Show simple item record

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorHoyos Gómez, Nancy Milena
dc.contributor.authorLuna Espíndola, Luis Alfonso
dc.date.accessioned2023-06-07T14:37:08Z
dc.date.available2023-06-07T14:37:08Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83988
dc.descriptionilustraciones
dc.description.abstractSe presenta la metodología para estimar modelos Panel VAR (PVAR) en tiempo continuo. Esta técnica permite estimar e interpretar modelos independientemente del intervalo en el que son tomadas las observaciones y permite hacer análisis en cualquier periodo de tiempo. Se ilustra con un Panel VAR en tiempo continuo de la Masa Monetaria (M1) y las Reservas Internacionales (IR) de dos países de la Alianza del Pacífico: Colombia y Chile, usando como variable exógena común al precio internacional del petróleo (WTI). (texto tomado de la fuente)
dc.description.abstractThe methodology for estimating Continuous Time Panel VAR (PVAR) models is presented. This technique allows for estimating and interpreting models regardless of the interval at which observations are taken and enables analysis in any time period. It is illustrated with a Continuous Time Panel VAR of the Money Supply (M1) and International Reserves (IR) of two countries in the Pacific Alliance: Colombia and Chile, using the international oil price (WTI) as a common exogenous variable
dc.format.extentv, 40 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleUna aplicación del Modelo Panel - VAR en Tiempo Continuo en Economía
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadística
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Estadística
dc.description.researchareaSeries de tiempo
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá,Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[Bergstrom, 1984] Bergstrom, A. (1984). Chapter 20 Continuous time stochastic models and issues of aggregation over time. In Handbook of Econometrics, volume 2, pages 1145–1212. Elsevier.
dc.relation.references[Bergstrom, 1983] Bergstrom, A. R. (1983). Gaussian Estimation of Structural Parameters in Higher Order Continuous Time Dynamic Models. Econometrica, 51(1):117
dc.relation.references[Bergstrom, 1996] Bergstrom, A. R. (1996). Survey of continuous time econometrics. In Barnett, W. A., Gandolfo, G., and Hillinger, C., editors, Dynamic Disequilibrium Modeling, pages 3–25. Cambridge University Press.
dc.relation.references[Canova, 2005] Canova, F. (2005). The transmission of US shocks to Latin America. Journal of Applied Econometrics, 20(2):229–251.
dc.relation.references[Canova and Ciccarelli, 2013] Canova, F. and Ciccarelli, M. (2013). Panel vector autore- gressive models: a survey. ECB Working Paper 1507, European Central Bank (ECB), Frankfurt a. M.
dc.relation.references[Chambers et al., 2018] Chambers, M. J., McCrorie, J. R., and Thornton, M. A. (2018). Continuous Time Modelling Based on an Exact Discrete Time Representation. In van Montfort, K., Oud, J. H. L., and Voelkle, M. C., editors, Continuous Time Modeling in the Behavioral and Related Sciences, pages 317–357. Springer International Publishing, Cham.
dc.relation.references[Christiano and Eichenbaum, 1987] Christiano, L. J. and Eichenbaum, M. (1987). Temporal aggregation and structural inference in macroeconomics. Carnegie-Rochester Conference Series on Public Policy, 26:63–130.
dc.relation.references[C ́espedes and Velasco, 2012] C ́espedes, L. F. and Velasco, A. (2012). Macroeconomic Per- formance During Commodity Price Booms and Busts. Technical Report w18569, National Bureau of Economic Research, Cambridge, MA.
dc.relation.references[Gondo and Pérez, 2018] Gondo, R. and P ́erez, F. (2018). The Transmission of Exogenous Commodity and Oil Prices shocks to Latin America: A Panel VAR approach. Working Paper series Banco Central de Reserva del Per ́u, DT. N°. 2018(012).
dc.relation.references[Gruss, 2014] Gruss, B. (2014). After the Boom–Commodity Prices and Economic Growth in Latin America and the Caribbean. IMF Working Paper, 14(154)
dc.relation.references[Hansen and Sargent, 1983] Hansen, L. P. and Sargent, T. J. (1983). The dimensionality of the aliasing problem in models with rational spectral densities. 51(2):377
dc.relation.references[Jewitt and Roderick McCrorie, 2005] Jewitt, G. and Roderick McCrorie, J. (2005). Com- puting estimates of continuous time macroeconometric models on the basis of discrete data. Computational Statistics & Data Analysis, 49(2):397–416.
dc.relation.references[Koop and Korobilis, 2014] Koop, G. and Korobilis, D. (2014). Model Uncertainty in Panel Vector Autoregressive Models. SSRN Electronic Journal.
dc.relation.references[McCrorie, 2003] McCrorie, J. R. (2003). The Problem of Aliasing in Identifying Finite Parameter Continuous Time Stochastic Models. Acta Applicandae Mathematicae, 79(1/2):9– 16.
dc.relation.references[McCrorie and Chambers, 2006] McCrorie, J. R. and Chambers, M. J. (2006). Granger cau- sality and the sampling of economic processes. Journal of Econometrics, 132(2):311–336.
dc.relation.references[Medina, 2010] Medina, L. (2010). A Commodity Curse? The Dynamic Effects of Commo- dity Prices on Fiscal Performance in Latin America. MPRA Paper, 21690.
dc.relation.references[Phillips, 1973] Phillips, P. (1973). The problem of identification in finite parameter conti- nuous time models. Journal of Econometrics, 1(4):351–362.
dc.relation.references[Ryan et al., 2018] Ryan, O., Kuiper, R. M., and Hamaker, E. L. (2018). A Continuous-Time Approach to Intensive Longitudinal Data: What, Why, and How? In van Montfort, K., Oud, J. H. L., and Voelkle, M. C., editors, Continuous Time Modeling in the Behavioral and Related Sciences, pages 27–54. Springer International Publishing, Cham.
dc.relation.references[Van Loan, 1978] Van Loan, C. (1978). Computing integrals involving the matrix exponential. IEEE Transactions on Automatic Control, 23(3):395–404.
dc.relation.references[Voelkle and Oud, 2013] Voelkle, M. C. and Oud, J. H. L. (2013). Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes: Continuous time modelling. British Journal of Mathematical and Statistical Psychology, 66(1):103–126.
dc.relation.references[Voelkle et al., 2012] Voelkle, M. C., Oud, J. H. L., Davidov, E., and Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: Relating authoritarianism and anomia: Correction to Voelkle, Oud, Davidov, and Schmidt (2012). Psychological Methods, 17(3):384–384.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.jelC1 Métodos y Metodología Econométrica y Estadística: General
dc.subject.jelC32 - Modelos de series temporales
dc.subject.jelC33 - Modelos con datos de panel
dc.subject.proposalSeries de tiempo
dc.subject.proposalTiempo Continuo
dc.subject.proposalEconometría
dc.subject.proposalVAR
dc.subject.proposalPVAR
dc.title.translatedA Continuous-Time Application of the Panel-VAR Model in Economics
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit