dc.rights.license | Reconocimiento 4.0 Internacional |
dc.contributor.advisor | Hoyos Gómez, Nancy Milena |
dc.contributor.author | Luna Espíndola, Luis Alfonso |
dc.date.accessioned | 2023-06-07T14:37:08Z |
dc.date.available | 2023-06-07T14:37:08Z |
dc.date.issued | 2023 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83988 |
dc.description | ilustraciones |
dc.description.abstract | Se presenta la metodología para estimar modelos Panel VAR (PVAR) en tiempo continuo. Esta técnica permite estimar e interpretar modelos independientemente del intervalo en el que son tomadas las observaciones y permite hacer análisis en cualquier periodo de tiempo. Se ilustra con un Panel VAR en tiempo continuo de la Masa Monetaria (M1) y las Reservas Internacionales (IR) de dos países de la Alianza del Pacífico: Colombia y Chile, usando como variable exógena común al precio internacional del petróleo (WTI). (texto tomado de la fuente) |
dc.description.abstract | The methodology for estimating Continuous Time Panel VAR (PVAR) models is presented.
This technique allows for estimating and interpreting models regardless of the interval at
which observations are taken and enables analysis in any time period. It is illustrated with a
Continuous Time Panel VAR of the Money Supply (M1) and International Reserves (IR) of
two countries in the Pacific Alliance: Colombia and Chile, using the international oil price
(WTI) as a common exogenous variable |
dc.format.extent | v, 40 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ |
dc.title | Una aplicación del Modelo Panel - VAR en Tiempo Continuo en Economía |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Estadística |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magíster en Ciencias - Estadística |
dc.description.researcharea | Series de tiempo |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ciencias |
dc.publisher.place | Bogotá,Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | [Bergstrom, 1984] Bergstrom, A. (1984). Chapter 20 Continuous time stochastic models and
issues of aggregation over time. In Handbook of Econometrics, volume 2, pages 1145–1212.
Elsevier. |
dc.relation.references | [Bergstrom, 1983] Bergstrom, A. R. (1983). Gaussian Estimation of Structural Parameters
in Higher Order Continuous Time Dynamic Models. Econometrica, 51(1):117 |
dc.relation.references | [Bergstrom, 1996] Bergstrom, A. R. (1996). Survey of continuous time econometrics. In
Barnett, W. A., Gandolfo, G., and Hillinger, C., editors, Dynamic Disequilibrium Modeling,
pages 3–25. Cambridge University Press. |
dc.relation.references | [Canova, 2005] Canova, F. (2005). The transmission of US shocks to Latin America. Journal
of Applied Econometrics, 20(2):229–251. |
dc.relation.references | [Canova and Ciccarelli, 2013] Canova, F. and Ciccarelli, M. (2013). Panel vector autore-
gressive models: a survey. ECB Working Paper 1507, European Central Bank (ECB),
Frankfurt a. M. |
dc.relation.references | [Chambers et al., 2018] Chambers, M. J., McCrorie, J. R., and Thornton, M. A. (2018).
Continuous Time Modelling Based on an Exact Discrete Time Representation. In van
Montfort, K., Oud, J. H. L., and Voelkle, M. C., editors, Continuous Time Modeling in
the Behavioral and Related Sciences, pages 317–357. Springer International Publishing,
Cham. |
dc.relation.references | [Christiano and Eichenbaum, 1987] Christiano, L. J. and Eichenbaum, M. (1987). Temporal
aggregation and structural inference in macroeconomics. Carnegie-Rochester Conference
Series on Public Policy, 26:63–130. |
dc.relation.references | [C ́espedes and Velasco, 2012] C ́espedes, L. F. and Velasco, A. (2012). Macroeconomic Per-
formance During Commodity Price Booms and Busts. Technical Report w18569, National
Bureau of Economic Research, Cambridge, MA. |
dc.relation.references | [Gondo and Pérez, 2018] Gondo, R. and P ́erez, F. (2018). The Transmission of Exogenous
Commodity and Oil Prices shocks to Latin America: A Panel VAR approach. Working
Paper series Banco Central de Reserva del Per ́u, DT. N°. 2018(012). |
dc.relation.references | [Gruss, 2014] Gruss, B. (2014). After the Boom–Commodity Prices and Economic Growth
in Latin America and the Caribbean. IMF Working Paper, 14(154) |
dc.relation.references | [Hansen and Sargent, 1983] Hansen, L. P. and Sargent, T. J. (1983). The dimensionality of
the aliasing problem in models with rational spectral densities. 51(2):377 |
dc.relation.references | [Jewitt and Roderick McCrorie, 2005] Jewitt, G. and Roderick McCrorie, J. (2005). Com-
puting estimates of continuous time macroeconometric models on the basis of discrete
data. Computational Statistics & Data Analysis, 49(2):397–416. |
dc.relation.references | [Koop and Korobilis, 2014] Koop, G. and Korobilis, D. (2014). Model Uncertainty in Panel
Vector Autoregressive Models. SSRN Electronic Journal. |
dc.relation.references | [McCrorie, 2003] McCrorie, J. R. (2003). The Problem of Aliasing in Identifying Finite Parameter Continuous Time Stochastic Models. Acta Applicandae Mathematicae, 79(1/2):9–
16. |
dc.relation.references | [McCrorie and Chambers, 2006] McCrorie, J. R. and Chambers, M. J. (2006). Granger cau-
sality and the sampling of economic processes. Journal of Econometrics, 132(2):311–336. |
dc.relation.references | [Medina, 2010] Medina, L. (2010). A Commodity Curse? The Dynamic Effects of Commo-
dity Prices on Fiscal Performance in Latin America. MPRA Paper, 21690. |
dc.relation.references | [Phillips, 1973] Phillips, P. (1973). The problem of identification in finite parameter conti-
nuous time models. Journal of Econometrics, 1(4):351–362. |
dc.relation.references | [Ryan et al., 2018] Ryan, O., Kuiper, R. M., and Hamaker, E. L. (2018). A Continuous-Time
Approach to Intensive Longitudinal Data: What, Why, and How? In van Montfort, K.,
Oud, J. H. L., and Voelkle, M. C., editors, Continuous Time Modeling in the Behavioral
and Related Sciences, pages 27–54. Springer International Publishing, Cham. |
dc.relation.references | [Van Loan, 1978] Van Loan, C. (1978). Computing integrals involving the matrix exponential. IEEE Transactions on Automatic Control, 23(3):395–404. |
dc.relation.references | [Voelkle and Oud, 2013] Voelkle, M. C. and Oud, J. H. L. (2013). Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes:
Continuous time modelling. British Journal of Mathematical and Statistical Psychology,
66(1):103–126. |
dc.relation.references | [Voelkle et al., 2012] Voelkle, M. C., Oud, J. H. L., Davidov, E., and Schmidt, P. (2012). An
SEM approach to continuous time modeling of panel data: Relating authoritarianism and
anomia: Correction to Voelkle, Oud, Davidov, and Schmidt (2012). Psychological Methods,
17(3):384–384. |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.jel | C1 Métodos y Metodología Econométrica y Estadística: General |
dc.subject.jel | C32 - Modelos de series temporales |
dc.subject.jel | C33 - Modelos con datos de panel |
dc.subject.proposal | Series de tiempo |
dc.subject.proposal | Tiempo Continuo |
dc.subject.proposal | Econometría |
dc.subject.proposal | VAR |
dc.subject.proposal | PVAR |
dc.title.translated | A Continuous-Time Application of the Panel-VAR Model in Economics |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |