Show simple item record

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorDussán Cuenca, Anderson
dc.contributor.authorLanchero Díaz, Angela Patricia
dc.date.accessioned2023-06-26T21:14:37Z
dc.date.available2023-06-26T21:14:37Z
dc.date.issued2023-04-26
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84076
dc.descriptionilustraciones, fotografías
dc.description.abstractEste trabajo presenta el estudio del efecto de 𝑀𝑛 sobre las propiedades estructurales, morfológicas, eléctricas y magnéticas de películas delgadas de 𝑍𝑛𝑂 depositadas por el método “DC magnetron co-sputtering”, variando algunos parámetros de síntesis como la concentración de Mn, la temperatura del sustrato, así como la utilización de sustratos de diferente naturaleza (Vidrio borosilicato, ITO, Titanio y Silicio orientado). A partir de la caracterización por difracción de rayos X (XRD, por sus siglas en inglés) y espectroscopía RAMAN se identificó la formación de una estructura cristalina hexagonal en fase wurtzita cuyo plano preferencial de crecimiento fue [002] a lo largo del eje c, la temperatura de depósito y el sustrato orientado favorece la cristalización, mientras que el incremento en la cantidad de Mn afecto la cristalización, fenómeno asociado con estrés de la matriz semiconductora. La caracterización a través de microscopía SEM, FESEM y AFM mostraron la formación granular en la superficie de la película, la inclusión de Mn (potencia del “target” = 25 W) mostró un incremento en el tamaño del grano, a altas concentraciones se evidenció la formación de “clusters”. La caracterización eléctrica se realizó a partir de curvas I-V, donde se observó conmutación resistiva (RS, “resistive switching”) unipolar y bipolar interfacial, explicado a partir del modelo de barrera Schottky; este comportamiento está determinado por los parámetros de síntesis como la temperatura y la concentración de Mn. La magnetometría de muestra vibrante (VSM, por sus siglas en inglés) mostró histéresis asociada con ferromagnetismo para muestras depositadas con temperatura de sustrato 𝑇𝑠 = 150 °𝐶, potencia de 𝑀𝑛 = 25 𝑊; la magnetización fue medida a 150 K, cuando se incrementa la temperatura de magnetización se observa una histéresis similar a la cintura de avispa, este resultado se asoció a la combinación de dos fases magnéticas (paramagnética y ferromagnética) presentes en la muestra. La información obtenida confirma la posibilidad fabricar semiconductores magnéticos diluidos (DMS, por sus siglas en inglés) a partir del 𝑍𝑛𝑂: 𝑀𝑛 con potencial para aplicaciones en dispositivos espintrónicos. (Texto tomado de la fuente)
dc.description.abstractThis work presents the study of the effect of Mn on the structural, morphological, electrical and magnetic properties of ZnO thin films deposited by the DC magnetron co-sputtering method, with variations in some synthesis parameters such as Mn concentration, substrate temperature, as well as the use of substrates of different nature (borosilicate glass, ITO, titanium and oriented silicon). From the characterization by X-ray diffraction (XRD) and RAMAN spectroscopy it was identified the formation of a hexagonal crystalline structure in wurtzite phase whose preferential growth plane was [002] along the c axis, the deposition temperature and the oriented substrate favored crystallization, while the increase in the amount of Mn affected the crystallization, a phenomenon associated with stress of the semiconductor matrix. Characterization through SEM, FESEM and AFM microscopy showed granular formation on the surface of the film thin, the addition of Mn (power target = 25 W) showed an increase in grain size, at high Mn concentrations the formation of "clusters" was evidenced. The electrical characterization was performed from I-V curves, where unipolar and bipolar interfacial resistive switching (RS) was observed, explained from the Schottky barrier model; this behavior is determined by the synthesis parameters such as temperature and Mn concentration. Vibrating sample magnetometry (VSM) showed hysteresis associated with ferromagnetism for samples deposited with substrate temperature Ts=150 C, Mn power 25 W; the magnetization was measured at 150 K, when the magnetization temperature is increased a hysteresis similar to wasp waist was observed; this result was associated to the combination of two magnetic phases (paramagnetic and ferromagnetic) present in the sample. The information obtained confirms the possibility of fabricating dilute magnetic semiconductors (DMS) from ZnO:Mn with potential for applications in spintronic devices.
dc.format.extentviii, 65 páginas
dc.format.mimetypeapplication/pdf
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleSíntesis y estudio del efecto del Mn sobre las propiedades estructurales y eléctricas de nanoestructuras de ZnO
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Física
dc.contributor.researchgroupMateriales Nanoestructurados y Sus Aplicaciones
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Física
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá,Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesDussán A, Quiroz H, Calderón J. Nanomateriales que revolucionan la tecnología. 2020.
dc.relation.referencesYakout SM. Spintronics: Future Technology for New Data Storage and Communication Devices. Journal of Superconductivity and Novel Magnetism 2020; 33: 2557–2580.
dc.relation.referencesJiménez García NF, Ortiz Álvarez H, Toro Carvajal L. Obtención de películas de ZnO impurificadas con Mn mediante la combinación de las técnicas Baño Químico y SILAR. Ciencias Básicas2019 2019; 17: 112–123.
dc.relation.referencesFlorez Galvan L. Correlación entre las propiedades estructurales y ópticas del óxido de zinc nanoestructurado dopado con cobalto. Montería, Colombia, 2020.
dc.relation.referencesRajalakshmi R, Angappane S. Synthesis, characterization and photoresponse study of undoped and transition metal (Co, Ni, Mn) doped ZnO thin films. Materials Science and Engineering: B 2013; 178: 1068–1075.
dc.relation.referencesAhmed SA. Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results Phys 2017; 7: 604–610.
dc.relation.referencesMimouni R, Kamoun O, Yumak A, et al. Effect of Mn content on structural, optical, opto-thermal and electrical properties of ZnO:Mn sprayed thin films compounds. J Alloys Compd 2015; 645: 100–111.
dc.relation.referencesZhang H fu, Liu R jin, Liu H fa, et al. Mn-doped ZnO transparent conducting films deposited by DC magnetron sputtering. Mater Lett 2010; 64: 605–607.
dc.relation.referencesRajalakshmi R, Angappane S. Effect of thickness on the structural and optical properties of sputtered ZnO and ZnO:Mn thin films. J Alloys Compd 2014; 615: 355–362.
dc.relation.referencesSapkota KR, Chen W, Maloney FS, et al. Magnetoresistance manipulation and sign reversal in Mn-doped ZnO nanowires. Sci Rep; 6. Epub ahead of print 14 October 2016. DOI: 10.1038/srep35036.
dc.relation.referencesCéspedes Montoya E, Prieto de Castro C. Ferromagnetism in wide band gap materials Mn-ZnO and Mn-Si3 N4 thin films. Universidad Autónoma de Madrid , 2009.
dc.relation.referencesMattox DM. Physical Sputtering and Sputter Deposition (Sputtering). Handbook of Physical Vapor Deposition (PVD) Processing 1998; 343–405.
dc.relation.referencesAdachi H, Wasa K. Thin Films and Nanomaterials. Handbook of Sputter Deposition Technology: Fundamentals and Applications for Functional Thin Films, Nano-Materials and MEMS: Second Edition 2012; 3–39.
dc.relation.referencesMangematin V, Walsh S. The future of nanotechnologies. Technovation 2012; 32: 157–160.
dc.relation.referencesNNI Budget | National Nanotechnology Initiative, https://www.nano.gov/about-nni/what/funding (accessed 9 December 2021).
dc.relation.referencesKhan S, Mansoor S, Rafi Z, et al. A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms. J Mol Liq 2021; 118008.
dc.relation.referencesAgeev OA, Zamburg EG, Kolomiytsev AS, et al. Formation of elements of integrated acousto-optic cell based on LiNbO 3 films by methods of nanotechnology. J Phys Conf Ser 2015; 643: 012031.
dc.relation.referencesNeupane GP, Ma W, Yildirim T, et al. 2D organic semiconductors, the future of green nanotechnology. Nano Materials Science 2019; 1: 246–259.
dc.relation.referencesWang DK, Rahimi M, Filgueira CS. Nanotechnology applications for cardiovascular disease treatment: Current and future perspectives. Nanomedicine 2021; 34: 102387.
dc.relation.referencesSingh PK, Goyal M. Nanotechnology in Automobiles - A OEMS Viewpoint. IOP Conf Ser Mater Sci Eng 2020; 988: 012070.
dc.relation.referencesUsman M, Farooq M, Wakeel A, et al. Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of The Total Environment 2020; 721: 137778
dc.relation.referencesPadilla-Vaca F, Mendoza-Macías CL, Franco B, et al. El mundo micro en el mundo nano: importancia y desarrollo de nanomateriales para el combate de las enfermedades causadas por bacterias, protozoarios y hongos. Mundo Nano Revista Interdisciplinaria en Nanociencias y Nanotecnología 2018; 11: 15–27.
dc.relation.referencesYu H, Li P, Zhang L, et al. Application of optical fiber nanotechnology in power communication transmission. Alexandria Engineering Journal 2020; 59: 5019–5030.
dc.relation.referencesGenet C, Errabi K, Gauthier C. Which model of technology transfer for nanotechnology? A comparison with biotech and microelectronics. Technovation 2012; 32: 205–215.
dc.relation.referencesBoixeda P, Feltes F, Santiago JL, et al. Future prospects in dermatologic applications of lasers, nanotechnology, and other new technologies. Actas Dermosifiliogr 2015; 106: 168–179.
dc.relation.referencesDong Y, Wu X, Chen X, et al. Nanotechnology shaping stem cell therapy: Recent advances, application, challenges, and future outlook. Biomedicine & Pharmacotherapy 2021; 137: 111236.
dc.relation.referencesGogotsi Y. Nanomaterials handbook. CRC/Taylor & Francis, https://www.academia.edu/25149005/Nanomaterials_handbook (2006, accessed 9 December 2021).
dc.relation.referencesOu R, Zeng Z, Ning X, et al. Improved photocatalytic performance of N-doped ZnO/graphene/ZnO sandwich composites. Appl Surf Sci 2021; 151856.
dc.relation.referencesKim D, Leem JY. Morphology modification of ZnO nanosheets and ZnO nanorods via thermal dissipation system for UV photoresponse improvement. Mater Sci Semicond Process 2022; 138: 106286.
dc.relation.referencesYang C, Xiong F, Zhang Y, et al. Growth of ZnO/Bi2S3 electron transport layer films to improve the efficiency and stability of organic solar cells. Opt Mater (Amst) 2021; 111791.
dc.relation.referencesGao W, Liu Y, Dong J. Immobilized ZnO based nanostructures and their environmental applications. Progress in Natural Science: Materials International. Epub ahead of print 13 November 2021. DOI: 10.1016/J.PNSC.2021.10.006.
dc.relation.referencesRuan HB, Fang L, Li DC, et al. Effect of dopant concentration on the structural, electrical and optical properties of Mn-doped ZnO films. Thin Solid Films 2011; 519: 5078–5081.
dc.relation.referencesChange YQ, Wang PW, Tang RH, et al. Synthesis and Room Temperature Ferromagnetism of Flower-shaped Mn Doped ZnO Nanostructures. J Mater Sci Technol 2011; 27: 513–517.
dc.relation.referencesIlyas U, Rawat RS, Roshan G, et al. Quenching of surface traps in Mn doped ZnO thin films for enhanced optical transparency. Appl Surf Sci 2011; 258: 890–897.
dc.relation.referencesMorkoç H, Özgür Ü. Zinc Oxide: Fundamentals, Materials and Device Technology. Germany, https://b-ok.lat/book/604672/d7395a?dsource=recommend (2009, accessed 10 December 2021).
dc.relation.referencesGhica D, Vlaicu ID, Stefan M, et al. Tailoring the Dopant Distribution in ZnO:Mn Nanocrystals. Scientific Reports 2019 9:1 2019; 9: 1–12.
dc.relation.referencesKarmakar R, Neogi SK, Banerjee A, et al. Structural; morphological; optical and magnetic properties of Mn doped ferromagnetic ZnO thin film. Appl Surf Sci 2012; 263: 671–677.
dc.relation.referencesToufiq AM, Hussain R, Shah A, et al. The influence of Mn doping on the structural and optical properties of ZnO nanostructures. Physica B Condens Matter 2021; 604: 412731.
dc.relation.referencesGorrie CW, Sigdel AK, Berry JJ, et al. Effect of deposition distance and temperature on electrical, optical and structural properties of radio-frequency magnetron-sputtered gallium-doped zinc oxide. Thin Solid Films 2010; 519: 190–196.
dc.relation.referencesChikoidze E, Dumont Y, Jomard F, et al. Electrical and optical properties of ZnO:Mn thin films grown by MOCVD. Thin Solid Films 2007; 515: 8519–8523.
dc.relation.referencesMa Y, Gao H, Huang R, et al. Green emission in Fe- and Mn-doped ZnO nanowires studied by magneto-photoluminescence. J Lumin 2022; 241: 118521.
dc.relation.referencesGallegos M v., Luna CR, Peluso MA, et al. Effect of Mn in ZnO using DFT calculations: Magnetic and electronic changes. J Alloys Compd 2019; 795: 254–260.
dc.relation.referencesRajalakshmi R, Angappane S. Effect of thickness on the structural and optical properties of sputtered ZnO and ZnO:Mn thin films. J Alloys Compd 2014; 615: 355–362.
dc.relation.referencesLekoui F, Amrani R, Filali W, et al. Investigation of the effects of thermal annealing on the structural, morphological and optical properties of nanostructured Mn doped ZnO thin films. Opt Mater (Amst); 118. Epub ahead of print 1 August 2021. DOI: 10.1016/J.OPTMAT.2021.111236.
dc.relation.referencesTheodoropoulou NA, Hebard AF, Norton DP, et al. Ferromagnetism in Co- and Mn-doped ZnO. Solid State Electron 2003; 47: 2231–2235.
dc.relation.referencesAhmed SA. Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results Phys 2017; 7: 604–610.
dc.relation.referencesÓxido de ZINC | ZnO - PubChem, https://pubchem.ncbi.nlm.nih.gov/compound/Zinc-oxide (accessed 10 December 2021).
dc.relation.referencesZnO - an overview | ScienceDirect Topics, https://www.sciencedirect.com/topics/materials-science/zno (accessed 10 December 2021).
dc.relation.referencesÖzgür U, Avrutin V, Morkoç H. Zinc Oxide Materials and Devices Grown by MBE. In: Molecular Beam Epitaxy: From Research to Mass Production. Elsevier, 2012, pp. 369–416.
dc.relation.referencesSchleife A, Fuchs F, Furthmüller J, et al. First-principles study of ground- and excited-state properties of MgO, ZnO, and CdO polymorphs. Phys Rev B Condens Matter Mater Phys; 73. Epub ahead of print 2006. DOI: 10.1103/PhysRevB.73.245212.
dc.relation.referencesKovalenko M, Bovgyra O, Franiv A, et al. Electronic structure of ZnO thin films doped with group III elements. Mater Today Proc 2019; 35: 604–608.
dc.relation.referencesVarshni Y. Temperature Dependence of the energy gap in semiconductors. Physica 34 1967; 149–154.
dc.relation.referencesSingh D, Varshni YP. Debye temperatures for hexagonal crystals. Ottawa, Canadá, 1981.
dc.relation.referencesCaglar M, Ilican S, Caglar Y, et al. Electrical conductivity and optical properties of ZnO nanostructured thin film. Appl Surf Sci 2009; 255: 4491–4496.
dc.relation.referencesNasir MF, Zainol MN, Hannas M, et al. Electrical properties of undoped zinc oxide nanostructures at different annealing temperature. In: AIP Conference Proceedings. American Institute of Physics Inc., 2016. Epub ahead of print 6 July 2016. DOI: 10.1063/1.4948886.
dc.relation.referencesQuesada A, García MA, Costa-Krämer JL, et al. Semiconductores magnéticos diluidos: Materiales para la espintrónica. Revista Española de Física, http://www.rsef.org (2007).
dc.relation.referencesAbdel-Galil A, Balboul MR, Sharaf A. Synthesis and characterization of Mn-doped ZnO diluted magnetic semiconductors. Physica B Condens Matter 2015; 477: 20–28.
dc.relation.referencesAlbella J. Láminas delgadas y recubrimientos: Preparación, propiedades y aplicaciones. Madrid, España, 2003.
dc.relation.referencesNunn W, Truttmann TK, Jalan B. A review of molecular-beam epitaxy of wide bandgap complex oxide semiconductors. J Mater Res 2021; 36: 4846–4864.
dc.relation.referencesÖzgür Ü, Avrutin V, Morkoç H. Zinc Oxide Materials and Devices Grown by Molecular Beam Epitaxy. In: Molecular Beam Epitaxy. Elsevier, 2018, pp. 343–375.
dc.relation.referencesMahmood A, Naeem A. Sol-Gel-Derived Doped ZnO Thin Films: Processing, Properties, and Applications. In: Recent Applications in Sol-Gel Synthesis. InTech, 2017. Epub ahead of print 5 July 2017. DOI: 10.5772/67857.
dc.relation.referencesPetr Vašina T, Boisse -Laporte Supervisor Ganciu Examinator J Janča Supervisor A-M Pointu President A Ricard Reporter J Vlček CM. Plasma diagnostics focused on new magnetron sputtering devices for thin film deposition at Orsay, members of commission. 2005.
dc.relation.referencesBonafos C, Khomenkhova L, Gourbilleau F, et al. Nano-composite MOx materials for NVMs. Metal Oxides for Non-volatile Memory: Materials, Technology and Applications 2022; 201–244.
dc.relation.referencesCullity BD (Bernard D. Elements of x-ray diffraction. Addison-Wesley Publishing Company, Inc, 1978.
dc.relation.referencesWaseda Y, Matsubara E, Shinoda K. X-Ray Diffraction Crystallography X-Ray Diffraction Crystallography Introduction, Examples and Solved Problems. 2011.
dc.relation.referencesHarrington GF, Santiso J. Back-to-Basics tutorial: X-ray diffraction of thin films. Journal of Electroceramics 2021 47:4 2021; 47: 141–163.
dc.relation.referencesGarcía L. Introducción al Método Rietveld. Centro de Investigación en Energía, 2007.
dc.relation.referencesQuiroz H. Estudio de las propiedades físicas del TiO2:Co como un semiconductor magnético diluido para aplicaciones en espintrónica. 2019.
dc.relation.referencesIpohorski M, Bozzano PB. Microscopía Electrónica de Barrido en la caracterización de Materiales. Cienc Invest; 63, http://aargentinapciencias.org/wp-content/uploads/2018/01/RevistasCeI/tomo63-3/5-Microscopia-Electronica-De-Barrido-En-La-Caracterizacion-De-Materiales-cei63-3-2013-5.pdf (2013, accessed 17 January 2022).
dc.relation.referencesInkson BJ. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) for Materials Characterization. In: Materials Characterization Using Nondestructive Evaluation (NDE) Methods. Elsevier Inc., 2016, pp. 17–43.
dc.relation.referencesMicroscopio electrónico escaneando Historia y Principios y capacidades, https://hmong.es/wiki/Scanning_electron_microscope (accessed 4 December 2022).
dc.relation.referencesScheuer C, Boot E, Carse N, et al. Current–voltage characteristic. Physical Education and Sport for Children and Youth with Special Needs Researches – Best Practices – Situation 2021; 343–354.
dc.relation.referencesEstrella JC. Mediciones eléctricas por el método de cuatro puntas en películas delgadas de interés fotovoltáico. Instituto Politécnico Nacional, https://tesis.ipn.mx/bitstream/handle/123456789/18560/Mediciones%20Electricas%20por%20el%20metodo%20de%20cuatro%20puntas%20en%20peliculas%20delgadas%20de%20interes%20fotovoltaico.pdf?sequence=1&isAllowed=y (2016, accessed 17 January 2022).
dc.relation.referencesSeña Gaibao NJ. Caracterización eléctrica y estudio de las propiedades de transporte del compuesto Cu2ZnSnSe4 para ser usado como capa absorbente en celdas solares. 2013.
dc.relation.referencesTerán CL. Caracterización y estudio de dispositivos basados en nanoestructuras de ZnO:Co para su aplicación en memorias no volátiles usando una configuración tipo transistor. 2022.
dc.relation.referencesPanowicz R, Miedzińska D, Palka N, et al. The initial results of THz spectroscopy non-destructive investigations of epoxy-glass composite structure Cratering of Cosmical Bodies View project Blast waves protective structures View project The initial results of THz spectroscopy non-destructive investigations of epoxy-glass composite structure, https://www.researchgate.net/publication/228895610 (2011).
dc.relation.referencesConfocal Microscope | What is Confocal Raman Microscopy? https://www.edinst.com/blog/what-is-confocal-raman-microscopy/ (accessed 5 December 2022).
dc.relation.referencesHuggett JM, Shaw HF. Field emission scanning electron microscopy — a high-resolution technique for the study of clay minerals in sediments. Clay Miner 1997; 32: 197–203.
dc.relation.referencesÁlvarez Romero C, Doménech Carbó MT. Aplicación de la técnica de microscopia electrónica de barrido de emisión de campo con haz de iones focalizado-microanálisis de rayos x a colecciones numismáticas. Valencia, 2016.
dc.relation.referencesSinha Ray S. Structure and Morphology Characterization Techniques. In: Clay-Containing Polymer Nanocomposites. Elsevier, 2013, pp. 39–66.
dc.relation.referencesX-ray Fluorescence – Rigaku EDXRF, https://www.rigakuedxrf.com/x-ray-fluorescence/ (accessed 5 December 2022).
dc.relation.referencesThomson T. Magnetic properties of metallic thin films. In: Metallic Films for Electronic, Optical and Magnetic Applications: Structure, Processing and Properties. Elsevier Ltd., 2013, pp. 454–546.
dc.relation.referencesBuschow KHJ;, de Boer FR. Measurement Techniques. In: Physics of Magnetism and Magnetic Materials. 2003, pp. 85–89.
dc.relation.referencesYang S, Zhang Y. Structural, optical and magnetic properties of Mn-doped ZnO thin films prepared by sol-gel method. J Magn Magn Mater 2013; 334: 52–58.
dc.relation.referencesWang ZH, Geng DY, Zhang ZD. Room-temperature ferromagnetism and optical properties of Zn1-xMnxO nanoparticles. Solid State Commun 2009; 149: 682–684.
dc.relation.referencesFERNANDEZ NAVARRO JM. Nucleación y cristalización en vidrios. 1968.
dc.relation.referencesBlasco J. Modelización compacta de las características de conducción de dispositivos de conmutación resistiva. Universitat Autonoma de Barcelo, 2017.
dc.relation.referencesSanca GA. Estudio de integración de dispositivos RS con tecnologías CMOS para aplicaciones en ambientes hostiles. Universidad Nacional de San Martín , 2020.
dc.relation.referencesSawa A. Resistive switching in transition metal oxides. NUMBER 2008; 11: 28.
dc.relation.referencesLee S, Lee JS, Park JB, et al. Anomalous effect due to oxygen vacancy accumulation below the electrode in bipolar resistance switching Pt/Nb:SrTiO3 cells. APL Mater; 2. Epub ahead of print 2 June 2014. DOI: 10.1063/1.4884215.
dc.relation.referencesSharma M, Bera K, Mishra R, et al. Structural, Magnetic, and Optical Properties of Mn2+ Doping in ZnO Thin Films. Surfaces 2021, Vol 4, Pages 268-278 2021; 4: 268–278.
dc.relation.referencesDietl T, Ohno H, Matsukura F, et al. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. IOS Press, www.sciencemag.orgwww.sciencemag.org (2000).
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembNanoestructuras
dc.subject.lembNanostructures
dc.subject.lembOxides
dc.subject.lembOxidos
dc.subject.lembCompuestos de Cic
dc.subject.lembZinc compounds
dc.subject.proposalOxido de Zinc (ZnO)
dc.subject.proposalDMS
dc.subject.proposalEspintrónica
dc.subject.proposalManganeso (Mn)
dc.subject.proposalMemristor
dc.title.translatedSynthesis and study of the effect of Mn on the structural and electrical properties of ZnO nanostructures
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit