Extracción de compuestos bioactivos de residuos de piña (Ananas comosus) usando fermentación en estado sólido
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.contributor.advisor | Torres León, Cristian |
dc.contributor.author | Paz Arteaga, Sarah Lucia |
dc.date.accessioned | 2023-07-17T14:22:27Z |
dc.date.available | 2023-07-17T14:22:27Z |
dc.date.issued | 2022-05-23 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84174 |
dc.description | ilustraciones |
dc.description.abstract | La elaboración de productos a base de piña genera altas cantidades de residuos orgánicos, y la contaminación que causa la inadecuada disposición final de estos residuos motiva a que se investiguen alternativas tecnológicas para su aprovechamiento. El objetivo de esta investigación fue la liberación de compuestos bioactivos por fermentación en estado sólido (FES) del corazón y cáscara de piña MD2, con el fin de obtener agentes antioxidantes y antimicrobianos. Se evaluaron los residuos de piña como soporte de FES y el tiempo de fermentación necesario para obtener la mayor cantidad de compuestos fenólicos. Estos resultados se relacionaron con la capacidad antioxidante y las enzimas producidas. Igualmente, se identificaron los compuestos bioactivos presentes en la fermentación por HPLC-MS. Finalmente, se determinó la actividad antibacteriana por el método de microdilución. Los resultados del crecimiento radial y SEM evidencian que los residuos de piña cumplen con las características para ser un buen soporte de FES con A. niger GH1. La FES aumentó en un 73% la cantidad de compuestos fenólicos a 32 h de fermentación y este resultado se correlaciona positivamente con la capacidad antioxidante y la actividad enzimática de β-glucosidasa y celulasas. El extracto obtenido a este tiempo inhibió el crecimiento bacteriano de Listeria monocytogenes y Staphylococcus aureus. En conclusión, la FES es un proceso biotecnológico con potencial para la valorización sostenible de los residuos de piña para obtener compuestos bioactivos de alto valor y múltiples aplicaciones en la industria alimentaria, cosmética y farmacéutica. (texto tomado de la fuente) |
dc.description.abstract | The production of pineapple-based products generates high amounts of organic waste, the pollution caused by the inadequate final disposal of this waste motivates the investigation of technological alternatives for its use. The objective of this research was the release of bioactive compounds by solid-state fermentation (SSF) from MD2 pineapple heart and skin in order to obtain antioxidant and antimicrobial agents. Pineapple residues were evaluated as a support for SSF and the fermentation time necessary to obtain the highest amount of phenolic compounds. These results were related to the antioxidant capacity and the enzymes produced. Likewise, the bioactive compounds present in the fermentation were identified by HPLC-MS. Finally, the antibacterial activity was determined by the microdilution method. The results of radial growth and SEM show that pineapple residues meet the characteristics to be a good support for SSF with A. niger GH1. The FES increased the amount of phenolic compounds by 73% at 32 h of fermentation and this result correlates positively with the antioxidant capacity and the enzymatic activity of β-glucosidase and cellulases. The extract obtained at this time inhibited the bacterial growth of Listeria monocytogenes and Staphylococcus aureus. In conclusion, SSF is a biotechnological process with potential for the sustainable recovery of pineapple residues to obtain high-value bioactive compounds and multiple applications in the food, cosmetic and pharmaceutical industries. |
dc.format.extent | 110 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.subject.ddc | 660 - Ingeniería química::664 - Tecnología de alimentos |
dc.title | Extracción de compuestos bioactivos de residuos de piña (Ananas comosus) usando fermentación en estado sólido |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Medellín - Ciencias - Maestría en Ciencias - Biotecnología |
dc.contributor.researchgroup | Biofibras y derivados vegetales |
dc.contributor.subjectmatterexpert | Cadena Chamorro, Edith Marleny |
dc.contributor.subjectmatterexpert | Aguilar Gonzáles, Cristóbal Noé |
dc.contributor.subjectmatterexpert | Serna Cock, Liliana |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magister en Ciencias- Biotecnología |
dc.description.researcharea | Procesos biotecnológicos |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ciencias |
dc.publisher.place | Medellín, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín |
dc.relation.indexed | LaReferencia |
dc.relation.references | Adom, K. K., & Liu, R. H. (2002). Antioxidant activity of grains. Journal of Agricultural and Food Chemistry, 50(21), 6182–6187. https://doi.org/10.1021/jf0205099 |
dc.relation.references | Aruna, T. E. (2019). Production of value-added product from pineapple peels using solid state fermentation. Innovative Food Science and Emerging Technologies, 57, 102193. https://doi.org/10.1016/j.ifset.2019.102193 |
dc.relation.references | Ascacio-Valdés, J. A., Buenrostro, J. J., De la Cruz, R., Sepúlveda, L., Aguilera, A. F., Prado, A., Contreras, J. C., Rodríguez, R., & Aguilar, C. N. (2014). Fungal biodegradation of pomegranate ellagitannins. Journal of Basic Microbiology, 54(1), 28–34. https://doi.org/10.1002/jobm.201200278 |
dc.relation.references | Brito, T. B. N., R.S. Lima, L., B. Santos, M. C., A. Moreira, R. F., Cameron, L. C., C. Fai, A. E., & S.L. Ferreira, M. (2021). Antimicrobial, antioxidant, volatile and phenolic profiles of cabbage-stalk and pineapple-crown flour revealed by GC-MS and UPLC-MSE. Food Chemistry, 339, 127882. https://doi.org/10.1016/j.foodchem.2020.127882 |
dc.relation.references | Cano y Postigo, L. O., Jacobo-Velázquez, D. A., Guajardo-Flores, D., Garcia Amezquita, L. E., & García-Cayuela, T. (2021). Solid-state fermentation for enhancing the nutraceutical content of agrifood by-products: Recent advances and its industrial feasibility. Food Bioscience, 41. https://doi.org/10.1016/j.fbio.2021.100926 |
dc.relation.references | Cardona Ruiz, J. N., & Castaño Giraldo, M. A. (2019). Oportunidades de los productores de piña en el norte del valle del cauca en el tratado de libre comercio con chile. Universidad Libre, 7. |
dc.relation.references | Correia, R. T. P., McCue, P., Magalhães, M. M. A., Macêdo, G. R., & Shetty, K. (2004). Production of phenolic antioxidants by the solid-state bioconversion of pineapple waste mixed with soy flour using Rhizopus oligosporus. Process Biochemistry, 39(12), 2167–2172. https://doi.org/10.1016/j.procbio.2003.11.034 |
dc.relation.references | El Tiempo. (2022). Piña orgánica como sustitución de cultivos ilícitos en Cauca. https://www.eltiempo.com/colombia/otras-ciudades/pina-organica-como-sustitucion-de-cultivos-ilicitos-en-cauca-671366 |
dc.relation.references | FAO. (2011). Food loss and food waste: Causes and solutions. In Food Loss and Food Waste: Causes and Solutions. https://doi.org/10.4337/9781788975391 |
dc.relation.references | FAOSTAT. (2019). Cultivos. http://www.fao.org/faostat/es/#data/QC/visualize.%0A |
dc.relation.references | Pandey, Ashok. 2003. “Solid-State Fermentation.” Biochemical Engineering Journal 13(2–3): 81–84. |
dc.relation.references | Sharma, H. B., Panigrahi, S., Sarmah, A. K., & Dubey, B. K. (2021). Extraction of phenolic compounds: A review. Science of the Total Environment, 135907. https://doi.org/10.1016/j.crfs.2021.03.011 |
dc.relation.references | Torres-León, C., Ramírez-Guzmán, N., Ascacio-Valdés, J., Serna-Cock, L., dos Santos Correia, M. T., Contreras-Esquivel, J. C., & Aguilar, C. N. (2019). Solid-state fermentation with Aspergillus niger to enhance the phenolic contents and antioxidative activity of Mexican mango seed: A promising source of natural antioxidants. Lwt, 112, 108236. https://doi.org/10.1016/j.lwt.2019.06.003 |
dc.relation.references | Vega-Castro, O., Contreras-Calderon, J., León, E., Segura, A., Arias, M., Pérez, L., & Sobral, P. J. A. (2016). Characterization of a polyhydroxyalkanoate obtained from pineapple peel waste using Ralsthonia eutropha. Journal of Biotechnology, 231, 232–238. https://doi.org/10.1016/j.jbiotec.2016.06.018 |
dc.relation.references | Yang, J., Liu, R. H., & Halim, L. (2009). Antioxidant and antiproliferative activities of common edible nut seeds. LWT - Food Science and Technology, 42(1), 1–8. https://doi.org/10.1016/j.lwt.2008.07.007 |
dc.relation.references | Yepes-Betancur, D. P., Márquez-Cardozo, C. J., Cadena-Chamorro, E. M., Martinez-Saldarriaga, J., Torres-León, C., Ascacio-Valdes, A., & Aguilar, C. N. (2021). Solid-state fermentation – assisted extraction of bioactive compounds from hass avocado seeds. Food and Bioproducts Processing, 126, 155–163. https://doi.org/10.1016/j.fbp.2020.10.012 |
dc.relation.references | Abbas, S., Shanbhag, T., & Kothare, A. (2021). Applications of bromelain from pineapple waste towards acne. Saudi Journal of Biological Sciences, 28(1), 1001–1009. https://doi.org/10.1016/j.sjbs.2020.11.032 |
dc.relation.references | Abdullah, A. (2007). Solid And Liquid Pineapple Waste Utilization For Lactic Acid Fermentation. Reaktor, 11(1), 50. https://doi.org/10.14710/reaktor.11.1.50-52 |
dc.relation.references | Abdullah, A., & Mat, H. (2008). Characterisation of Solid and Liquid Pineapple Waste. Reaktor, 12(1), 48. https://doi.org/10.14710/reaktor.12.1.48-52 |
dc.relation.references | Aditiya, H. B., Chong, W. T., Mahlia, T. M. I., Sebayang, A. H., Berawi, M. A., & Nur, H. (2016). Second generation bioethanol potential from selected Malaysia’s biodiversity biomasses: A review. Waste Management, 47, 46–61. https://doi.org/10.1016/j.wasman.2015.07.031 |
dc.relation.references | Anindya, A. L., Oktaviani, R. D., Praevina, B. R., Damayanti, S., Kurniati, N. F., Riani, C., & Rachmawati, H. (2019). Xylan from Pineapple Stem Waste: a Potential Biopolymer for Colonic Targeting of Anti-inflammatory Agent Mesalamine. AAPS PharmSciTech, 20(3), 1–13. https://doi.org/10.1208/s12249-018-1205-y |
dc.relation.references | Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M. R., Hoque, M. E., & Deng, Y. (2015). A review on pineapple leaves fibre and its composites. International Journal of Polymer Science. https://doi.org/10.1155/2015/950567 |
dc.relation.references | Astuti, W., Sulistyaningsih, T., Kusumastuti, E., Thomas, G. Y. R. S., & Kusnadi, R. Y. (2019). Thermal conversion of pineapple crown leaf waste to magnetized activated carbon for dye removal. Bioresource Technology, 287. 121426. https://doi.org/10.1016/j.biortech.2019.121426 |
dc.relation.references | Azlina Ahmad, Wan Kulandaisamy Venil, C., & Arul Aruldass, C. (2015). Production of Violacein by Chromobacterium violaceum Grown in Liquid Pineapple Waste: Current Scenario. 45–58. https://doi.org/10.1007/978-3-319-23183-9 |
dc.relation.references | Banerjee, R., Chintagunta, A. D., & Ray, S. (2017). A cleaner and eco-friendly bioprocess for enhancing reducing sugar production from pineapple leaf waste. Journal of Cleaner Production, 149, 387–395. https://doi.org/10.1016/j.jclepro.2017.02.088 |
dc.relation.references | Banerjee, S., Patti, A. F., Ranganathan, V., & Arora, A. (2019). Hemicellulose based biorefinery from pineapple peel waste: Xylan extraction and its conversion into xylooligosaccharides. Food and Bioproducts Processing, 117, 38–50. https://doi.org/10.1016/j.fbp.2019.06.012 |
dc.relation.references | Banerjee, S., Ranganathan, V., Patti, A., & Arora, A. (2018). Valorisation of pineapple wastes for food and therapeutic applications. Trends in Food Science and Technology, 82,60–70. https://doi.org/10.1016/j.tifs.2018.09.024 |
dc.relation.references | Bardiya, N., Somayaji, D., & Khanna, S. (1996). Biomethanation of banana peel and pineapple waste. Bioresource Technology, 58(1), 73–76. https://doi.org/10.1016/S0960-8524(96)00107-1 |
dc.relation.references | Bardiya, N., Somayaji, D., & Khanna, S. (1996). Biomethanation of banana peel and pineapple waste. Bioresource Technology, 58(1), 73–76. https://doi.org/10.1016/S0960-8524(96)00107-1 |
dc.relation.references | Beuth, J., & Braun, J. M. (2005). Modulation of murine tumor growth and colonization by bromelaine, an extract of the pineapple plant (Ananas comosum L.). In Vivo, 19(2), 483–486. |
dc.relation.references | Bhattacharyya, B. K. (2008). Bromelain: An overview. Indian Journal of Natural Products and Resources, 7(4), 359–363. |
dc.relation.references | Burton-Freeman, B. (2000). Dietary composition and obesity: Do we need to look beyond dietary fat? Journal of Nutrition, 130, 272–275. https://doi.org/10.1093/jn/130.2.267s |
dc.relation.references | Campos, D. A., Ribeiro, T. B., Teixeira, J. A., Pastrana, L., & Pintado, M. M. (2020). Integral valorization of pineapple (Ananas comosus L.) By-products through a green chemistry approach towards Added Value Ingredients. Foods, 9(1). https://doi.org/10.3390/foods9010060 |
dc.relation.references | Cano y Postigo, L. O., Jacobo-Velázquez, D. A., Guajardo-Flores, D., Garcia Amezquita, L. E., & García-Cayuela, T. (2021). Solid-state fermentation for enhancing the nutraceutical content of agrifood by-products: Recent advances and its industrial feasibility. Food Bioscience, 41. https://doi.org/10.1016/j.fbio.2021.100926 |
dc.relation.references | Casabar, J. T., Unpaprom, Y., & Ramaraj, R. (2019). Fermentation of pineapple fruit peel wastes for bioethanol production. Biomass Conversion and Biorefinery, 9(4), 761–765. https://doi.org/10.1007/s13399-019-00436-y |
dc.relation.references | Castañeda Torres, S., & Rodriguez Miranda, J. P. (2017). Modelo de aprovechamiento sustentable de residuos sólidos orgánicos en Cundinamarca, Colombia. Universidad y Salud, 19(1), 116. https://doi.org/10.22267/rus.171901.75 |
dc.relation.references | Chen, A., Guan, Y. J., Bustamante, M., Uribe, L., Uribe-Lorío, L., Roos, M. M., & Liu, Y. (2020). Production of renewable fuel and value-added bioproducts using pineapple leaves in Costa Rica. Biomass and Bioenergy, 141, 105675. https://doi.org/10.1016/j.biombioe.2020.105675 |
dc.relation.references | Coelho Silvestre, M. P., Linhares Carreira, R., Ramalho Silva, M., Campos Corgosinho, F., Pereira Monteiro, M. R., & Aley Morais, H. (2012). Effect of pH and Temperature on the Activity of Enzymatic Extracts from Pineapple Peel. Food and Bioprocess Technology, 5(5), 1824–1831. https://doi.org/10.1007/s11947-011-0616-5 |
dc.relation.references | Dai, H., Huang, Y., Zhang, Y., Zhang, H., & Huang, H. (2019). Green and facile fabrication of pineapple peel cellulose/magnetic diatomite hydrogels in ionic liquid for methylene blue adsorption. Cellulose, 26(6), 3825–3844. https://doi.org/10.1007/s10570-019-02283-6 |
dc.relation.references | Daud, Z., Hatta, M. Z. M., Kassim, A. S. M., Awang, H., & Aripin, A. M. (2014). Exploring of agro waste (pineapple leaf, corn stalk, and napier grass) by chemical composition and morphological study. BioResources, 9(1), 872–880. https://doi.org/10.15376/biores.9.1.872-880 |
dc.relation.references | de la Rosa, O., Múñiz-Marquez, D. B., Contreras-Esquivel, J. C., Wong-Paz, J. E., Rodríguez-Herrera, R., & Aguilar, C. N. (2020). Improving the fructooligosaccharides production by solid-state fermentation. Biocatalysis and Agricultural Biotechnology, 27, 101704. https://doi.org/10.1016/j.bcab.2020.101704 |
dc.relation.references | Dibanda Romelle, F., Ashwini, R. P., & Manohar, R. S. (2016). Chemical composition of some selected fruit peels. European Journal of Food Science and Technology, 4(4), 12–21. |
dc.relation.references | Dungani, R., Karina, M., Subyakto, Sulaeman, A., Hermawan, D., & Hadiyane, A. (2016). Agricultural waste fibers towards sustainability and advanced utilization: A review. Asian Journal of Plant Sciences, 15(1–2), 42–55. https://doi.org/10.3923/ajps.2016.42.55 |
dc.relation.references | Dutta, S., & Bhattacharyya, D. (2013). Enzymatic, antimicrobial and toxicity studies of the aqueous extract of Ananas comosus (pineapple) crown leaf. Journal of Ethnopharmacology, 150(2), 451–457. https://doi.org/10.1016/j.jep.2013.08.024 |
dc.relation.references | El-Demerdash, F. M., Baghdadi, H. H., Ghanem, N. F., & Mhanna, A. B. A. (2020). Nephroprotective role of bromelain against oxidative injury induced by aluminium in rats. Environmental Toxicology and Pharmacology, 80, 103509. https://doi.org/10.1016/j.etap.2020.103509 |
dc.relation.references | Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry, 124(2), 411–421. https://doi.org/10.1016/j.foodchem.2010.06.077 |
dc.relation.references | Fernandes Pereira, P. H., Luiz Ornaghi, H., Arantes, V., & Hilário Cioffi, M. O. (2021). Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials. Carbohydrate Research, 499. https://doi.org/10.1016/j.carres.2020.108227 |
dc.relation.references | Ferronato, N., Moresco, L., Guisbert Lizarazu, G. E., Gorritty Portillo, M. A., Conti, F., & Torretta, V. (2021). Sensitivity analysis and improvements of the recycling rate in municipal solid waste life cycle assessment: Focus on a Latin American developing context. Waste Management, 128, 1–15. https://doi.org/10.1016/j.wasman.2021.04.043 |
dc.relation.references | Ghanbari, R., & Ebrahimpour, A. (2018). Separation and identification of bromelain-generated antibacterial peptides from Actinopyga lecanora. Food Science and Biotechnology, 27(2), 591–598. https://doi.org/10.1007/s10068-017-0267-z |
dc.relation.references | Gnanasaraswathi, M., Lakshmipraba, S., Rajadurai, R. P., Abhinayashree, M., Fathima, B., Lakshmipriya, A., & Kamatchi, S. (2014). Potent anti-oxidant behaviour of citrus fruit peels and their bactericidal activity against multi drug resistant organism Pseudomonas aeruginosa. J. Chem. Pharm. Sci., 2(2), 139–144. |
dc.relation.references | Gnanasekaran, S., Nordin, N. I. A. A., Jamari, S. S., & Shariffuddin, J. H. (2021). Effect of Steam-Alkaline coupled treatment on N36 cultivar pineapple leave fibre for isolation of cellulose. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.02.216 |
dc.relation.references | Greses, S., Tomás-pejó, E., & Gónzalez-fernández, C. (2020). Bioresource Technology Agroindustrial waste as a resource for volatile fatty acids production via anaerobic fermentation. Bioresource Technology, 297, 122486. https://doi.org/10.1016/j.biortech.2019.122486 |
dc.relation.references | Hale, L. P., Greer, P. K., Trinh, C. T., & Gottfried, M. R. (2005). Treatment with oral bromelain decreases colonic inflammation in the IL-10-deficient murine model of inflammatory bowel disease. Clinical Immunology, 116(2), 135–142. https://doi.org/10.1016/j.clim.2005.04.011 |
dc.relation.references | Hazarika, D., Gogoi, N., Jose, S., Das, R., & Basu, G. (2017). Exploration of future prospects of Indian pineapple leaf, an agro waste for textile application. Journal of Cleaner Production, 141, 580–586. https://doi.org/10.1016/j.jclepro.2016.09.092 |
dc.relation.references | Hernandez-Rodriguez, L., Ramos-Gonzalez, P. L., Garcia-Garcia, G., Zamora, V., Peralta-Martin, A. M., Peña, I., Perez, J. M., & Ferriol, X. (2014). Geographic distribution of mealybug wilt disease of pineapple and genetic diversity of viruses infecting pineapple in Cuba. Crop Protection, 65, 43–50. https://doi.org/10.1016/j.cropro.2014.07.003 |
dc.relation.references | Hossain, M. A., & Rahman, S. M. M. (2011). Total phenolics, flavonoids and antioxidant activity of tropical fruit pineapple. Food Research International, 44(3), 672–676. https://doi.org/10.1016/j.foodres.2010.11.036 |
dc.relation.references | Hu, J., Lin, H., Shen, J., Lan, J., Ma, C., Zhao, Y., Lei, F., Xing, D., & Du, L. (2011). Developmental toxicity of orally administered pineapple leaf extract in rats. Food and Chemical Toxicology, 49(6), 1455–1463. https://doi.org/10.1016/j.fct.2011.03.047 |
dc.relation.references | Jaramillo, N., Hoyos, D., & Santa, J. F. (2016). Composites with pineapple-leaf fibers manufactured by layered compression molding. 18(2), 151–162. |
dc.relation.references | Jianlong, W. (2000). Production of citric acid by immobilized Aspergillus niger using a rotating biological contactor (RBC). Bioresource Technology, 75(3), 245–247. https://doi.org/10.1016/S0960-8524(00)00053-5 |
dc.relation.references | Kavuthodi, B., & Sebastian, D. (2018). Biotechnological valorization of pineapple stem for pectinase production by Bacillus subtilis BKDS1: Media formulation and statistical optimization for submerged fermentation. Biocatalysis and Agricultural Biotechnology, 715–722. https://doi.org/10.1016/j.bcab.2018.05.003 |
dc.relation.references | Ketnawa, S., Chaiwut, P., & Rawdkuen, S. (2012). Pineapple wastes: A potential source for bromelain extraction. Food and Bioproducts Processing, 90(3), 385–391. https://doi.org/10.1016/j.fbp.2011.12.006 |
dc.relation.references | Khalil, H. P. S. A., Alwani, M. S., & Omar, A. K. M. (2006). Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources, 1(2), 220–232. https://doi.org/10.15376/biores.1.2.220-232 |
dc.relation.references | Kim, M., & Day, D. F. (2011). Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. Journal of Industrial Microbiology and Biotechnology, 38(7), 803–807. https://doi.org/10.1007/s10295-010-0812-8 |
dc.relation.references | Kiriga, A. W., Haukeland, S., Kariuki, G. M., Coyne, D. L., & Beek, N. V. (2018). Effect of Trichoderma spp. and Purpureocillium lilacinum on Meloidogyne javanica in commercial pineapple production in Kenya. Biological Control, 119, 27–32. https://doi.org/10.1016/j.biocontrol.2018.01.005 |
dc.relation.references | Kodagoda, K., & Marapana, R. (2017). Development of non-alcoholic wines from the wastes of Mauritius pineapple variety and its physicochemical properties KHGK Kodagoda and RAUJ Marapana. Journal of Pharmacognosy and Phytochemistry, 6(3), 492–497. |
dc.relation.references | Kringel, D. H., Dias, A. R. G., Zavareze, E. da R., & Gandra, E. A. (2020). Fruit Wastes as Promising Sources of Starch: Extraction, Properties, and Applications. Starch/Staerke, 72(3–4). https://doi.org/10.1002/star.201900200 |
dc.relation.references | Kuppusamy, S., Venkateswarlu, K., & Megharaj, M. (2020). Examining the polyphenol content, antioxidant activity and fatty acid composition of twenty-one different wastes of fruits, vegetables, oilseeds and beverages. SN Applied Sciences, 2(4), 1–13. https://doi.org/10.1007/s42452-020-2441-9 |
dc.relation.references | Laftah, W. A., & Abdul Rahaman, W. A. W. (2015). Chemical pulping of waste pineapple leaves fiber for kraft paper production. Journal of Materials Research and Technology, 4(3), 254–261. https://doi.org/10.1016/j.jmrt.2014.12.006 |
dc.relation.references | Laftah, W. A., & Wan Abdul Rahman, W. A. (2016). Pulping Process and the Potential of Using Non-Wood Pineapple Leaves Fiber for Pulp and Paper Production: A Review. Journal of Natural Fibers, 13(1), 85–102. https://doi.org/10.1080/15440478.2014.984060 |
dc.relation.references | Li, T., Shen, P., Liu, W., Liu, C., Liang, R., Yan, N., & Chen, J. (2014). Major polyphenolics in pineapple peels and their antioxidant interactions. International Journal of Food Properties, 17(8), 1805–1817. https://doi.org/10.1080/10942912.2012.732168 |
dc.relation.references | Lizardi-Jiménez, M. A., & Hernández-Martínez, R. (2017). Solid state fermentation (SSF): diversity of applications to valorize waste and biomass. 3 Biotech, 7(1). https://doi.org/10.1007/s13205-017-0692-y |
dc.relation.references | Micanquer-Carlosama, A., Cortés-Rodríguez, M., & Serna-Cock, L. (2020). Formulation of a fermentation substrate from pineapple and sacha inchi wastes to grow Weissella cibaria. Heliyon, 6(4), 0–7. https://doi.org/10.1016/j.heliyon.2020.e03790 |
dc.relation.references | Mondal, S., Bhattacharya, S., Pandey, J., & Biswas, M. (2011). Evaluation of acute anti-inflammatory effect of ananas comosus leaf extracts in rats. Pharmacologyonline, 1315, 1312–1315. |
dc.relation.references | Monge, M. (2018). Guía para la identificación de las principales plagas y enfermedades en el cultivo de piña. 1–46. |
dc.relation.references | Morais, D. R., Rotta, E. M., Sargi, S. C., Bonafe, E. G., Suzuki, R. M., Souza, N. E., Matsushita, M., & Visentainer, J. V. (2017). Proximate composition, mineral contents and fatty acid composition of the different parts and dried peels of tropical fruits cultivated in Brazil. Journal of the Brazilian Chemical Society, 28(2), 308–318. https://doi.org/10.5935/0103-5053.20160178 |
dc.relation.references | Morais, D. R., Rotta, E. M., Sargi, S. C., Schmidt, E. M., Bonafe, E. G., Eberlin, M. N., Sawaya, A. C. H. F., & Visentainer, J. V. (2015). Antioxidant activity, phenolics and UPLC-ESI(-)-MS of extracts from different tropical fruits parts and processed peels. Food Research International, 77, 392–399. https://doi.org/10.1016/j.foodres.2015.08.036 |
dc.relation.references | Moreno-González, M., & Ottens, M. (2021). A Structured Approach to Recover Valuable Compounds from Agri-food Side Streams. Food and Bioprocess Technology, 14(8), 1387–1406. https://doi.org/10.1007/s11947-021-02647-6 |
dc.relation.references | Moure, A., Cruz, J. M., Franco, D., Manuel Domínguez, J., Sineiro, J., Domínguez, H., Núñez, M. J., & Carlos Parajó, J. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145–171. https://doi.org/10.1016/S0308-8146(00)00223-5 |
dc.relation.references | Mund, N. K., Dash, D., Mishra, P., & Nayak, N. R. (2021). Cellulose solvent–based pretreatment and enzymatic hydrolysis of pineapple leaf waste biomass for efficient release of glucose towards biofuel production. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01225-8 |
dc.relation.references | Nakthong, N., Wongsagonsup, R., & Amornsakchai, T. (2017). Characteristics and potential utilizations of starch from pineapple stem waste. Industrial Crops and Products, 105, 74–82. https://doi.org/10.1016/j.indcrop.2017.04.048 |
dc.relation.references | Namsree, P., Suvajittanont, W., Puttanlek, C., Uttapap, D., & Rungsardthong, V. (2012). Anaerobic digestion of pineapple pulp and peel in a plug-flow reactor. Journal of Environmental Management, 110, 40–47. https://doi.org/10.1016/j.jenvman.2012.05.017 |
dc.relation.references | Oculi, J., Bua, B., & Ocwa, A. (2020). Reactions of pineapple cultivars to pineapple heart rot disease in central Uganda. Crop Protection, 135, 105213. https://doi.org/10.1016/j.cropro.2020.105213 |
dc.relation.references | Ong, K. L., Kaur, G., Pensupa, N., Uisan, K., & Lin, C. S. K. (2018). Trends in food waste valorization for the production of chemicals, materials and fuels: Case study South and Southeast Asia. Bioresource Technology, 248, 100–112. https://doi.org/10.1016/j.biortech.2017.06.076 |
dc.relation.references | Pauzi, A. Z. M., Yeap, S. K., Abu, N., Lim, K. L., Omar, A. R., Aziz, S. A., Chow, A. L. T., Subramani, T., Tan, S. G., & Alitheen, N. B. (2016). Combination of cisplatin and bromelain exerts synergistic cytotoxic effects against breast cancer cell line MDA-MB-231 in vitro. Chinese Medicine (United Kingdom), 11(1), 1–11. https://doi.org/10.1186/s13020-016-0118-5 |
dc.relation.references | Poprac, P., Jomova, K., Simunkova, M., Kollar, V., Rhodes, C. J., & Valko, M. (2017). Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends in Pharmacological Sciences, 38(7), 592–607. https://doi.org/10.1016/j.tips.2017.04.005 |
dc.relation.references | Prasad, S., Singh, A., & Joshi, H. C. (2007). Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resources, Conservation and Recycling, 50(1), 1–39. https://doi.org/10.1016/j.resconrec.2006.05.007 |
dc.relation.references | Putra, A., Or, K. H., Selamat, M. Z., Nor, M. J. M., Hassan, M. H., & Prasetiyo, I. (2018). Sound absorption of extracted pineapple-leaf fibres. Applied Acoustics, 136, 9–15. https://doi.org/10.1016/j.apacoust.2018.01.029 |
dc.relation.references | Rani, D. S., & Nand, K. (2004). Ensilage of pineapple processing waste for methane generation. Waste Management, 24(5), 523–528. https://doi.org/10.1016/j.wasman.2003.10.010 |
dc.relation.references | Rashad, M. M., Mahmoud, A. E., Ali, M. M., Nooman, M. U., & Al-Kashef, A. S. (2015). Antioxidant and anticancer agents produced from pineapple waste by solid state fermentation. International Journal of Toxicological and Pharmacological Research, 7(6), 287–296. |
dc.relation.references | Rathnakumar, K., Anal, A., & Lakshmi, K. (2017). Optimization of Ultrasonic Assisted Extraction of Bioactive components from different Parts of Pineapple Waste. International Journal of Agriculture, Environment and Biotechnology. https://doi.org/10.5958/2230-732X.2017.00068.7 |
dc.relation.references | Rattu, G., & Krishna, M. (2022). Enzyme-free colorimetric nanosensor for the rapid detection of lactic acid in food quality analysis. Journal of Agriculture and Food Research, 6. https://doi.org/https://doi.org/10.1016/j.jafr.2022.100268 |
dc.relation.references | René, C., Frutos, P. D. E., Ananas, D. E. P., Merr, L., Rodríguez, R., Becquer, R., Pino, Y., López, D., Rodríguez, R. C., González, G. Y. L., & Izquierdo, R. E. (2016). Fruits production of pineapple (Ananas comosus (L.) Merr.) MD-2 from vitroplants. Cultivos Tropicales. https://doi.org/10.13140/RG.2.1.4732.3765 |
dc.relation.references | Rico, X., Gullón, B., Alonso, J. L., & Yáñez, R. (2020). Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: An overview. Food Research International, 132, 109086. https://doi.org/10.1016/j.foodres.2020.109086 |
dc.relation.references | Roda, A., De Faveri, D. M., Dordoni, R., & Lambri, M. (2014). Vinegar production from pineapple wastes -preliminary saccharification trials. Chemical Engineering Transactions, 37, 607–612. https://doi.org/10.3303/CET1437102 |
dc.relation.references | Roda, A., & Lambri, M. (2019). Food uses of pineapple waste and by-products: a review. International Journal of Food Science and Technology, 54(4), 1009–1017. https://doi.org/10.1111/ijfs.14128 |
dc.relation.references | Rodsamran, P., & Sothornvit, R. (2019). Preparation and characterization of pectin fraction from pineapple peel as a natural plasticizer and material for biopolymer film. Food and Bioproducts Processing, 118, 198–206. https://doi.org/10.1016/j.fbp.2019.09.010 |
dc.relation.references | Rojas, L. F., Cortés, C. F., Zapata, P., & Jiménez, C. (2018). Extraction and identification of endopeptidases in convection dried papaya and pineapple residues: A methodological approach for application to higher scale. Waste Management, 78, 58–68. https://doi.org/10.1016/j.wasman.2018.05.020 |
dc.relation.references | Rollas, S., & Küçükgüzel, Ş. G. (2007). Biological activities of hydrazone derivatives. Molecules, 12(8), 1910–1939. https://doi.org/10.3390/12081910 |
dc.relation.references | Rosales, E., Escudero, S., Pazos, M., & Sanromán, M. A. (2019). Sustainable removal of Cr(VI) by lime peel and pineapple core wastes. Applied Sciences (Switzerland), 9(10). https://doi.org/10.3390/app9101967 |
dc.relation.references | Saha, S. C., Das, B. K., Ray, P. K., Pandey, S. N., & Goswami, K. (1990). SEM Studies of the Surface and Fracture Morphology of Pineapple Leaf Fibers. Textile Research Journal, 60(12), 726–731. https://doi.org/10.1177/004051759006001205 |
dc.relation.references | Sánchez Pardo, M. E., Ramos Cassellis, M. E., Mora Escobedo, R., & Jiménez García, E. (2014). Chemical Characterisation of the Industrial Residues of the Pineapple (Ananas comosus). Journal of Agricultural Chemistry and Environment, 03(02), 53–56. https://doi.org/10.4236/jacen.2014.32b009 |
dc.relation.references | Sangkharak, K., Wangsirikul, P., Pichid, N., Yunu, T., & Prasertsan, P. (2016). Partitioning of bromelain from pineapple stem (Smooth cayenne) by aqueous two phase system and its application for recovery and purification of polyhydroxyalkanoate. Chiang Mai Journal of Science, 43(4), 794–807. |
dc.relation.references | Santos, D. I., Martins, C. F., Amaral, R. A., Saraiva, J. A., Vicente, A., & Mold, M. (2021). Pineapple (Ananas comosus L.) By-Products Valorization: Novel Bio Ingredients for Functional Foods. Molecules. |
dc.relation.references | Secor, E. R., Carson IV, W. F., Cloutier, M. M., Guernsey, L. A., Schramm, C. M., Wu, C. A., & Thrall, R. S. (2005). Bromelain exerts anti-inflammatory effects in an ovalbumin-induced murine model of allergic airway disease. Cellular Immunology, 237(1), 68–75. https://doi.org/10.1016/j.cellimm.2005.10.002 |
dc.relation.references | Seguí, L., & Fito Maupoey, P. (2018). An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues. Journal of Cleaner Production, 172, 1224–1231. https://doi.org/10.1016/j.jclepro.2017.10.284 |
dc.relation.references | Şehirli, A. Ö., Sayiner, S., Savtekin, G., & Velioğlu-Öğünç, A. (2020). Protective effect of bromelain on corrosive burn in rats. Burns, 6–12. https://doi.org/10.1016/j.burns.2020.12.006 |
dc.relation.references | Selani, M. M., Brazaca, S. G. C., Dos Santos Dias, C. T., Ratnayake, W. S., Flores, R. A., & Bianchini, A. (2014). Characterisation and potential application of pineapple pomace in an extruded product for fibre enhancement. Food Chemistry, 163, 23–30. https://doi.org/10.1016/j.foodchem.2014.04.076 |
dc.relation.references | Selani, M., Shirado, G. A. N., Margiotta, G. B., Saldaña, E., Spada, F. P., Piedade, S. M. S., Contreras-Castillo, C. J., & Canniatti-Brazaca, S. G. (2016). Effects of pineapple byproduct and canola oil as fat replacers on physicochemical and sensory qualities of low-fat beef burger. Meat Science, 112, 69–76. https://doi.org/10.1016/j.meatsci.2015.10.020 |
dc.relation.references | Sepúlveda, L., Romaní, A., Aguilar, C. N., & Teixeira, J. (2018). Valorization of pineapple waste for the extraction of bioactive compounds and glycosides using autohydrolysis. Innovative Food Science and Emerging Technologies, 47, 38–45. https://doi.org/10.1016/j.ifset.2018.01.012 |
dc.relation.references | Silva, C. N. da, Bronzato, G. R. F., Cesarino, I., & Leão, A. L. (2020). Second-generation ethanol from pineapple leaf fibers. Journal of Natural Fibers, 17(1), 113–121. https://doi.org/10.1080/15440478.2018.1469453 |
dc.relation.references | Silva, G., Kim, S., Aguilar, R., & Nakamatsu, J. (2020). Natural fibers as reinforcement additives for geopolymers – A review of potential eco-friendly applications to the construction industry. Sustainable Materials and Technologies, 23, e00132. https://doi.org/10.1016/j.susmat.2019.e00132 |
dc.relation.references | Singh, B., Singh, J. P., Kaur, A., & Singh, N. (2020). Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Research International, 132, 109114. https://doi.org/10.1016/j.foodres.2020.109114 |
dc.relation.references | Singh, Y., Kumar, J., Pramod Naik, T., Pabla, B. S., & Singh, I. (2021). Processing and characterization of pineapple fiber reinforced recycled polyethylene composites. Materials Today: Proceedings, 44, 2153–2157. https://doi.org/10.1016/j.matpr.2020.12.278 |
dc.relation.references | Staszowska-Karkut, M., & Materska, M. (2020). Phenolic composition, mineral content, and beneficial bioactivities of leaf extracts from black currant (Ribes nigrum l.), raspberry (Rubus idaeus), and aronia (Aronia melanocarpa). Nutrients, 12(2). https://doi.org/10.3390/nu12020463 |
dc.relation.references | Steingass, C. B., Glock, M. P., Schweiggert, R. M., & Carle, R. (2015). Studies into the phenolic patterns of different tissues of pineapple (Ananas comosus [L.] Merr.) infructescence by HPLC-DAD-ESI-MSn and GC-MS analysis. Analytical and Bioanalytical Chemistry, 407(21), 6463–6479. https://doi.org/10.1007/s00216-015-8811-2 |
dc.relation.references | Stevanic, J. S., Joly, C., Mikkonen, K. S., Pirkkalainen, K., Serimaa, R., Re´mond, C., Toriz, G., Gatenholm, P., Tenkanen, M., & Salme´n, L. (2011). Bacterial Nanocellulose-Reinforced Arabinoxylan Films. Journal of Applied Polymer Science, 122, 1030–1039. https://doi.org/10.1002/app.34217 |
dc.relation.references | Subramaniyan, S., Paramasivam, S., Kannaiyan, M., & Chinnaiyan, U. (2019). Utilization of Fruit Waste for the Production of Citric Acid by using Aspergillus niger. Journal of Drug Delivery and Therapeutics, 9, 9–14. https://doi.org/10.22270/jddt.v9i4-A.3487 |
dc.relation.references | Sukruansuwan, V., & Napathorn, S. C. (2018). Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04. Biotechnology for Biofuels, 11(1), 1–15. https://doi.org/10.1186/s13068-018-1207-8 |
dc.relation.references | Upadhyay, A., Lama, J. P., & Tawata, S. (2010). Utilization of Pineapple Waste: A Review. Journal of Food Science and Technology Nepal, 6(0), 10–18. https://doi.org/10.3126/jfstn.v6i0.8255 |
dc.relation.references | Verma, D. (2015). Bagasse fiber composites : A Review Bagasse Fiber Composites-A Review. |
dc.relation.references | Wu, L., & Parhofer, K. G. (2014). Diabetic dyslipidemia. Metabolism: Clinical and Experimental, 63(12), 1469–1479. https://doi.org/10.1016/j.metabol.2014.08.010 |
dc.relation.references | Xie, W., Wang, W., Su, H., Xing, D., Pan, Y., & Du, L. (2006). Effect of ethanolic extracts of Ananas comosus L. leaves on insulin sensitivity in rats and HepG2. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 143(4), 429–435. https://doi.org/10.1016/j.cbpc.2006.04.002 |
dc.relation.references | Xie, W., Xing, D., Sun, H., Wang, W., Ding, Y., & Du, L. (2005). The effects of Ananas comosus L. leaves on diabetic-dyslipidemic rats induced by alloxan and a high-fat/high-cholesterol diet. American Journal of Chinese Medicine, 33(1), 95–105. https://doi.org/10.1142/S0192415X05002692 |
dc.relation.references | Zain, N. A. M., Aziman, S. N., Suhaimi, M. S., & Idris, A. (2021). Optimization of L(+) Lactic Acid Production from Solid Pineapple Waste (SPW) by Rhizopus oryzae NRRL 395. Journal of Polymers and the Environment, 29(1), 230–249. https://doi.org/10.1007/s10924-020-01862-0 |
dc.relation.references | Zhang, B., Zhang, Y., Li, H., Deng, Z., & Tsao, R. (2020). A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives. Trends in Food Science and Technology, 105, 347–362. https://doi.org/10.1016/j.tifs.2020.09.029 |
dc.relation.references | Zhuang, Y., Liu, J., Chen, J., & Fei, P. (2020). Modified pineapple bran cellulose by potassium permanganate as a copper ion adsorbent and its adsorption kinetic and adsorption thermodynamic. Food and Bioproducts Processing, 122, 82–88. https://doi.org/10.1016/j.fbp.2020.04.008 |
dc.relation.references | Acosta-Estrada, B. A., Gutiérrez-Uribe, J. A., & Serna-Saldívar, S. O. (2014). Bound phenolics in foods, a review. Food Chemistry, 152, 46–55. https://doi.org/10.1016/j.foodchem.2013.11.093 |
dc.relation.references | Aguilar, C. N., Favela-Torres, E., Viniegra-González, G., & Augur, C. (2002). Culture conditions dictate protease and tannase production in submerged and solid-state cultures of Aspergillus niger Aa-20. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 102–103, 407–414. https://doi.org/10.1385/ABAB:102-103:1-6:407 |
dc.relation.references | Aguilar, C. N., Rodríguez, R., Gutiérrez-Sánchez, G., Augur, C., Favela-Torres, E., Prado-Barragan, L. A., Ramírez-Coronel, A., & Contreras-Esquivel, J. C. (2007). Microbial tannases: Advances and perspectives. Applied Microbiology and Biotechnology, 76(1), 47–59. https://doi.org/10.1007/s00253-007-1000-2 |
dc.relation.references | Aliyah, A., Alamsyah, G., Ramadhani, R., & Hermansyah, H. (2017). Production of α-Amylase and β-Glucosidase from Aspergillus niger by solid state fermentation method on biomass waste substrates from rice husk, bagasse and corn cob. Energy Procedia, 136, 418–423. https://doi.org/10.1016/j.egypro.2017.10.269 |
dc.relation.references | AOAC 920.39. (1990). Official methods of analysis of the association of official analytical chamist. In AOAC. |
dc.relation.references | AOAC 973.18. (1990). Official methods of analysis of the Association of Oficial Analytical Chemists International. Fiber (acid detergent) and lignin (H2SO4) in animal feed. |
dc.relation.references | Ascacio-Valdés, J. A., Aguilera-Carbó, A. F., Buenrostro, J. J., Prado-Barragán, A., Rodríguez-Herrera, R., & Aguilar, C. N. (2016). The complete biodegradation pathway of ellagitannins by Aspergillus niger in solid-state fermentation. Journal of Basic Microbiology, 56(4), 329–336. https://doi.org/10.1002/jobm.201500557 |
dc.relation.references | Behera, B. C., Sethi, B. K., Mishra, R. R., Dutta, S. K., & Thatoi, H. N. (2017). Microbial cellulases – Diversity & biotechnology with reference to mangrove environment: A review. Journal of Genetic Engineering and Biotechnology, 15(1), 197–210. https://doi.org/10.1016/j.jgeb.2016.12.001 |
dc.relation.references | Briante, R., Patumi, M., Limongelli, S., Febbraio, F., Vaccaro, C., Di, A., La, F., & Nucci, R. (2002). Changes in phenolic and enzymatic activities content during fruit ripening in two Italian cultivars of Olea europaea L. 162, 791–798. https://doi-org.ezproxy.unal.edu.co/10.1016/S0168-9452(02)00022-5 |
dc.relation.references | Buenrostro-Figueroa, J. J., Velázquez, M., Flores-Ortega, O., Ascacio-Valdés, J. A., Huerta-Ochoa, S., Aguilar, C. N., & Prado-Barragán, L. A. (2017). Solid state fermentation of fig (Ficus carica L.) by-products using fungi to obtain phenolic compounds with antioxidant activity and qualitative evaluation of phenolics obtained. Process Biochemistry, 62, 16–23. https://doi.org/10.1016/j.procbio.2017.07.016 |
dc.relation.references | Chakraborty, S., Gupta, R., Jain, K. K., & Kuhad, R. C. (2016). Cost-effective production of cellulose hydrolysing enzymes from Trichoderma sp. RCK65 under SSF and its evaluation in saccharification of cellulosic substrates. Bioprocess and Biosystems Engineering, 39(11), 1659–1670. https://doi.org/10.1007/s00449-016-1641-6 |
dc.relation.references | Chen, Y. hung, Chen, Y. J., Chou, C. Y., Wen, C. C., & Cheng, C. C. (2019). UV-protective activities of pineapple leaf extract in zebrafish embryos. Research on Chemical Intermediates, 45(1), 65–75. https://doi.org/10.1007/s11164-018-3632-5 |
dc.relation.references | Cizeikiene, D., Juodeikiene, G., & Damasius, J. (2018). Use of wheat straw biomass in production of L-lactic acid applying biocatalysis and combined lactic acid bacteria strains belonging to the genus Lactobacillus. Biocatalysis and Agricultural Biotechnology, 15, 185–191. https://doi.org/10.1016/j.bcab.2018.06.015 |
dc.relation.references | Crognale, S., Liuzzi, F., D’Annibale, A., de Bari, I., & Petruccioli, M. (2019). Cynara cardunculus a novel substrate for solid-state production of Aspergillus tubingensis cellulases and sugar hydrolysates. Biomass and Bioenergy, 127, 105276. https://doi.org/10.1016/j.biombioe.2019.105276 |
dc.relation.references | Cruz-Hernández, M., Augur, C., Rodríguez, R., Contreras-Esquivel, J. C., & Aguilar, C. N. (2006). Evaluation of culture conditions for tannase production by Aspergillus niger GH1. Food Technology and Biotechnology, 44(4), 541–544 |
dc.relation.references | da Silva, D. I. S., Nogueira, G. D. R., Duzzioni, A. G., & Barrozo, M. A. S. (2013). Changes of antioxidant constituents in pineapple (Ananas comosus) residue during drying process. Industrial Crops and Products, 50, 557–562. https://doi.org/10.1016/j.indcrop.2013.08.001 |
dc.relation.references | de Oliveira, A. C., Valentim, I. B., Silva, C. A., Bechara, E. J. H., Barros, M. P. de, Mano, C. M., & Goulart, M. O. F. (2009). Total phenolic content and free radical scavenging activities of methanolic extract powders of tropical fruit residues. Food Chemistry, 115(2), 469–475. https://doi.org/10.1016/j.foodchem.2008.12.045 |
dc.relation.references | Difonzo, G., Vollmer, K., Caponio, F., Pasqualone, A., Carle, R., & Steingass, C. B. (2019). Characterisation and classification of pineapple (Ananas comosus [L.] Merr.) juice from pulp and peel. Food Control, 96, 260–270. https://doi.org/10.1016/j.foodcont.2018.09.015 |
dc.relation.references | dos Santos, A. C., Ximenes, E., Kim, Y., & Ladisch, M. R. (2019). Lignin–Enzyme Interactions in the Hydrolysis of Lignocellulosic Biomass. Trends in Biotechnology, 37(5), 518–531. https://doi.org/10.1016/j.tibtech.2018.10.010 |
dc.relation.references | Du, S. kui, |
dc.relation.references | Du, S. kui, Jiang, H., Yu, X., & Jane, J. lin. (2014). Physicochemical and functional properties of whole legume flour. LWT - Food Science and Technology, 55(1), 308–313. https://doi.org/10.1016/j.lwt.2013.06.001 |
dc.relation.references | Gligor, O., Mocan, A., Moldovan, C., Locatelli, M., Crișan, G., & Ferreira, I. C. F. R. (2019). Enzyme-assisted extractions of polyphenols – A comprehensive review. Trends in Food Science and Technology, 88, 302–315. https://doi.org/10.1016/j.tifs.2019.03.029 |
dc.relation.references | Idris, A. S. O., Pandey, A., Rao, S. S., & Sukumaran, R. K. (2017). Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. Bioresource Technology, 242, 265–271. https://doi.org/10.1016/j.biortech.2017.03.092 |
dc.relation.references | Jericó Santos, T. R., Santos Vasconcelos, A. G., Lins de Aquino Santana, L. C., Gualberto, N. C., Buarque Feitosa, P. R., & Pires de Siqueira, A. C. (2020). Solid-state fermentation as a tool to enhance the polyphenolic compound contents of acidic Tamarindus indica by-products. Biocatalysis and Agricultural Biotechnology, 30. https://doi.org/10.1016/j.bcab.2020.101851 |
dc.relation.references | Khanahmadi, M., Arezi, I., Amiri, M. sadat, & Miranzadeh, M. (2018). Bioprocessing of agro-industrial residues for optimization of xylanase production by solid- state fermentation in flask and tray bioreactor. Biocatalysis and Agricultural Biotechnology, 13, 272–282. https://doi.org/10.1016/j.bcab.2018.01.005 |
dc.relation.references | Kodagoda, K., & Marapana, R. (2017). Development of non-alcoholic wines from the wastes of Mauritius pineapple variety and its physicochemical properties KHGK Kodagoda and RAUJ Marapana. Journal of Pharmacognosy and Phytochemistry, 6(3), 492–497. |
dc.relation.references | Kumar, M., Izyan, N., Azelee, W., Nor, A., & Ramli, M. (2022). International Journal of Food Microbiology Microbial biotechnology approaches for conversion of pineapple waste in to emerging source of healthy food for sustainable environment Pineapple flesh Pineapple leaves. International Journal of Food Microbiology, 373, 109714. https://doi.org/10.1016/j.ijfoodmicro.2022.109714 |
dc.relation.references | Leite, P., Silva, C., Salgado, J. M., & Belo, I. (2019). Simultaneous production of lignocellulolytic enzymes and extraction of antioxidant compounds by solid-state fermentation of agro-industrial wastes. Industrial Crops and Products, 137, 315–322. https://doi.org/10.1016/j.indcrop.2019.04.044 |
dc.relation.references | Li, Y., Saravana Kumar, P., qiu, J., Ran, Y., Tan, X., Zhao, R., Ai, L., Yuan, M., Zhu, J., & He, M. (2022). Production of bioactive compounds from callus of Pueraria thomsonii Benth with promising cytotoxic and antibacterial activities. Arabian Journal of Chemistry, 15(6), 103854. https://doi.org/10.1016/j.arabjc.2022.103854 |
dc.relation.references | Lu, X., Li, F., Zhou, X., Hu, J., & Liu, P. (2022). Biomass, lignocellulolytic enzyme production and lignocellulose degradation patterns by Auricularia auricula during solid state fermentation of corn stalk residues under different pretreatments. Food Chemistry, 384, 132622. https://doi.org/10.1016/j.foodchem.2022.132622 |
dc.relation.references | Makkar, H. P. S. (2003). Makkar, H. P. S. (2003). Measurement of total phenolics and tannins using Folin-Ciocalteu method. Quantification of Tannins in Tree and Shrub Foliage, 49–51. doi:10.1007/978-94-017-0273-7_3. 2, 49–51. |
dc.relation.references | Manfrin Dias, L., Vieira dos Santos, Beatriz Brant Albuquerque, C. J., Bruno, E., Pasquini, D., & Alves Baffi, M. (2016). Biomass sorghum as a novel substrate in solid state fermentation for the production of hemicellulases and cellulases by Aspergillus niger and A. fumigatus. Journal of Applied Microbiology, 38, 42–49. https://doi.org/DOI: 10.1111/jam.13672 |
dc.relation.references | Martinez-Medina, G. A., Chávez-González, M. L., Verma, D. K., Prado-Barragán, L. A., Martínez-Hernández, J. L., Flores-Gallegos, A. C., Thakur, M., Srivastav, P. P., & Aguilar, C. N. (2021). Bio-funcional components in mushrooms, a health opportunity: Ergothionine and huitlacohe as recent trends. Journal of Functional Foods, 77. https://doi.org/10.1016/j.jff.2020.104326 |
dc.relation.references | Martins, S., Mussatto, S. I., Martínez-Avila, G., Montañez-Saenz, J., Aguilar, C. N., & Teixeira, J. A. (2011). Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnology Advances, 29(3), 365–373. https://doi.org/10.1016/j.biotechadv.2011.01.008 |
dc.relation.references | Miller, G. (1959). Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar. Analitycal Chemistry, 31(3), 426–428. https://doi.org/https://doi.org/10.1021/ac60147a030 |
dc.relation.references | Mohamed, S. A., Saleh, R. M., Kabli, S. A., & Al-Garni, S. M. (2016). Influence of solid state fermentation by Trichoderma spp. on solubility, phenolic content, antioxidant, and antimicrobial activities of commercial turmeric. Bioscience, Biotechnology and Biochemistry, 80(5), 920–928. https://doi.org/10.1080/09168451.2015.1136879 |
dc.relation.references | Molyneux, P. (2004). The use of the stable free radical diphenylpicryl- hydrazyl ( DPPH ) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(2), 211–219. 10.1016/S0891-5849(98)00315-3 |
dc.relation.references | Mussatto, S. I., Aguilar, C. N., Rodrigues, L. R., & Teixeira, J. A. (2009). Colonization of Aspergillus japonicus on synthetic materials and application to the production of fructooligosaccharides. Carbohydrate Research, 344(6), 795–800. https://doi.org/10.1016/j.carres.2009.01.025 |
dc.relation.references | Mussatto, S. I., Aguilar, C. N., Rodrigues, L. R., & Teixeira, J. A. (2009). Colonization of Aspergillus japonicus on synthetic materials and application to the production of fructooligosaccharides. Carbohydrate Research, 344(6), 795–800. https://doi.org/10.1016/j.carres.2009.01.025 |
dc.relation.references | Nagao, N., Matsuyama, T., Yamamoto, H., & Toda, T. (2003). A novel hybrid system of solid state and submerged fermentation with recycle for organic solid waste treatment. Process Biochemistry, 39(1), 37–43. https://doi.org/10.1016/S0032-9592(02)00292-3 |
dc.relation.references | Oroian, M., & Escriche, I. (2015). Antioxidants: Characterization, natural sources, extraction and analysis. Food Research International, 74, 10–36. https://doi.org/10.1016/j.foodres.2015.04.018 |
dc.relation.references | Pacheco, N., Méndez-Campos, G. K., Herrera-Pool, I. E., Alvarado-López, C. J., Ramos-Díaz, A., Ayora-Talavera, T., Talcott, S. U., & Cuevas-Bernardino, J. C. (2021). Physicochemical composition, phytochemical analysis and biological activity of ciricote (Cordia dodecandra A. D.C.) fruit from Yucatán. Natural Product Research, 36(1), 440–444. https://doi.org/10.1080/14786419.2020.1774763 |
dc.relation.references | Pandey, A., Soccol, C. R., & Mitchell, D. (2009). Pre-treatment of agro-industrial residues. Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues, 35, 13–33. https://doi.org/10.1007/978-1-4020-9942-7_2 |
dc.relation.references | Patras, M. A., Jaiswal, R., & Kuhnert, N. (2017). Profiling and quantification of regioisomeric caffeoyl glucoses in Solanaceae vegetables. Food Chemistry, 237, 659–666. https://doi.org/10.1016/j.foodchem.2017.05.150 |
dc.relation.references | Prajapati, B. P., Kumar Suryawanshi, R., Agrawal, S., Ghosh, M., & Kango, N. (2018). Characterization of cellulase from Aspergillus tubingensis NKBP-55 for generation of fermentable sugars from agricultural residues. Bioresource Technology, 250, 733–740. https://doi.org/10.1016/j.biortech.2017.11.099 |
dc.relation.references | Qdais, A. H., Abdulla, F., & Qrenawi, L. (2010). Solid Waste Landfills as a Source of Green Energy: Case Study of Al Akeeder Landfill. Jordan Journal of Mechanical and Industrial Engineering, 4(1), 69–74. |
dc.relation.references | Roasa, J., De Villa, R., Mine, Y., & Tsao, R. (2021). Phenolics of cereal, pulse and oilseed processing by-products and potential effects of solid-state fermentation on their bioaccessibility, bioavailability and health benefits: A review. Trends in Food Science and Technology, 116, 954–974. https://doi.org/10.1016/j.tifs.2021.08.027 |
dc.relation.references | Robledo, A., Aguilera-Carbó, A., Rodriguez, R., Martinez, J. L., Garza, Y., & Aguilar, C. N. (2008). Ellagic acid production by Aspergillus niger in solid state fermentation of pomegranate residues. Journal of Industrial Microbiology and Biotechnology, 35(6), 507–513. https://doi.org/10.1007/s10295-008-0309-x |
dc.relation.references | Romero, C., Brenes, M., García, P., García, A., & Garrido, A. (2004). Polyphenol Changes during Fermentation of Naturally Black Olives. Journal of Agricultural and Food Chemistry, 52(7), 1973–1979. https://doi.org/10.1021/jf030726p |
dc.relation.references | Saenz-Mendoza, A. I., Zamudio-Flores, P. B., García-Anaya, M. C., Velasco, C. R., Acosta-Muñiz, C. H., de Jesús Ornelas-Paz, J., Hernández-González, M., Vargas-Torres, A., Aguilar-González, M. Á., & Salgado-Delgado, R. (2020). Characterization of insect chitosan films from Tenebrio molitor and Brachystola magna and its comparison with commercial chitosan of different molecular weights. International Journal of Biological Macromolecules, 160, 953–963. https://doi.org/10.1016/j.ijbiomac.2020.05.255 |
dc.relation.references | Sarangi, P. K., Singh, T. A., Singh, N. J., Shadangi, K. P., Srivastava, R. K., Singh, A. K., Chandel, A. K., Pareek, N., & Vivekanand, V. (2022). Sustainable utilization of pineapple wastes for production of bioenergy, biochemicals and value-added products: A review. Bioresource Technology, 127085. https://doi.org/10.1016/j.biortech.2022.127085 |
dc.relation.references | Selvam, K., Govarthanan, M., Kamala-Kannan, S., Govindharaju, M., Senthilkumar, B., Selvankumar, T., & Sengottaiyan, A. (2014). Process optimization of cellulase production from alkali-treated coffee pulp and pineapple waste using Acinetobacter sp. TSK-MASC. RSC Advances, 4(25), 13045–13051. https://doi.org/10.1039/c4ra00066h |
dc.relation.references | Sybron, A., Rai, D. K., Vaidya, K. R., Hossain, M. B., & Benkeblia, N. (2019). Scientia Horticulturae E ff ects of ripening stage on the content and antioxidant capacities of phenolic compounds of arils, seeds and husks of ackee fruit Blighia sapida Köenig. Scientia Horticulturae, 256, 108632. https://doi.org/10.1016/j.scienta.2019.108632 |
dc.relation.references | Taherzadeh-Ghahfarokhi, M., Panahi, R., & Mokhtarani, B. (2019). Optimizing the combination of conventional carbonaceous additives of culture media to produce lignocellulose-degrading enzymes by Trichoderma reesei in solid state fermentation of agricultural residues. Renewable Energy, 131, 946–955. https://doi.org/10.1016/j.renene.2018.07.130 |
dc.relation.references | Teles, A. S. C., Chávez, D. W. H., Santiago, M. C. P. de A., Gottschalk, L. M. F., & Tonon, R. V. (2021). Composition of different media for enzyme production and its effect on the recovery of phenolic compounds from grape pomace. Biocatalysis and Agricultural Biotechnology, 35. https://doi.org/10.1016/j.bcab.2021.102067 |
dc.relation.references | Torres-León, C., Ramírez-Guzman, N., Londoño-Hernandez, L., Martinez-Medina, G. A., Díaz-Herrera, R., Navarro-Macias, V., Alvarez-Pérez, O. B., Picazo, B., Villarreal-Vázquez, M., Ascacio-Valdes, J., & Aguilar, C. N. (2018). Food Waste and Byproducts: An Opportunity to Minimize Malnutrition and Hunger in Developing Countries. Frontiers in Sustainable Food Systems, 2. https://doi.org/10.3389/fsufs.2018.00052 |
dc.relation.references | Tollin, N. (2016). Economía Circular para una Innovación Territorial: Un enfoque metabólico. |
dc.relation.references | Xue, P., Liao, W., Chen, Y., Xie, J., Chang, X., & Peng, G. (2022). Release characteristic and mechanism of bound polyphenols from insoluble dietary fiber of navel orange peel via mixed solid-state fermentation with Trichoderma reesei and Aspergillus niger. LWT - Food Science and Technology, 113387. https://doi.org/10.1016/j.lwt.2022.113387 |
dc.relation.references | Ye, Y., Chen, Y., Hou, Y., Yu, H., Zhu, L., Sun, Y., Zhou, M., Chen, Y., & Dong, M. (2021). Two new benzoic acid derivatives from endophytic fungus Aspergillus versicolor. Natural Product Research, 36(1), 223–228. https://doi.org/10.1080/14786419.2020.1777121. |
dc.relation.references | Yeo, J. D., Tsao, R., Sun, Y., & Shahidi, F. (2021). Liberation of insoluble-bound phenolics from lentil hull matrices as affected by Rhizopus oryzae fermentation: Alteration in phenolic profiles and their inhibitory capacities against low-density lipoprotein (LDL) and DNA oxidation. Food Chemistry, 363, 130275. https://doi.org/10.1016/j.foodchem.2021.130275 |
dc.relation.references | Zeng, R., Yin, X. Y., Ruan, T., Hu, Q., Hou, Y. L., Zuo, Z. Y., Huang, H., & Yang, Z. H. (2016). A novel cellulase produced by a newly isolated Trichoderma virens. Bioengineering, 3(2), 1–9. https://doi.org/10.3390/bioengineering3020013 |
dc.relation.references | Atar, L. (2021). Physicochemical and antimicrobial properties of cassava starch films with ferulic or cinnamic acid ´ n Ordo n. LWT, 144. https://doi.org/10.1016/j.lwt.2021.111242 |
dc.relation.references | Azevedo, D., Maria, T., Correia, S., Torres-le, C., Brayner, F. A., Ascacio-Valdes, J., & Alvarez-p, O. B. (2021). Antioxidant and anti-staphylococcal activity of polyphenolic-rich extracts from Ataulfo mango seed. LWT, 148. https://doi.org/10.1016/j.lwt.2021.111653 |
dc.relation.references | Azi, F., Li, Z., Xu, P., & Dong, M. (2022). Transcriptomic analysis reveals the antibacterial mechanism of phenolic compounds from kefir fermented soy whey against Escherichia coli 0157 : H7 and Listeria monocytogenes. International Journal of Food Microbiology, 383(1), 109953. https://doi.org/10.1016/j.ijfoodmicro.2022.109953 |
dc.relation.references | Barros, G., Melo, C., Oliveira, M., Silva, J., Santos, R., & Oliveira, S. (2020). Impacto financiero de la terapia con antibióticos en la resistencia a múltiples fármacos bacterianos en un hospital de emergencia en Pernambuco, Brasil. Ars Pharmaceutica, 61(2), 121–126. http://dx.doi.org/10.30827/ars.v61i2.115337 |
dc.relation.references | Babii, C., Bahrin, L. G., Neagu, A., Gostin, I., Mihasan, M., Birsa, L. M., & Stefan, M. (2016). Antibacterial activity and proposed action mechanism of a new class of synthetic tricyclic flavonoids. https://doi.org/10.1111/jam.13048 |
dc.relation.references | Bouarab-Chibane, L., Forquet, V., Lantéri, P., Clément, Y., Léonard-Akkari, L., Oulahal, N., Degraeve, P., & Bordes, C. (2019). Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative structure-activity relationship) models. Frontiers in Microbiology, 10(APR). https://doi.org/10.3389/fmicb.2019.00829 |
dc.relation.references | Bouarab Chibane, L., Degraeve, P., Ferhout, H., Bouajila, J., & Oulahal, N. (2019). Plant antimicrobial polyphenols as potential natural food preservatives. Journal of the Science of Food and Agriculture, 99(4), 1457–1474. https://doi.org/10.1002/jsfa.9357 |
dc.relation.references | Brahmi, F., Blando, F., Sellami, R., Mehdi, S., De Bellis, L., Negro, C., Haddadi-Guemghar, H., Madani, K., & Makhlouf-Boulekbache, L. (2022). Optimization of the conditions for ultrasound-assisted extraction of phenolic compounds from Opuntia ficus-indica [L.] Mill. flowers and comparison with conventional procedures. Industrial Crops and Products, 184, 114977. https://doi.org/10.1016/j.indcrop.2022.114977 |
dc.relation.references | Casadey, R., Challier, C., Altamirano, M., Spesia, M. B., & Criado, S. (2021). Antioxidant and antimicrobial properties of tyrosol and derivative- compounds in the presence of vitamin B2. Assays of synergistic antioxidant effect with commercial food additives. Food Chemistry, 335, 127576. https://doi.org/10.1016/j.foodchem.2020.127576 |
dc.relation.references | Calder, M., & Iztapalapa, U. (2016). LWT - Food Science and Technology Optimization of the antioxidant and antimicrobial response of the combined effect of nisin and avocado byproducts Jos e. 65, 46–52. https://doi.org/10.1016/j.lwt.2015.07.048 |
dc.relation.references | Diarra, M. S., Hassan, Y. I., Block, G. S., Drover, J. C. G., Delaquis, P., & Oomah, B. D. (2020). Antibacterial activities of a polyphenolic-rich extract prepared from American cranberry (Vaccinium macrocarpon) fruit pomace against Listeria spp. Lwt, 123, 109056. https://doi.org/10.1016/j.lwt.2020.109056 |
dc.relation.references | Garmus, T. T., Paviani, L. C., Queiroga, C. L., & Cabral, F. A. (2015). Extraction of phenolic compounds from pepper-rosmarin (Lippia sidoides Cham.) leaves by sequential extraction in fixed bed extractor using supercritical CO2, ethanol and water as solvents. Journal of Supercritical Fluids, 99, 68–75. https://doi.org/10.1016/j.supflu.2015.01.016 |
dc.relation.references | Gomes, F., Martins, N., Barros, L., Elisa, M., Oliveira, M. B. P. P., Henriques, M., & Ferreira, I. C. F. R. (2018). Plant phenolic extracts as an effective strategy to control Staphylococcus aureus, the dairy industry pathogen. Industrial Crops & Products, 112, 515–520. https://doi.org/10.1016/j.indcrop.2017.12.027 |
dc.relation.references | Li, F., Chen, B., Han, Y., Cao, Y., Hong, X., & Xu, M. (2021). Enhanced adsorption of caprolactam on phenols-modified Amberlita XAD16. 161. Reactive and Functional Polymers.161. https://doi-org.ezproxy.unal.edu.co/10.1016/j.reactfunctpolym.2021.104850 |
dc.relation.references | Loureiro, R. J., Roque, F., Teixeira Rodrigues, A., Herdeiro, M. T., & Ramalheira, E. (2016). Use of antibiotics and bacterial resistances: Brief notes on its evolution. Revista Portuguesa de Saude Publica, 34(1), 77–84. https://doi.org/10.1016/j.rpsp.2015.11.003 |
dc.relation.references | Lourenço, S. C., Campos, D. A., Gómez-García, R., Pintado, M., Oliveira, M. C., Santos, D. I., Corrêa-Filho, L. C., Moldão-Martins, M., & Alves, V. D. (2021). Optimization of natural antioxidants extraction from pineapple peel and their stabilization by spray drying. Foods, 10(6). https://doi.org/10.3390/foods10061255 |
dc.relation.references | Luque-Garcia, J., & Luque de Castro, M. (2003). Ultrasound: a powerful tool for leaching. TrAC Trends in Analytical Chemistry, 22(1), 41–47. https://doi-org.ezproxy.unal.edu.co/10.1016/S0165-9936(03)00102-X |
dc.relation.references | M’hiri, N., Ioannou, I., Ghoul, M., & Boudhrioua, N. M. (2014). Extraction Methods of Citrus Peel Phenolic Compounds. Food Reviews International, 30(4), 265–290. https://doi.org/10.1080/87559129.2014.924139 |
dc.relation.references | Monente, C., Bravo, J., Vitas, A. I., Arbillaga, L., De Peña, M. P., & Cid, C. (2015). Coffee and spent coffee extracts protect against cell mutagens and inhibit growth of food-borne pathogen microorganisms. Journal of Functional Foods, 12, 365–374. https://doi.org/10.1016/j.jff.2014.12.006 |
dc.relation.references | Ortega-Vidal, J., Cobo, A., Ortega-Morente, E., Gálvez, A., Martínez-Bailén, M., Salido, S., & Altarejos, J. (2022). Antimicrobial activity of phenolics isolated from the pruning wood residue of European plum (Prunus domestica L.). Industrial Crops and Products, 176. https://doi.org/10.1016/j.indcrop.2021.114296 |
dc.relation.references | Pastoriza, S., Ru, A., & Jim, A. (2015). Revalorization of coffee by-products . Prebiotic , antimicrobial and antioxidant properties. LWT - Food Science and Technology. 61, 12–18. https://doi.org/10.1016/j.lwt.2014.11.031 |
dc.relation.references | Pérez-Jiménez, J., Arranz, S., Tabernero, M., Díaz- Rubio, M. E., Serrano, J., Goñi, I., & Saura-Calixto, F. (2008). Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Research International, 41(3), 274–285. https://doi.org/10.1016/j.foodres.2007.12.004 |
dc.relation.references | Rasheed, A., Cobham, E., Zeighami, M., & Ong, S. (2012). Extraction of Phenolic Compouds from Pineapple Fruit. The 2nd International Symposium on Processing & Drying of Foods, Vegetables and Fruits, 3–7. |
dc.relation.references | Safdar, M. N., Kausar, T., Jabbar, S., Mumtaz, A., Ahad, K., & Saddozai, A. A. (2017). Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. Journal of Food and Drug Analysis, 25(3), 488–500. https://doi.org/10.1016/j.jfda.2016.07.010 |
dc.relation.references | Salman, S., Öz, G., Felek, R., Haznedar, A., Turna, T., & Özdemir, F. (2022). Effects of fermentation time on phenolic composition, antioxidant and antimicrobial activities of green, oolong, and black teas. Food Bioscience, 49, 101884. https://doi.org/10.1016/j.fbio.2022.101884 |
dc.relation.references | Selahvarzi, A., Ramezan, Y., Reza, M., & Namdar, B. (2022). Food Bioscience Optimization of ultrasonic-assisted extraction of phenolic compounds from pomegranate and orange peels and their antioxidant activity in a functional drink. Food Bioscience, 49, 101918. https://doi.org/10.1016/j.fbio.2022.101918 |
dc.relation.references | Serna, L., & Enríquez, C. E. (2013). Antimicrobial activity of Weisella confusa and its metabolites against Escherichia coli and Klebsiella pneumoniae. Revista Colombiana de Biotecnolgía, 15(2), 63–70. https://doi:1015446/rev.colomb.biote.v15n2.34979 |
dc.relation.references | Torres-León, C., Rojas, R., Serna-Cock, L., Belmares-Cerda, R., & Aguilar, C. N. (2017). Extraction of antioxidants from mango seed kernel: Optimization assisted by microwave. Food and Bioproducts Processing, 105, 188–196. https://doi.org/10.1016/j.fbp.2017.07.005 |
dc.relation.references | Venkateswara, M., Singh, A., Sunil, C. K., & Rawson, A. (2021). Trends in Food Science & Technology Ultrasonication - A green technology extraction technique for spices : A review. Trends in Food Science & Technology, 116, 975–991. https://doi.org/10.1016/j.tifs.2021.09.006 |
dc.relation.references | Yuste, S., Ludwig, I. A., Rubió, L., Romero, M., & Pedret, A. (2019). In vivo biotransformation of (poly) phenols and anthocyanins of red-fleshed apple and identification of intake biomarkers. Journal of Functional Foods, 55,146–155. https://doi.org/10.1016/j.jff.2019.02.013 |
dc.relation.references | Zaidan, M. R., Noor Rain, A., Badrul, A. R., Adlin, A., Norazah, A., & Zakiah, I. (2005). In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method. Tropical Biomedicine, 22(2), 165–170. |
dc.relation.references | Zamuz, S., Munekata, P. E. S., Dzuvor, C. K. O., Zhang, W., Sant’Ana, A. S., & Lorenzo, J. M. (2021). The role of phenolic compounds against Listeria monocytogenes in food. A review. Trends in Food Science and Technology, 110,385–392. https://doi.org/10.1016/j.tifs.2021.01.068 |
dc.relation.references | Zeng, W., He, Q., Sun, Q., Zhong, K., & Gao, H. (2012). International Journal of Food Microbiology Antibacterial activity of water-soluble extract from pine needles of Cedrus deodara. International Journal of Food Microbiology, 153(1–2), 78–84. https://doi.org/10.1016/j.ijfoodmicro.2011.10.019 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.decs | Antioxidantes |
dc.subject.lemb | Extractos vegetales |
dc.subject.lemb | Residuos agrícolas |
dc.subject.lemb | Procesamiento de frutas |
dc.subject.lemb | Piña - Producción |
dc.subject.lemb | Piña - Productos derivados |
dc.subject.proposal | Residuos de piña |
dc.subject.proposal | Compuestos bioactivos |
dc.subject.proposal | Capacidad antimicrobiana. |
dc.subject.proposal | Capacidad antioxidante |
dc.subject.proposal | Pineapple by-products |
dc.subject.proposal | Bioactive compounds |
dc.subject.proposal | Phenolic compounds |
dc.subject.proposal | Biological properties |
dc.subject.proposal | Antioxidant activity |
dc.subject.proposal | Antimicrobial capacity |
dc.title.translated | Extraction of bioactive compounds from pineapple (Anana comosus) residues using solid-state fermentation |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
oaire.awardtitle | Extracción de compuestos bioactivos de residuos de piña (Anana comosus) usando fermentación en estado sólido |
dcterms.audience.professionaldevelopment | Público general |
dc.description.curriculararea | Área curricular Biotecnología |
dc.contributor.orcid | 0000-0003-3877-4418 |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000052773 |
Files in this item
This item appears in the following Collection(s)
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit