dc.rights.license | Atribución-NoComercial 4.0 Internacional |
dc.contributor.advisor | Gonzalez Osorio, Fabio Augusto |
dc.contributor.advisor | Toledo Cortés, Santiago |
dc.contributor.author | Amaya Cruz, Glenn Harry |
dc.date.accessioned | 2023-04-18T22:42:58Z |
dc.date.available | 2023-04-18T22:42:58Z |
dc.date.issued | 2023 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83732 |
dc.description.abstract | El análisis de calibración de modelos de aprendizaje de máquina cobra gran importancia en distintos contextos como evaluación del riesgo, diagnósticos y sistemas críticos para la seguridad, donde hay decisiones influenciadas por las predicciones de los modelos. El área del aprendizaje de máquina cuántico ha recibido una mayor atención en los últimos años, en particular, se han desarrollado modelos que obtienen resultados competitivos en tareas de clasificación y regresión a comparación con métodos ampliamente utilizados. No obstante, las propiedades de este tipo de clasificadores en términos de calibración no han sido exploradas en la literatura. Por esta razón, en el presente trabajo se realiza un estudio de las propiedades de calibración que tienen algunos modelos de aprendizaje de máquina cuántico frente a modelos ampliamente usados en la literatura como máquinas de soporte vectorial, árboles de decisión, regresión logística, entre otros para tareas de clasificación binaria y de múltiples clases. Adicionalmente, se realiza un experimento para explorar el efecto de algunos clasificadores cuánticos en combinación con una red neuronal. Los resultados experimentales muestran que algunos de los clasificadores cuánticos analizados tienen un rendimiento competitivo e incluso mejor en métricas de calibración y las tareas de clasificación. (texto tomado de la fuente) |
dc.description.abstract | Calibration of machine learning models is of great importance in different contexts such as risk assessment, diagnostics, and safety-critical systems, in which decisions are influenced by model predictions. The area of quantum machine learning has received an increased attention in recent years, in particular, models have been developed that obtain competitive results in classification and regression tasks compared to widely used methods. However, the properties of this type of classifiers in terms of calibration have not been explored in the literature. As a result, in this work a study of the properties of calibration is conducted for recent quantum machine learning models in comparison to state-of-the-art models such as support vector machines, decisions trees, logistic regression, and others for binary and multiclass classification tasks. Moreover, an experiment to explore the effect of some quantum classifiers in combination with a neural network is made. The experimental results show that some of the analyzed quantum classifiers have competitive and even better performance in calibration metrics and the classification tasks. |
dc.format.extent | xiii, 53 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada |
dc.title | Análisis de calibración en modelos de aprendizaje de máquina cuántico |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación |
dc.contributor.researchgroup | Mindlab |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magíster en Ingeniería - Ingeniería de Sistemas y Computación |
dc.description.researcharea | Sistemas Inteligentes |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ingeniería |
dc.publisher.place | Bogotá,Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Ayhan, Murat S. ; Berens, Philipp: Test-time data augmentation for estimation of
heteroscedastic aleatoric uncertainty in deep neural networks. In: Medical Imaging
with Deep Learning (MIDL), 2018, S. 1–9 |
dc.relation.references | Aha, D ; Kibler, Dennis: Instance-based prediction of heart-disease presence with the
Cleveland database. University of California 3 (1988), Nr. 1, S. 3–2 |
dc.relation.references | Bastola, S. ; Ishidaira, H. ; Takeuchi, K.: Regionalisation of hydrological model parameters
under parameter uncertainty: A case study involving TOPMODEL and basins
across the globe. Journal of Hydrology 357 (2008), Nr. 3-4, S. 188–206 |
dc.relation.references | Beaudouin, R. ; Monod, G. ; Ginot, V.: Selecting parameters for calibration via sensitivity
analysis: An individual-based model of mosquitofish population dynamics. Ecological
Modelling 218 (2008), Nr. 1-2, S. 29–48 |
dc.relation.references | Brier, Glenn W.: Verification of forecast expressed in terms of probability. Monthly
Weather Review 78 (1950), jan, Nr. 1, S. 1–3. – ISSN 0027–0644 |
dc.relation.references | Bröcker, Jochen ; Smith, Leonard A.: Increasing the reliability of reliability diagrams.
Weather and Forecasting 22 (2007), jun, Nr. 3, S. 651–661. – ISSN 08828156 |
dc.relation.references | Biamonte, Jacob ; Wittek, Peter ; Pancotti, Nicola ; Rebentrost, Patrick ; Wiebe, Nathan
; Lloyd, Seth: Quantum machine learning. Nature 549 (2017), Nr. 7671, S. 195–202 |
dc.relation.references | Chollet, Fran¸cois ; others. Keras. https://keras.io. 2015 |
dc.relation.references | Charoenpanyanet, A.: Modeling Anopheles mosquito density spatial and seasonal variations
using remotely sensed imagery and statistical methods. International Journal
of Geoinformatics 13 (2017), Nr. 1, S. 35–47 |
dc.relation.references | Carneiro, G. ; Zorron Cheng Tao Pu, L. ; Singh, R. ; Burt, A.: Deep learning uncertainty
and confidence calibration for the five-class polyp classification from colonoscopy.
Medical Image Analysis 62 (2020) |
dc.relation.references | Degroot, M. D. ; Fienberg, Stephen E. The comparison and evaluation of forecasters.
mar 1982 |
dc.relation.references | Dua, Dheeru ; Graff, Casey. UCI Machine Learning Repository. 2017 |
dc.relation.references | Demiroz, G ; Govenir, HA ; Ilter, N: Learning differential diagnosis of eryhematosquamous
diseases using voting feature intervals. Artificial Intelligence in Medicine 13
(1998), Nr. 3, S. 147–165 |
dc.relation.references | Diego Hernando, Useche R.: Quantum measurement learning for medical image classification.
(2022) |
dc.relation.references | Detrano, Robert ; Janosi, Andras ; Steinbrunn, Walter ; Pfisterer, Matthias ; Schmid,
Johann-Jakob ; Sandhu, Sarbjit ; Guppy, Kern H. ; Lee, Stella ; Froelicher, Victor:
International application of a new probability algorithm for the diagnosis of coronary
artery disease. The American journal of cardiology 64 (1989), Nr. 5, S. 304–310 |
dc.relation.references | Dormann, Carsten F.: Calibration of probability predictions from machine-learning and
statistical models. Global Ecology and Biogeography 29 (2020), apr, Nr. 4, S. 760–765.
– ISSN 14668238 |
dc.relation.references | Deng, Y. ; Yang, B.-R. ; Luo, J.-W. ; Du, G.-X. ; Luo, L.-P.: DTI-based radiomics
signature for the detection of early diabetic kidney damage. Abdominal Radiology 45
(2020), Nr. 8, S. 2526–2531 |
dc.relation.references | Feng, Runhai: Improving uncertainty analysis in well log classification by machine
learning with a scaling algorithm. Journal of Petroleum Science and Engineering 196
(2021). – ISSN 09204105 |
dc.relation.references | Foster, Dean P. ; Vohra, Rakesh V.: Asymptotic calibration. Biometrika 85 (1998),
Nr. 2, S. 379–390. – ISSN 00063444 |
dc.relation.references | Galindo, Y. ; De Cicco, M. ; Quiles, M.G. ; Lorena, A.C.: Monitoring Night Skies with
Deep Learning. Bd. 1332. 2020 460–468 Seiten. – ISBN 9783030638191 |
dc.relation.references | González, Fabio A. ; Gallego, Alejandro ; Toledo-Cortés, Santiago ; Vargas-Calderón,
Vladimir: Learning with Density Matrices and Random Features. arXiv preprint
arXiv:2102.04394 (2021) |
dc.relation.references | Gallego-Mejia, Joseph ; Bustos-Brinez, Oscar ; Gonzalez, Fabio: InQMAD: Incremental
Quantum Measurement Anomaly Detection. arXiv preprint arXiv:2210.05061 (2022) |
dc.relation.references | Glasser, Ivan ; Pancotti, Nicola ; Ignacio Cirac, J.: From Probabilistic Graphical Models
to Generalized Tensor Networks for Supervised Learning. IEEE Access 8 (2020), S.
68169–68182. – ISSN 21693536 |
dc.relation.references | Guo, Chuan ; Pleiss, Geoff ; Sun, Yu ; Weinberger, Kilian Q. On calibration of modern
neural networks. 2017 |
dc.relation.references | Gupta, Kartik ; Rahimi, Amir ; Ajanthan, Thalaiyasingam ; Mensink, Thomas ; Sminchisescu,
Cristian ; Hartley, Richard: Calibration of neural networks using splines.
arXiv preprint arXiv:2006.12800 (2020), 6 |
dc.relation.references | Guan, Yawen ; Sampson, Christian ; Tucker, J. D. ; Chang, Won ; Mondal, Anirban ;
Haran, Murali ; Sulsky, Deborah: Computer Model Calibration Based on ImageWarping
Metrics: An Application for Sea Ice Deformation. Journal of Agricultural, Biological,
and Environmental Statistics 24 (2019), Nr. 3, S. 444–463. – ISSN 15372693 |
dc.relation.references | Ghoshal, Biraja ; Tucker, Allan: On calibrated model uncertainty in deep learning.
arXiv preprint arXiv:2206.07795 (2022) |
dc.relation.references | González, Fabio A. ; Vargas-Calderón, Vladimir ; Vinck-Posada, Herbert: Classification with Quantum Measurements. Journal of the Physical Society of Japan 90 (2021), Nr. 4, S. 044002 |
dc.relation.references | Higdon, Dave ; Gattiker, James ; Williams, Brian ; Rightley, Maria: Computer model
calibration using high-dimensional output. Journal of the American Statistical
Association 103 (2008), Nr. 482, S. 570–583. – ISSN 01621459 |
dc.relation.references | Iliyasu, Abdullah M. ; Fatichah, Chastine: A quantum hybrid PSO combined with fuzzy k-NN approach to feature selection and cell classification in cervical cancer detection.
Sensors (Switzerland) 17 (2017), Nr. 12. – ISSN 14248220 |
dc.relation.references | Jensen, M.H. ; Jørgensen, D.R. ; Jalaboi, R. ; Hansen, M.E. ; Olsen, M.A.: Improving
uncertainty estimation in convolutional neural networks using inter-rater agreement.
Bd. 11767 LNCS. 2019 540–548 Seiten. – ISBN 9783030322502 |
dc.relation.references | Jiang, Xiaoqian ; Osl, Melanie ; Kim, Jihoon ; Ohno-Machado, Lucila: Calibrating
predictive model estimates to support personalized medicine. Journal of the American
Medical Informatics Association 19 (2012), mar, Nr. 2, S. 263–274. – ISSN 10675027 |
dc.relation.references | Kuleshov, Volodymyr ; Ermon, Stefano: Estimating uncertainty online against an adversary.
In: 31st AAAI Conference on Artificial Intelligence, AAAI 2017 , 2017, S.
2110–2116 |
dc.relation.references | Krizhevsky, Alex ; Hinton, Geoffrey ; others: Learning multiple layers of features from
tiny images. (2009) |
dc.relation.references | Kuhn, Max ; Johnson, Kjell: Applied predictive modeling. Bd. 26. Springer, 2013 |
dc.relation.references | Kuleshov, Volodymyr ; Liang, Percy: Calibrated structured prediction. In: Advances in
Neural Information Processing Systems Bd. 2015-Janua. Bd. 2015-Janua, 2015. ISSN
10495258, S. 3474–3482 |
dc.relation.references | Kumar, Ananya ; Liang, Percy S. ; Ma, Tengyu: Verified uncertainty calibration. Advances
in Neural Information Processing Systems 32 (2019) |
dc.relation.references | Kull, Meelis ; Perello Nieto, Miquel ; K¨angsepp, Markus ; Silva Filho, Telmo ; Song,
Hao ; Flach, Peter. Beyond temperature scaling: Obtaining well-calibrated multi-class
probabilities with dirichlet calibration. 2019 |
dc.relation.references | Müller, R. ; Kornblith, S. ; Hinton, G.: When does label smoothing help? In: Advances
in Neural Information Processing Systems Bd. 32. Bd. 32, 2019 |
dc.relation.references | Naeini, Mahdi P. ; Cooper, Gregory ; Hauskrecht, Milos: Obtaining well calibrated
probabilities using bayesian binning. In: Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015 |
dc.relation.references | Nixon, Jeremy ; Dusenberry, Michael W. ; Zhang, Linchuan ; Jerfel, Ghassen ; Tran,
Dustin: Measuring Calibration in Deep Learning. 2 (2019), Nr. 7 |
dc.relation.references | Niculescu-Mizil, Alexandru ; Caruana, Rich: Predicting good probabilities with supervised
learning. In: ICML 2005 - Proceedings of the 22nd International Conference on
Machine Learning, 2005. – ISBN 1595931805, S. 625–632 |
dc.relation.references | Nguyen, Khanh ; O’Connor, Brendan: Posterior calibration and exploratory analysis
for natural language processing models. In: Conference Proceedings - EMNLP
2015: Conference on Empirical Methods in Natural Language Processing, 2015. – ISBN
9781941643327, S. 1587–1598 |
dc.relation.references | Posocco, Nicolas ; Bonnefoy, Antoine: Estimating Expected Calibration Errors. In:
International Conference on Artificial Neural Networks Springer, 2021, S. 139–150 |
dc.relation.references | Peleg, K.: Fast fourier transform based calibration in remote sensing. International
Journal of Remote Sensing 19 (1998), Nr. 12, S. 2301–2315 |
dc.relation.references | Pearce, Jennie ; Ferrier, Simon: Evaluating the predictive performance of habitat models
developed using logistic regression. Ecological Modelling 133 (2000), Nr. 3, S. 225–245.
– ISSN 03043800 |
dc.relation.references | Platt, John ; Others: Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. Advances in large margin classifiers 10 (1999), Nr.
3, S. 61–74 |
dc.relation.references | Pedregosa, F. ; Varoquaux, G. ; Gramfort, A. ; Michel, V. ; Thirion, B. ; Grisel, O. ;
Blondel, M. ; Prettenhofer, P. ; Weiss, R. ; Dubourg, V. ; Vanderplas, J. ; Passos, A.
; Cournapeau, D. ; Brucher, M. ; Perrot, M. ; Duchesnay, E.: Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), S. 2825–2830 |
dc.relation.references | Sergioli, Giuseppe ; Militello, Carmelo ; Rundo, Leonardo ; Minafra, Luigi ; Torrisi,
Filippo ; Russo, Giorgio ; Chow, Keng L. ; Giuntini, Roberto: A quantum-inspired
classifier for clonogenic assay evaluations. Scientific Reports 11 (2021), Nr. 1, S. 2830.
– ISBN 0123456789 |
dc.relation.references | Schuld, Maria ; Sinayskiy, Ilya ; Petruccione, Francesco: An introduction to quantum
machine learning. Contemporary Physics 56 (2015), Nr. 2, S. 172–185. – ISSN 13665812 |
dc.relation.references | Toledo-Cortés, Santiago ; Useche, Diego H. ; González, Fabio A.: Prostate Tissue
Grading with Deep Quantum Measurement Ordinal Regression. arXiv preprint arXiv:2103.03188 (2021) |
dc.relation.references | Torres-Meza, M.d.J. ; Báez-González, A.D. ; Maciel-Pérez, L.H. ; Quezada-Guzmán,
E. ; Sierra-Tristán, J.S.: GIS-based modeling of the geographic distribution of Quercus
emoryi Torr. (Fagaceae) in México and identification of significant environmental factors
influencing the species’ distribution. Ecological Modelling 220 (2009), Nr. 24, S. 3599–
3611 |
dc.relation.references | Vaicenavicius, Juozas ; Widmann, David ; Andersson, Carl ; Lindsten, Fredrik ; Roll,
Jacob ; Sch¨on, Thomas: Evaluating model calibration in classification. In: The 22nd
International Conference on Artificial Intelligence and Statistics PMLR, 2019, S. 3459–
3467 |
dc.relation.references | Widmann, David ; Lindsten, Fredrik ; Zachariah, Dave: Calibration tests in multiclass
classification: A unifying framework. Advances in Neural Information Processing
Systems 32 (2019) |
dc.relation.references | Zadrozny, Bianca ; Elkan, Charles: Obtaining calibrated probability estimates from
decision trees and naive Bayesian classifiers. Icml (2001), S. 1–8. ISBN 1–55860–778–1 |
dc.relation.references | Zadrozny, Bianca ; Elkan, Charles: Transforming classifier scores into accurate multiclass
probability estimates. In: Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2002. – ISBN 158113567X, S. 694–699 |
dc.relation.references | LeCun, Yann ; Bottou, Léon ; Bengio, Yoshua ; Haffner, Patrick: Gradient-based learning
applied to document recognition. Proceedings of the IEEE 86 (1998), Nr. 11, S.
2278–2324 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.lemb | Evaluación de riesgos |
dc.subject.lemb | Risk assessment |
dc.subject.lemb | Teoría del campo cuántico |
dc.subject.lemb | Quantum field theory |
dc.subject.proposal | Aprendizaje de máquina |
dc.subject.proposal | Aprendizaje de máquina cuántico |
dc.subject.proposal | Calibración |
dc.subject.proposal | Análisis de confianza |
dc.subject.proposal | Machine learning |
dc.subject.proposal | Quantum machine learning |
dc.subject.proposal | Calibration |
dc.subject.proposal | Confident analysis |
dc.title.translated | Calibration analysis in quantum machine learning models |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Estudiantes |
dcterms.audience.professionaldevelopment | Investigadores |