Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorGonzalez Osorio, Fabio Augusto
dc.contributor.advisorToledo Cortés, Santiago
dc.contributor.authorAmaya Cruz, Glenn Harry
dc.date.accessioned2023-04-18T22:42:58Z
dc.date.available2023-04-18T22:42:58Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83732
dc.description.abstractEl análisis de calibración de modelos de aprendizaje de máquina cobra gran importancia en distintos contextos como evaluación del riesgo, diagnósticos y sistemas críticos para la seguridad, donde hay decisiones influenciadas por las predicciones de los modelos. El área del aprendizaje de máquina cuántico ha recibido una mayor atención en los últimos años, en particular, se han desarrollado modelos que obtienen resultados competitivos en tareas de clasificación y regresión a comparación con métodos ampliamente utilizados. No obstante, las propiedades de este tipo de clasificadores en términos de calibración no han sido exploradas en la literatura. Por esta razón, en el presente trabajo se realiza un estudio de las propiedades de calibración que tienen algunos modelos de aprendizaje de máquina cuántico frente a modelos ampliamente usados en la literatura como máquinas de soporte vectorial, árboles de decisión, regresión logística, entre otros para tareas de clasificación binaria y de múltiples clases. Adicionalmente, se realiza un experimento para explorar el efecto de algunos clasificadores cuánticos en combinación con una red neuronal. Los resultados experimentales muestran que algunos de los clasificadores cuánticos analizados tienen un rendimiento competitivo e incluso mejor en métricas de calibración y las tareas de clasificación. (texto tomado de la fuente)
dc.description.abstractCalibration of machine learning models is of great importance in different contexts such as risk assessment, diagnostics, and safety-critical systems, in which decisions are influenced by model predictions. The area of quantum machine learning has received an increased attention in recent years, in particular, models have been developed that obtain competitive results in classification and regression tasks compared to widely used methods. However, the properties of this type of classifiers in terms of calibration have not been explored in the literature. As a result, in this work a study of the properties of calibration is conducted for recent quantum machine learning models in comparison to state-of-the-art models such as support vector machines, decisions trees, logistic regression, and others for binary and multiclass classification tasks. Moreover, an experiment to explore the effect of some quantum classifiers in combination with a neural network is made. The experimental results show that some of the analyzed quantum classifiers have competitive and even better performance in calibration metrics and the classification tasks.
dc.format.extentxiii, 53 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.titleAnálisis de calibración en modelos de aprendizaje de máquina cuántico
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.contributor.researchgroupMindlab
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computación
dc.description.researchareaSistemas Inteligentes
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá,Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAyhan, Murat S. ; Berens, Philipp: Test-time data augmentation for estimation of heteroscedastic aleatoric uncertainty in deep neural networks. In: Medical Imaging with Deep Learning (MIDL), 2018, S. 1–9
dc.relation.referencesAha, D ; Kibler, Dennis: Instance-based prediction of heart-disease presence with the Cleveland database. University of California 3 (1988), Nr. 1, S. 3–2
dc.relation.referencesBastola, S. ; Ishidaira, H. ; Takeuchi, K.: Regionalisation of hydrological model parameters under parameter uncertainty: A case study involving TOPMODEL and basins across the globe. Journal of Hydrology 357 (2008), Nr. 3-4, S. 188–206
dc.relation.referencesBeaudouin, R. ; Monod, G. ; Ginot, V.: Selecting parameters for calibration via sensitivity analysis: An individual-based model of mosquitofish population dynamics. Ecological Modelling 218 (2008), Nr. 1-2, S. 29–48
dc.relation.referencesBrier, Glenn W.: Verification of forecast expressed in terms of probability. Monthly Weather Review 78 (1950), jan, Nr. 1, S. 1–3. – ISSN 0027–0644
dc.relation.referencesBröcker, Jochen ; Smith, Leonard A.: Increasing the reliability of reliability diagrams. Weather and Forecasting 22 (2007), jun, Nr. 3, S. 651–661. – ISSN 08828156
dc.relation.referencesBiamonte, Jacob ; Wittek, Peter ; Pancotti, Nicola ; Rebentrost, Patrick ; Wiebe, Nathan ; Lloyd, Seth: Quantum machine learning. Nature 549 (2017), Nr. 7671, S. 195–202
dc.relation.referencesChollet, Fran¸cois ; others. Keras. https://keras.io. 2015
dc.relation.referencesCharoenpanyanet, A.: Modeling Anopheles mosquito density spatial and seasonal variations using remotely sensed imagery and statistical methods. International Journal of Geoinformatics 13 (2017), Nr. 1, S. 35–47
dc.relation.referencesCarneiro, G. ; Zorron Cheng Tao Pu, L. ; Singh, R. ; Burt, A.: Deep learning uncertainty and confidence calibration for the five-class polyp classification from colonoscopy. Medical Image Analysis 62 (2020)
dc.relation.referencesDegroot, M. D. ; Fienberg, Stephen E. The comparison and evaluation of forecasters. mar 1982
dc.relation.referencesDua, Dheeru ; Graff, Casey. UCI Machine Learning Repository. 2017
dc.relation.referencesDemiroz, G ; Govenir, HA ; Ilter, N: Learning differential diagnosis of eryhematosquamous diseases using voting feature intervals. Artificial Intelligence in Medicine 13 (1998), Nr. 3, S. 147–165
dc.relation.referencesDiego Hernando, Useche R.: Quantum measurement learning for medical image classification. (2022)
dc.relation.referencesDetrano, Robert ; Janosi, Andras ; Steinbrunn, Walter ; Pfisterer, Matthias ; Schmid, Johann-Jakob ; Sandhu, Sarbjit ; Guppy, Kern H. ; Lee, Stella ; Froelicher, Victor: International application of a new probability algorithm for the diagnosis of coronary artery disease. The American journal of cardiology 64 (1989), Nr. 5, S. 304–310
dc.relation.referencesDormann, Carsten F.: Calibration of probability predictions from machine-learning and statistical models. Global Ecology and Biogeography 29 (2020), apr, Nr. 4, S. 760–765. – ISSN 14668238
dc.relation.referencesDeng, Y. ; Yang, B.-R. ; Luo, J.-W. ; Du, G.-X. ; Luo, L.-P.: DTI-based radiomics signature for the detection of early diabetic kidney damage. Abdominal Radiology 45 (2020), Nr. 8, S. 2526–2531
dc.relation.referencesFeng, Runhai: Improving uncertainty analysis in well log classification by machine learning with a scaling algorithm. Journal of Petroleum Science and Engineering 196 (2021). – ISSN 09204105
dc.relation.referencesFoster, Dean P. ; Vohra, Rakesh V.: Asymptotic calibration. Biometrika 85 (1998), Nr. 2, S. 379–390. – ISSN 00063444
dc.relation.referencesGalindo, Y. ; De Cicco, M. ; Quiles, M.G. ; Lorena, A.C.: Monitoring Night Skies with Deep Learning. Bd. 1332. 2020 460–468 Seiten. – ISBN 9783030638191
dc.relation.referencesGonzález, Fabio A. ; Gallego, Alejandro ; Toledo-Cortés, Santiago ; Vargas-Calderón, Vladimir: Learning with Density Matrices and Random Features. arXiv preprint arXiv:2102.04394 (2021)
dc.relation.referencesGallego-Mejia, Joseph ; Bustos-Brinez, Oscar ; Gonzalez, Fabio: InQMAD: Incremental Quantum Measurement Anomaly Detection. arXiv preprint arXiv:2210.05061 (2022)
dc.relation.referencesGlasser, Ivan ; Pancotti, Nicola ; Ignacio Cirac, J.: From Probabilistic Graphical Models to Generalized Tensor Networks for Supervised Learning. IEEE Access 8 (2020), S. 68169–68182. – ISSN 21693536
dc.relation.referencesGuo, Chuan ; Pleiss, Geoff ; Sun, Yu ; Weinberger, Kilian Q. On calibration of modern neural networks. 2017
dc.relation.referencesGupta, Kartik ; Rahimi, Amir ; Ajanthan, Thalaiyasingam ; Mensink, Thomas ; Sminchisescu, Cristian ; Hartley, Richard: Calibration of neural networks using splines. arXiv preprint arXiv:2006.12800 (2020), 6
dc.relation.referencesGuan, Yawen ; Sampson, Christian ; Tucker, J. D. ; Chang, Won ; Mondal, Anirban ; Haran, Murali ; Sulsky, Deborah: Computer Model Calibration Based on ImageWarping Metrics: An Application for Sea Ice Deformation. Journal of Agricultural, Biological, and Environmental Statistics 24 (2019), Nr. 3, S. 444–463. – ISSN 15372693
dc.relation.referencesGhoshal, Biraja ; Tucker, Allan: On calibrated model uncertainty in deep learning. arXiv preprint arXiv:2206.07795 (2022)
dc.relation.referencesGonzález, Fabio A. ; Vargas-Calderón, Vladimir ; Vinck-Posada, Herbert: Classification with Quantum Measurements. Journal of the Physical Society of Japan 90 (2021), Nr. 4, S. 044002
dc.relation.referencesHigdon, Dave ; Gattiker, James ; Williams, Brian ; Rightley, Maria: Computer model calibration using high-dimensional output. Journal of the American Statistical Association 103 (2008), Nr. 482, S. 570–583. – ISSN 01621459
dc.relation.referencesIliyasu, Abdullah M. ; Fatichah, Chastine: A quantum hybrid PSO combined with fuzzy k-NN approach to feature selection and cell classification in cervical cancer detection. Sensors (Switzerland) 17 (2017), Nr. 12. – ISSN 14248220
dc.relation.referencesJensen, M.H. ; Jørgensen, D.R. ; Jalaboi, R. ; Hansen, M.E. ; Olsen, M.A.: Improving uncertainty estimation in convolutional neural networks using inter-rater agreement. Bd. 11767 LNCS. 2019 540–548 Seiten. – ISBN 9783030322502
dc.relation.referencesJiang, Xiaoqian ; Osl, Melanie ; Kim, Jihoon ; Ohno-Machado, Lucila: Calibrating predictive model estimates to support personalized medicine. Journal of the American Medical Informatics Association 19 (2012), mar, Nr. 2, S. 263–274. – ISSN 10675027
dc.relation.referencesKuleshov, Volodymyr ; Ermon, Stefano: Estimating uncertainty online against an adversary. In: 31st AAAI Conference on Artificial Intelligence, AAAI 2017 , 2017, S. 2110–2116
dc.relation.referencesKrizhevsky, Alex ; Hinton, Geoffrey ; others: Learning multiple layers of features from tiny images. (2009)
dc.relation.referencesKuhn, Max ; Johnson, Kjell: Applied predictive modeling. Bd. 26. Springer, 2013
dc.relation.referencesKuleshov, Volodymyr ; Liang, Percy: Calibrated structured prediction. In: Advances in Neural Information Processing Systems Bd. 2015-Janua. Bd. 2015-Janua, 2015. ISSN 10495258, S. 3474–3482
dc.relation.referencesKumar, Ananya ; Liang, Percy S. ; Ma, Tengyu: Verified uncertainty calibration. Advances in Neural Information Processing Systems 32 (2019)
dc.relation.referencesKull, Meelis ; Perello Nieto, Miquel ; K¨angsepp, Markus ; Silva Filho, Telmo ; Song, Hao ; Flach, Peter. Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with dirichlet calibration. 2019
dc.relation.referencesMüller, R. ; Kornblith, S. ; Hinton, G.: When does label smoothing help? In: Advances in Neural Information Processing Systems Bd. 32. Bd. 32, 2019
dc.relation.referencesNaeini, Mahdi P. ; Cooper, Gregory ; Hauskrecht, Milos: Obtaining well calibrated probabilities using bayesian binning. In: Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015
dc.relation.referencesNixon, Jeremy ; Dusenberry, Michael W. ; Zhang, Linchuan ; Jerfel, Ghassen ; Tran, Dustin: Measuring Calibration in Deep Learning. 2 (2019), Nr. 7
dc.relation.referencesNiculescu-Mizil, Alexandru ; Caruana, Rich: Predicting good probabilities with supervised learning. In: ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning, 2005. – ISBN 1595931805, S. 625–632
dc.relation.referencesNguyen, Khanh ; O’Connor, Brendan: Posterior calibration and exploratory analysis for natural language processing models. In: Conference Proceedings - EMNLP 2015: Conference on Empirical Methods in Natural Language Processing, 2015. – ISBN 9781941643327, S. 1587–1598
dc.relation.referencesPosocco, Nicolas ; Bonnefoy, Antoine: Estimating Expected Calibration Errors. In: International Conference on Artificial Neural Networks Springer, 2021, S. 139–150
dc.relation.referencesPeleg, K.: Fast fourier transform based calibration in remote sensing. International Journal of Remote Sensing 19 (1998), Nr. 12, S. 2301–2315
dc.relation.referencesPearce, Jennie ; Ferrier, Simon: Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling 133 (2000), Nr. 3, S. 225–245. – ISSN 03043800
dc.relation.referencesPlatt, John ; Others: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in large margin classifiers 10 (1999), Nr. 3, S. 61–74
dc.relation.referencesPedregosa, F. ; Varoquaux, G. ; Gramfort, A. ; Michel, V. ; Thirion, B. ; Grisel, O. ; Blondel, M. ; Prettenhofer, P. ; Weiss, R. ; Dubourg, V. ; Vanderplas, J. ; Passos, A. ; Cournapeau, D. ; Brucher, M. ; Perrot, M. ; Duchesnay, E.: Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12 (2011), S. 2825–2830
dc.relation.referencesSergioli, Giuseppe ; Militello, Carmelo ; Rundo, Leonardo ; Minafra, Luigi ; Torrisi, Filippo ; Russo, Giorgio ; Chow, Keng L. ; Giuntini, Roberto: A quantum-inspired classifier for clonogenic assay evaluations. Scientific Reports 11 (2021), Nr. 1, S. 2830. – ISBN 0123456789
dc.relation.referencesSchuld, Maria ; Sinayskiy, Ilya ; Petruccione, Francesco: An introduction to quantum machine learning. Contemporary Physics 56 (2015), Nr. 2, S. 172–185. – ISSN 13665812
dc.relation.referencesToledo-Cortés, Santiago ; Useche, Diego H. ; González, Fabio A.: Prostate Tissue Grading with Deep Quantum Measurement Ordinal Regression. arXiv preprint arXiv:2103.03188 (2021)
dc.relation.referencesTorres-Meza, M.d.J. ; Báez-González, A.D. ; Maciel-Pérez, L.H. ; Quezada-Guzmán, E. ; Sierra-Tristán, J.S.: GIS-based modeling of the geographic distribution of Quercus emoryi Torr. (Fagaceae) in México and identification of significant environmental factors influencing the species’ distribution. Ecological Modelling 220 (2009), Nr. 24, S. 3599– 3611
dc.relation.referencesVaicenavicius, Juozas ; Widmann, David ; Andersson, Carl ; Lindsten, Fredrik ; Roll, Jacob ; Sch¨on, Thomas: Evaluating model calibration in classification. In: The 22nd International Conference on Artificial Intelligence and Statistics PMLR, 2019, S. 3459– 3467
dc.relation.referencesWidmann, David ; Lindsten, Fredrik ; Zachariah, Dave: Calibration tests in multiclass classification: A unifying framework. Advances in Neural Information Processing Systems 32 (2019)
dc.relation.referencesZadrozny, Bianca ; Elkan, Charles: Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers. Icml (2001), S. 1–8. ISBN 1–55860–778–1
dc.relation.referencesZadrozny, Bianca ; Elkan, Charles: Transforming classifier scores into accurate multiclass probability estimates. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2002. – ISBN 158113567X, S. 694–699
dc.relation.referencesLeCun, Yann ; Bottou, Léon ; Bengio, Yoshua ; Haffner, Patrick: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86 (1998), Nr. 11, S. 2278–2324
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembEvaluación de riesgos
dc.subject.lembRisk assessment
dc.subject.lembTeoría del campo cuántico
dc.subject.lembQuantum field theory
dc.subject.proposalAprendizaje de máquina
dc.subject.proposalAprendizaje de máquina cuántico
dc.subject.proposalCalibración
dc.subject.proposalAnálisis de confianza
dc.subject.proposalMachine learning
dc.subject.proposalQuantum machine learning
dc.subject.proposalCalibration
dc.subject.proposalConfident analysis
dc.title.translatedCalibration analysis in quantum machine learning models
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit