi: 10.1520/E0178-21. |
dc.relation.references | M. Y. F. Câmara, Y. S. B. Fraga, and V. M. S. Capuzzo, “Hydration of Cement Pastes Using the Cement LC3,” in RILEM Bookseries, vol. 22, Springer Netherlands, 2020, pp. 69–75. doi: 10.1007/978-3-030-22034-1_8. |
dc.relation.references | M. B. Díaz García, L. A. Ruíz, and J. F. Martirena-Hernandez, “Effect of the Addition of Calcined Clay-Limestone-Gypsum in the Hydration of Portland Cement Pastes,” in RILEM Bookseries, vol. 22, Springer Netherlands, 2020, pp. 23–29. doi: 10.1007/978-3-030-22034-1_3. |
dc.relation.references | Y. Dhandapani, K. Vignesh, T. Raja, and M. Santhanam, “Development of the microstructure in LC3 systems and its effect on concrete properties,” in RILEM Bookseries, 2018, vol. 16, pp. 131–140. doi: 10.1007/978-94-024-1207-9_21. |
dc.relation.references | R. Downs and H. Yang, “RRUFF Project.” https://rruff.info/ (accessed Jul. 08, 2022). |
dc.relation.references | J. Lizarazo-Marriaga, C. Higuera, and P. Claisse, “Measuring the effect of the ITZ on the transport related properties of mortar using electrochemical impedance,” Constr Build Mater, vol. 52, pp. 9–16, Feb. 2014, doi: 10.1016/j.conbuildmat.2013.10.077. |
dc.relation.references | G. Y. Koga, B. Albert, and R. Pereira Nogueira, “Revisiting the ASTM C876 standard for corrosion of reinforcing steel: On the correlation between corrosion potential and polarization resistance during the curing of different cement mortars,” Electrochem commun, vol. 94, pp. 1–4, 2018, doi: 10.1016/j.elecom.2018.07.017. |
dc.relation.references | Instituto Colombiano de Normas Técnicas (ICONTEC), “NTC 5551:2007 Concretos. Durabilidad de estructuras de concreto.” 2007. |
dc.relation.references | International Standard Organization, “ISO 16204:2012 Durability — Service life design of concrete structures.” 2012. |
dc.relation.references | K. Wanderly, Encyclopedia of Interfacial Chemistry, vol. Seven. Elsevier, 2018. |
dc.relation.references | K. L. Scrivener, A. K. C. Lyon, and F. P. Laugesen, “The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete,” INTERFACE SCIENCE, vol. 12, pp. 411–421, 2004. |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.lemb | Hormigón |
dc.subject.lemb | Concrete |
dc.subject.lemb | Compuestos cementosos |
dc.subject.lemb | Cement composites |
dc.subject.proposal | Cemento con caliza y arcilla calcinada (LC3) |
dc.subject.proposal | Carbonatación |
dc.subject.proposal | Corrosión |
dc.subject.proposal | Limestone calcined clay cement (LC3 |
dc.subject.proposal | Carbonation |
dc.subject.proposal | Corrosion |
dc.title.translated | Evaluation of corrosion resistance due to carbonation in concrete with portland cements blended with limestone and calcined clay |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | DataPaper |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dc.contributor.orcid | Luis Felipe Salazar Mayorga [0000-0001-6110-9470] |
dc.contributor.cvlac | SALAZAR MAYORGA, LUIS FELIPE |
dc.contributor.researchgate | Luis Felipe Salazar Mayorga |