Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorTorres León, Cristian
dc.contributor.authorPaz Arteaga, Sarah Lucia
dc.date.accessioned2023-07-17T14:22:27Z
dc.date.available2023-07-17T14:22:27Z
dc.date.issued2022-05-23
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84174
dc.descriptionilustraciones
dc.description.abstractLa elaboración de productos a base de piña genera altas cantidades de residuos orgánicos, y la contaminación que causa la inadecuada disposición final de estos residuos motiva a que se investiguen alternativas tecnológicas para su aprovechamiento. El objetivo de esta investigación fue la liberación de compuestos bioactivos por fermentación en estado sólido (FES) del corazón y cáscara de piña MD2, con el fin de obtener agentes antioxidantes y antimicrobianos. Se evaluaron los residuos de piña como soporte de FES y el tiempo de fermentación necesario para obtener la mayor cantidad de compuestos fenólicos. Estos resultados se relacionaron con la capacidad antioxidante y las enzimas producidas. Igualmente, se identificaron los compuestos bioactivos presentes en la fermentación por HPLC-MS. Finalmente, se determinó la actividad antibacteriana por el método de microdilución. Los resultados del crecimiento radial y SEM evidencian que los residuos de piña cumplen con las características para ser un buen soporte de FES con A. niger GH1. La FES aumentó en un 73% la cantidad de compuestos fenólicos a 32 h de fermentación y este resultado se correlaciona positivamente con la capacidad antioxidante y la actividad enzimática de β-glucosidasa y celulasas. El extracto obtenido a este tiempo inhibió el crecimiento bacteriano de Listeria monocytogenes y Staphylococcus aureus. En conclusión, la FES es un proceso biotecnológico con potencial para la valorización sostenible de los residuos de piña para obtener compuestos bioactivos de alto valor y múltiples aplicaciones en la industria alimentaria, cosmética y farmacéutica. (texto tomado de la fuente)
dc.description.abstractThe production of pineapple-based products generates high amounts of organic waste, the pollution caused by the inadequate final disposal of this waste motivates the investigation of technological alternatives for its use. The objective of this research was the release of bioactive compounds by solid-state fermentation (SSF) from MD2 pineapple heart and skin in order to obtain antioxidant and antimicrobial agents. Pineapple residues were evaluated as a support for SSF and the fermentation time necessary to obtain the highest amount of phenolic compounds. These results were related to the antioxidant capacity and the enzymes produced. Likewise, the bioactive compounds present in the fermentation were identified by HPLC-MS. Finally, the antibacterial activity was determined by the microdilution method. The results of radial growth and SEM show that pineapple residues meet the characteristics to be a good support for SSF with A. niger GH1. The FES increased the amount of phenolic compounds by 73% at 32 h of fermentation and this result correlates positively with the antioxidant capacity and the enzymatic activity of β-glucosidase and cellulases. The extract obtained at this time inhibited the bacterial growth of Listeria monocytogenes and Staphylococcus aureus. In conclusion, SSF is a biotechnological process with potential for the sustainable recovery of pineapple residues to obtain high-value bioactive compounds and multiple applications in the food, cosmetic and pharmaceutical industries.
dc.format.extent110 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentos
dc.titleExtracción de compuestos bioactivos de residuos de piña (Ananas comosus) usando fermentación en estado sólido
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.contributor.researchgroupBiofibras y derivados vegetales
dc.contributor.subjectmatterexpertCadena Chamorro, Edith Marleny
dc.contributor.subjectmatterexpertAguilar Gonzáles, Cristóbal Noé
dc.contributor.subjectmatterexpertSerna Cock, Liliana
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias- Biotecnología
dc.description.researchareaProcesos biotecnológicos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesAdom, K. K., & Liu, R. H. (2002). Antioxidant activity of grains. Journal of Agricultural and Food Chemistry, 50(21), 6182–6187. https://doi.org/10.1021/jf0205099
dc.relation.referencesAruna, T. E. (2019). Production of value-added product from pineapple peels using solid state fermentation. Innovative Food Science and Emerging Technologies, 57, 102193. https://doi.org/10.1016/j.ifset.2019.102193
dc.relation.referencesAscacio-Valdés, J. A., Buenrostro, J. J., De la Cruz, R., Sepúlveda, L., Aguilera, A. F., Prado, A., Contreras, J. C., Rodríguez, R., & Aguilar, C. N. (2014). Fungal biodegradation of pomegranate ellagitannins. Journal of Basic Microbiology, 54(1), 28–34. https://doi.org/10.1002/jobm.201200278
dc.relation.referencesBrito, T. B. N., R.S. Lima, L., B. Santos, M. C., A. Moreira, R. F., Cameron, L. C., C. Fai, A. E., & S.L. Ferreira, M. (2021). Antimicrobial, antioxidant, volatile and phenolic profiles of cabbage-stalk and pineapple-crown flour revealed by GC-MS and UPLC-MSE. Food Chemistry, 339, 127882. https://doi.org/10.1016/j.foodchem.2020.127882
dc.relation.referencesCano y Postigo, L. O., Jacobo-Velázquez, D. A., Guajardo-Flores, D., Garcia Amezquita, L. E., & García-Cayuela, T. (2021). Solid-state fermentation for enhancing the nutraceutical content of agrifood by-products: Recent advances and its industrial feasibility. Food Bioscience, 41. https://doi.org/10.1016/j.fbio.2021.100926
dc.relation.referencesCardona Ruiz, J. N., & Castaño Giraldo, M. A. (2019). Oportunidades de los productores de piña en el norte del valle del cauca en el tratado de libre comercio con chile. Universidad Libre, 7.
dc.relation.referencesCorreia, R. T. P., McCue, P., Magalhães, M. M. A., Macêdo, G. R., & Shetty, K. (2004). Production of phenolic antioxidants by the solid-state bioconversion of pineapple waste mixed with soy flour using Rhizopus oligosporus. Process Biochemistry, 39(12), 2167–2172. https://doi.org/10.1016/j.procbio.2003.11.034
dc.relation.referencesEl Tiempo. (2022). Piña orgánica como sustitución de cultivos ilícitos en Cauca. https://www.eltiempo.com/colombia/otras-ciudades/pina-organica-como-sustitucion-de-cultivos-ilicitos-en-cauca-671366
dc.relation.referencesFAO. (2011). Food loss and food waste: Causes and solutions. In Food Loss and Food Waste: Causes and Solutions. https://doi.org/10.4337/9781788975391
dc.relation.referencesFAOSTAT. (2019). Cultivos. http://www.fao.org/faostat/es/#data/QC/visualize.%0A
dc.relation.referencesPandey, Ashok. 2003. “Solid-State Fermentation.” Biochemical Engineering Journal 13(2–3): 81–84.
dc.relation.referencesSharma, H. B., Panigrahi, S., Sarmah, A. K., & Dubey, B. K. (2021). Extraction of phenolic compounds: A review. Science of the Total Environment, 135907. https://doi.org/10.1016/j.crfs.2021.03.011
dc.relation.referencesTorres-León, C., Ramírez-Guzmán, N., Ascacio-Valdés, J., Serna-Cock, L., dos Santos Correia, M. T., Contreras-Esquivel, J. C., & Aguilar, C. N. (2019). Solid-state fermentation with Aspergillus niger to enhance the phenolic contents and antioxidative activity of Mexican mango seed: A promising source of natural antioxidants. Lwt, 112, 108236. https://doi.org/10.1016/j.lwt.2019.06.003
dc.relation.referencesVega-Castro, O., Contreras-Calderon, J., León, E., Segura, A., Arias, M., Pérez, L., & Sobral, P. J. A. (2016). Characterization of a polyhydroxyalkanoate obtained from pineapple peel waste using Ralsthonia eutropha. Journal of Biotechnology, 231, 232–238. https://doi.org/10.1016/j.jbiotec.2016.06.018
dc.relation.referencesYang, J., Liu, R. H., & Halim, L. (2009). Antioxidant and antiproliferative activities of common edible nut seeds. LWT - Food Science and Technology, 42(1), 1–8. https://doi.org/10.1016/j.lwt.2008.07.007
dc.relation.referencesYepes-Betancur, D. P., Márquez-Cardozo, C. J., Cadena-Chamorro, E. M., Martinez-Saldarriaga, J., Torres-León, C., Ascacio-Valdes, A., & Aguilar, C. N. (2021). Solid-state fermentation – assisted extraction of bioactive compounds from hass avocado seeds. Food and Bioproducts Processing, 126, 155–163. https://doi.org/10.1016/j.fbp.2020.10.012
dc.relation.referencesAbbas, S., Shanbhag, T., & Kothare, A. (2021). Applications of bromelain from pineapple waste towards acne. Saudi Journal of Biological Sciences, 28(1), 1001–1009. https://doi.org/10.1016/j.sjbs.2020.11.032
dc.relation.referencesAbdullah, A. (2007). Solid And Liquid Pineapple Waste Utilization For Lactic Acid Fermentation. Reaktor, 11(1), 50. https://doi.org/10.14710/reaktor.11.1.50-52
dc.relation.referencesAbdullah, A., & Mat, H. (2008). Characterisation of Solid and Liquid Pineapple Waste. Reaktor, 12(1), 48. https://doi.org/10.14710/reaktor.12.1.48-52
dc.relation.referencesAditiya, H. B., Chong, W. T., Mahlia, T. M. I., Sebayang, A. H., Berawi, M. A., & Nur, H. (2016). Second generation bioethanol potential from selected Malaysia’s biodiversity biomasses: A review. Waste Management, 47, 46–61. https://doi.org/10.1016/j.wasman.2015.07.031
dc.relation.referencesAnindya, A. L., Oktaviani, R. D., Praevina, B. R., Damayanti, S., Kurniati, N. F., Riani, C., & Rachmawati, H. (2019). Xylan from Pineapple Stem Waste: a Potential Biopolymer for Colonic Targeting of Anti-inflammatory Agent Mesalamine. AAPS PharmSciTech, 20(3), 1–13. https://doi.org/10.1208/s12249-018-1205-y
dc.relation.referencesAsim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M. R., Hoque, M. E., & Deng, Y. (2015). A review on pineapple leaves fibre and its composites. International Journal of Polymer Science. https://doi.org/10.1155/2015/950567
dc.relation.referencesAstuti, W., Sulistyaningsih, T., Kusumastuti, E., Thomas, G. Y. R. S., & Kusnadi, R. Y. (2019). Thermal conversion of pineapple crown leaf waste to magnetized activated carbon for dye removal. Bioresource Technology, 287. 121426. https://doi.org/10.1016/j.biortech.2019.121426
dc.relation.referencesAzlina Ahmad, Wan Kulandaisamy Venil, C., & Arul Aruldass, C. (2015). Production of Violacein by Chromobacterium violaceum Grown in Liquid Pineapple Waste: Current Scenario. 45–58. https://doi.org/10.1007/978-3-319-23183-9
dc.relation.referencesBanerjee, R., Chintagunta, A. D., & Ray, S. (2017). A cleaner and eco-friendly bioprocess for enhancing reducing sugar production from pineapple leaf waste. Journal of Cleaner Production, 149, 387–395. https://doi.org/10.1016/j.jclepro.2017.02.088
dc.relation.referencesBanerjee, S., Patti, A. F., Ranganathan, V., & Arora, A. (2019). Hemicellulose based biorefinery from pineapple peel waste: Xylan extraction and its conversion into xylooligosaccharides. Food and Bioproducts Processing, 117, 38–50. https://doi.org/10.1016/j.fbp.2019.06.012
dc.relation.referencesBanerjee, S., Ranganathan, V., Patti, A., & Arora, A. (2018). Valorisation of pineapple wastes for food and therapeutic applications. Trends in Food Science and Technology, 82,60–70. https://doi.org/10.1016/j.tifs.2018.09.024
dc.relation.referencesBardiya, N., Somayaji, D., & Khanna, S. (1996). Biomethanation of banana peel and pineapple waste. Bioresource Technology, 58(1), 73–76. https://doi.org/10.1016/S0960-8524(96)00107-1
dc.relation.referencesBardiya, N., Somayaji, D., & Khanna, S. (1996). Biomethanation of banana peel and pineapple waste. Bioresource Technology, 58(1), 73–76. https://doi.org/10.1016/S0960-8524(96)00107-1
dc.relation.referencesBeuth, J., & Braun, J. M. (2005). Modulation of murine tumor growth and colonization by bromelaine, an extract of the pineapple plant (Ananas comosum L.). In Vivo, 19(2), 483–486.
dc.relation.referencesBhattacharyya, B. K. (2008). Bromelain: An overview. Indian Journal of Natural Products and Resources, 7(4), 359–363.
dc.relation.referencesBurton-Freeman, B. (2000). Dietary composition and obesity: Do we need to look beyond dietary fat? Journal of Nutrition, 130, 272–275. https://doi.org/10.1093/jn/130.2.267s
dc.relation.referencesCampos, D. A., Ribeiro, T. B., Teixeira, J. A., Pastrana, L., & Pintado, M. M. (2020). Integral valorization of pineapple (Ananas comosus L.) By-products through a green chemistry approach towards Added Value Ingredients. Foods, 9(1). https://doi.org/10.3390/foods9010060
dc.relation.referencesCano y Postigo, L. O., Jacobo-Velázquez, D. A., Guajardo-Flores, D., Garcia Amezquita, L. E., & García-Cayuela, T. (2021). Solid-state fermentation for enhancing the nutraceutical content of agrifood by-products: Recent advances and its industrial feasibility. Food Bioscience, 41. https://doi.org/10.1016/j.fbio.2021.100926
dc.relation.referencesCasabar, J. T., Unpaprom, Y., & Ramaraj, R. (2019). Fermentation of pineapple fruit peel wastes for bioethanol production. Biomass Conversion and Biorefinery, 9(4), 761–765. https://doi.org/10.1007/s13399-019-00436-y
dc.relation.referencesCastañeda Torres, S., & Rodriguez Miranda, J. P. (2017). Modelo de aprovechamiento sustentable de residuos sólidos orgánicos en Cundinamarca, Colombia. Universidad y Salud, 19(1), 116. https://doi.org/10.22267/rus.171901.75
dc.relation.referencesChen, A., Guan, Y. J., Bustamante, M., Uribe, L., Uribe-Lorío, L., Roos, M. M., & Liu, Y. (2020). Production of renewable fuel and value-added bioproducts using pineapple leaves in Costa Rica. Biomass and Bioenergy, 141, 105675. https://doi.org/10.1016/j.biombioe.2020.105675
dc.relation.referencesCoelho Silvestre, M. P., Linhares Carreira, R., Ramalho Silva, M., Campos Corgosinho, F., Pereira Monteiro, M. R., & Aley Morais, H. (2012). Effect of pH and Temperature on the Activity of Enzymatic Extracts from Pineapple Peel. Food and Bioprocess Technology, 5(5), 1824–1831. https://doi.org/10.1007/s11947-011-0616-5
dc.relation.referencesDai, H., Huang, Y., Zhang, Y., Zhang, H., & Huang, H. (2019). Green and facile fabrication of pineapple peel cellulose/magnetic diatomite hydrogels in ionic liquid for methylene blue adsorption. Cellulose, 26(6), 3825–3844. https://doi.org/10.1007/s10570-019-02283-6
dc.relation.referencesDaud, Z., Hatta, M. Z. M., Kassim, A. S. M., Awang, H., & Aripin, A. M. (2014). Exploring of agro waste (pineapple leaf, corn stalk, and napier grass) by chemical composition and morphological study. BioResources, 9(1), 872–880. https://doi.org/10.15376/biores.9.1.872-880
dc.relation.referencesde la Rosa, O., Múñiz-Marquez, D. B., Contreras-Esquivel, J. C., Wong-Paz, J. E., Rodríguez-Herrera, R., & Aguilar, C. N. (2020). Improving the fructooligosaccharides production by solid-state fermentation. Biocatalysis and Agricultural Biotechnology, 27, 101704. https://doi.org/10.1016/j.bcab.2020.101704
dc.relation.referencesDibanda Romelle, F., Ashwini, R. P., & Manohar, R. S. (2016). Chemical composition of some selected fruit peels. European Journal of Food Science and Technology, 4(4), 12–21.
dc.relation.referencesDungani, R., Karina, M., Subyakto, Sulaeman, A., Hermawan, D., & Hadiyane, A. (2016). Agricultural waste fibers towards sustainability and advanced utilization: A review. Asian Journal of Plant Sciences, 15(1–2), 42–55. https://doi.org/10.3923/ajps.2016.42.55
dc.relation.referencesDutta, S., & Bhattacharyya, D. (2013). Enzymatic, antimicrobial and toxicity studies of the aqueous extract of Ananas comosus (pineapple) crown leaf. Journal of Ethnopharmacology, 150(2), 451–457. https://doi.org/10.1016/j.jep.2013.08.024
dc.relation.referencesEl-Demerdash, F. M., Baghdadi, H. H., Ghanem, N. F., & Mhanna, A. B. A. (2020). Nephroprotective role of bromelain against oxidative injury induced by aluminium in rats. Environmental Toxicology and Pharmacology, 80, 103509. https://doi.org/10.1016/j.etap.2020.103509
dc.relation.referencesElleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry, 124(2), 411–421. https://doi.org/10.1016/j.foodchem.2010.06.077
dc.relation.referencesFernandes Pereira, P. H., Luiz Ornaghi, H., Arantes, V., & Hilário Cioffi, M. O. (2021). Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials. Carbohydrate Research, 499. https://doi.org/10.1016/j.carres.2020.108227
dc.relation.referencesFerronato, N., Moresco, L., Guisbert Lizarazu, G. E., Gorritty Portillo, M. A., Conti, F., & Torretta, V. (2021). Sensitivity analysis and improvements of the recycling rate in municipal solid waste life cycle assessment: Focus on a Latin American developing context. Waste Management, 128, 1–15. https://doi.org/10.1016/j.wasman.2021.04.043
dc.relation.referencesGhanbari, R., & Ebrahimpour, A. (2018). Separation and identification of bromelain-generated antibacterial peptides from Actinopyga lecanora. Food Science and Biotechnology, 27(2), 591–598. https://doi.org/10.1007/s10068-017-0267-z
dc.relation.referencesGnanasaraswathi, M., Lakshmipraba, S., Rajadurai, R. P., Abhinayashree, M., Fathima, B., Lakshmipriya, A., & Kamatchi, S. (2014). Potent anti-oxidant behaviour of citrus fruit peels and their bactericidal activity against multi drug resistant organism Pseudomonas aeruginosa. J. Chem. Pharm. Sci., 2(2), 139–144.
dc.relation.referencesGnanasekaran, S., Nordin, N. I. A. A., Jamari, S. S., & Shariffuddin, J. H. (2021). Effect of Steam-Alkaline coupled treatment on N36 cultivar pineapple leave fibre for isolation of cellulose. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.02.216
dc.relation.referencesGreses, S., Tomás-pejó, E., & Gónzalez-fernández, C. (2020). Bioresource Technology Agroindustrial waste as a resource for volatile fatty acids production via anaerobic fermentation. Bioresource Technology, 297, 122486. https://doi.org/10.1016/j.biortech.2019.122486
dc.relation.referencesHale, L. P., Greer, P. K., Trinh, C. T., & Gottfried, M. R. (2005). Treatment with oral bromelain decreases colonic inflammation in the IL-10-deficient murine model of inflammatory bowel disease. Clinical Immunology, 116(2), 135–142. https://doi.org/10.1016/j.clim.2005.04.011
dc.relation.referencesHazarika, D., Gogoi, N., Jose, S., Das, R., & Basu, G. (2017). Exploration of future prospects of Indian pineapple leaf, an agro waste for textile application. Journal of Cleaner Production, 141, 580–586. https://doi.org/10.1016/j.jclepro.2016.09.092
dc.relation.referencesHernandez-Rodriguez, L., Ramos-Gonzalez, P. L., Garcia-Garcia, G., Zamora, V., Peralta-Martin, A. M., Peña, I., Perez, J. M., & Ferriol, X. (2014). Geographic distribution of mealybug wilt disease of pineapple and genetic diversity of viruses infecting pineapple in Cuba. Crop Protection, 65, 43–50. https://doi.org/10.1016/j.cropro.2014.07.003
dc.relation.referencesHossain, M. A., & Rahman, S. M. M. (2011). Total phenolics, flavonoids and antioxidant activity of tropical fruit pineapple. Food Research International, 44(3), 672–676. https://doi.org/10.1016/j.foodres.2010.11.036
dc.relation.referencesHu, J., Lin, H., Shen, J., Lan, J., Ma, C., Zhao, Y., Lei, F., Xing, D., & Du, L. (2011). Developmental toxicity of orally administered pineapple leaf extract in rats. Food and Chemical Toxicology, 49(6), 1455–1463. https://doi.org/10.1016/j.fct.2011.03.047
dc.relation.referencesJaramillo, N., Hoyos, D., & Santa, J. F. (2016). Composites with pineapple-leaf fibers manufactured by layered compression molding. 18(2), 151–162.
dc.relation.referencesJianlong, W. (2000). Production of citric acid by immobilized Aspergillus niger using a rotating biological contactor (RBC). Bioresource Technology, 75(3), 245–247. https://doi.org/10.1016/S0960-8524(00)00053-5
dc.relation.referencesKavuthodi, B., & Sebastian, D. (2018). Biotechnological valorization of pineapple stem for pectinase production by Bacillus subtilis BKDS1: Media formulation and statistical optimization for submerged fermentation. Biocatalysis and Agricultural Biotechnology, 715–722. https://doi.org/10.1016/j.bcab.2018.05.003
dc.relation.referencesKetnawa, S., Chaiwut, P., & Rawdkuen, S. (2012). Pineapple wastes: A potential source for bromelain extraction. Food and Bioproducts Processing, 90(3), 385–391. https://doi.org/10.1016/j.fbp.2011.12.006
dc.relation.referencesKhalil, H. P. S. A., Alwani, M. S., & Omar, A. K. M. (2006). Chemical composition, anatomy, lignin distribution, and cell wall structure of Malaysian plant waste fibers. BioResources, 1(2), 220–232. https://doi.org/10.15376/biores.1.2.220-232
dc.relation.referencesKim, M., & Day, D. F. (2011). Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. Journal of Industrial Microbiology and Biotechnology, 38(7), 803–807. https://doi.org/10.1007/s10295-010-0812-8
dc.relation.referencesKiriga, A. W., Haukeland, S., Kariuki, G. M., Coyne, D. L., & Beek, N. V. (2018). Effect of Trichoderma spp. and Purpureocillium lilacinum on Meloidogyne javanica in commercial pineapple production in Kenya. Biological Control, 119, 27–32. https://doi.org/10.1016/j.biocontrol.2018.01.005
dc.relation.referencesKodagoda, K., & Marapana, R. (2017). Development of non-alcoholic wines from the wastes of Mauritius pineapple variety and its physicochemical properties KHGK Kodagoda and RAUJ Marapana. Journal of Pharmacognosy and Phytochemistry, 6(3), 492–497.
dc.relation.referencesKringel, D. H., Dias, A. R. G., Zavareze, E. da R., & Gandra, E. A. (2020). Fruit Wastes as Promising Sources of Starch: Extraction, Properties, and Applications. Starch/Staerke, 72(3–4). https://doi.org/10.1002/star.201900200
dc.relation.referencesKuppusamy, S., Venkateswarlu, K., & Megharaj, M. (2020). Examining the polyphenol content, antioxidant activity and fatty acid composition of twenty-one different wastes of fruits, vegetables, oilseeds and beverages. SN Applied Sciences, 2(4), 1–13. https://doi.org/10.1007/s42452-020-2441-9
dc.relation.referencesLaftah, W. A., & Abdul Rahaman, W. A. W. (2015). Chemical pulping of waste pineapple leaves fiber for kraft paper production. Journal of Materials Research and Technology, 4(3), 254–261. https://doi.org/10.1016/j.jmrt.2014.12.006
dc.relation.referencesLaftah, W. A., & Wan Abdul Rahman, W. A. (2016). Pulping Process and the Potential of Using Non-Wood Pineapple Leaves Fiber for Pulp and Paper Production: A Review. Journal of Natural Fibers, 13(1), 85–102. https://doi.org/10.1080/15440478.2014.984060
dc.relation.referencesLi, T., Shen, P., Liu, W., Liu, C., Liang, R., Yan, N., & Chen, J. (2014). Major polyphenolics in pineapple peels and their antioxidant interactions. International Journal of Food Properties, 17(8), 1805–1817. https://doi.org/10.1080/10942912.2012.732168
dc.relation.referencesLizardi-Jiménez, M. A., & Hernández-Martínez, R. (2017). Solid state fermentation (SSF): diversity of applications to valorize waste and biomass. 3 Biotech, 7(1). https://doi.org/10.1007/s13205-017-0692-y
dc.relation.referencesMicanquer-Carlosama, A., Cortés-Rodríguez, M., & Serna-Cock, L. (2020). Formulation of a fermentation substrate from pineapple and sacha inchi wastes to grow Weissella cibaria. Heliyon, 6(4), 0–7. https://doi.org/10.1016/j.heliyon.2020.e03790
dc.relation.referencesMondal, S., Bhattacharya, S., Pandey, J., & Biswas, M. (2011). Evaluation of acute anti-inflammatory effect of ananas comosus leaf extracts in rats. Pharmacologyonline, 1315, 1312–1315.
dc.relation.referencesMonge, M. (2018). Guía para la identificación de las principales plagas y enfermedades en el cultivo de piña. 1–46.
dc.relation.referencesMorais, D. R., Rotta, E. M., Sargi, S. C., Bonafe, E. G., Suzuki, R. M., Souza, N. E., Matsushita, M., & Visentainer, J. V. (2017). Proximate composition, mineral contents and fatty acid composition of the different parts and dried peels of tropical fruits cultivated in Brazil. Journal of the Brazilian Chemical Society, 28(2), 308–318. https://doi.org/10.5935/0103-5053.20160178
dc.relation.referencesMorais, D. R., Rotta, E. M., Sargi, S. C., Schmidt, E. M., Bonafe, E. G., Eberlin, M. N., Sawaya, A. C. H. F., & Visentainer, J. V. (2015). Antioxidant activity, phenolics and UPLC-ESI(-)-MS of extracts from different tropical fruits parts and processed peels. Food Research International, 77, 392–399. https://doi.org/10.1016/j.foodres.2015.08.036
dc.relation.referencesMoreno-González, M., & Ottens, M. (2021). A Structured Approach to Recover Valuable Compounds from Agri-food Side Streams. Food and Bioprocess Technology, 14(8), 1387–1406. https://doi.org/10.1007/s11947-021-02647-6
dc.relation.referencesMoure, A., Cruz, J. M., Franco, D., Manuel Domínguez, J., Sineiro, J., Domínguez, H., Núñez, M. J., & Carlos Parajó, J. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145–171. https://doi.org/10.1016/S0308-8146(00)00223-5
dc.relation.referencesMund, N. K., Dash, D., Mishra, P., & Nayak, N. R. (2021). Cellulose solvent–based pretreatment and enzymatic hydrolysis of pineapple leaf waste biomass for efficient release of glucose towards biofuel production. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01225-8
dc.relation.referencesNakthong, N., Wongsagonsup, R., & Amornsakchai, T. (2017). Characteristics and potential utilizations of starch from pineapple stem waste. Industrial Crops and Products, 105, 74–82. https://doi.org/10.1016/j.indcrop.2017.04.048
dc.relation.referencesNamsree, P., Suvajittanont, W., Puttanlek, C., Uttapap, D., & Rungsardthong, V. (2012). Anaerobic digestion of pineapple pulp and peel in a plug-flow reactor. Journal of Environmental Management, 110, 40–47. https://doi.org/10.1016/j.jenvman.2012.05.017
dc.relation.referencesOculi, J., Bua, B., & Ocwa, A. (2020). Reactions of pineapple cultivars to pineapple heart rot disease in central Uganda. Crop Protection, 135, 105213. https://doi.org/10.1016/j.cropro.2020.105213
dc.relation.referencesOng, K. L., Kaur, G., Pensupa, N., Uisan, K., & Lin, C. S. K. (2018). Trends in food waste valorization for the production of chemicals, materials and fuels: Case study South and Southeast Asia. Bioresource Technology, 248, 100–112. https://doi.org/10.1016/j.biortech.2017.06.076
dc.relation.referencesPauzi, A. Z. M., Yeap, S. K., Abu, N., Lim, K. L., Omar, A. R., Aziz, S. A., Chow, A. L. T., Subramani, T., Tan, S. G., & Alitheen, N. B. (2016). Combination of cisplatin and bromelain exerts synergistic cytotoxic effects against breast cancer cell line MDA-MB-231 in vitro. Chinese Medicine (United Kingdom), 11(1), 1–11. https://doi.org/10.1186/s13020-016-0118-5
dc.relation.referencesPoprac, P., Jomova, K., Simunkova, M., Kollar, V., Rhodes, C. J., & Valko, M. (2017). Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends in Pharmacological Sciences, 38(7), 592–607. https://doi.org/10.1016/j.tips.2017.04.005
dc.relation.referencesPrasad, S., Singh, A., & Joshi, H. C. (2007). Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resources, Conservation and Recycling, 50(1), 1–39. https://doi.org/10.1016/j.resconrec.2006.05.007
dc.relation.referencesPutra, A., Or, K. H., Selamat, M. Z., Nor, M. J. M., Hassan, M. H., & Prasetiyo, I. (2018). Sound absorption of extracted pineapple-leaf fibres. Applied Acoustics, 136, 9–15. https://doi.org/10.1016/j.apacoust.2018.01.029
dc.relation.referencesRani, D. S., & Nand, K. (2004). Ensilage of pineapple processing waste for methane generation. Waste Management, 24(5), 523–528. https://doi.org/10.1016/j.wasman.2003.10.010
dc.relation.referencesRashad, M. M., Mahmoud, A. E., Ali, M. M., Nooman, M. U., & Al-Kashef, A. S. (2015). Antioxidant and anticancer agents produced from pineapple waste by solid state fermentation. International Journal of Toxicological and Pharmacological Research, 7(6), 287–296.
dc.relation.referencesRathnakumar, K., Anal, A., & Lakshmi, K. (2017). Optimization of Ultrasonic Assisted Extraction of Bioactive components from different Parts of Pineapple Waste. International Journal of Agriculture, Environment and Biotechnology. https://doi.org/10.5958/2230-732X.2017.00068.7
dc.relation.referencesRattu, G., & Krishna, M. (2022). Enzyme-free colorimetric nanosensor for the rapid detection of lactic acid in food quality analysis. Journal of Agriculture and Food Research, 6. https://doi.org/https://doi.org/10.1016/j.jafr.2022.100268
dc.relation.referencesRené, C., Frutos, P. D. E., Ananas, D. E. P., Merr, L., Rodríguez, R., Becquer, R., Pino, Y., López, D., Rodríguez, R. C., González, G. Y. L., & Izquierdo, R. E. (2016). Fruits production of pineapple (Ananas comosus (L.) Merr.) MD-2 from vitroplants. Cultivos Tropicales. https://doi.org/10.13140/RG.2.1.4732.3765
dc.relation.referencesRico, X., Gullón, B., Alonso, J. L., & Yáñez, R. (2020). Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: An overview. Food Research International, 132, 109086. https://doi.org/10.1016/j.foodres.2020.109086
dc.relation.referencesRoda, A., De Faveri, D. M., Dordoni, R., & Lambri, M. (2014). Vinegar production from pineapple wastes -preliminary saccharification trials. Chemical Engineering Transactions, 37, 607–612. https://doi.org/10.3303/CET1437102
dc.relation.referencesRoda, A., & Lambri, M. (2019). Food uses of pineapple waste and by-products: a review. International Journal of Food Science and Technology, 54(4), 1009–1017. https://doi.org/10.1111/ijfs.14128
dc.relation.referencesRodsamran, P., & Sothornvit, R. (2019). Preparation and characterization of pectin fraction from pineapple peel as a natural plasticizer and material for biopolymer film. Food and Bioproducts Processing, 118, 198–206. https://doi.org/10.1016/j.fbp.2019.09.010
dc.relation.referencesRojas, L. F., Cortés, C. F., Zapata, P., & Jiménez, C. (2018). Extraction and identification of endopeptidases in convection dried papaya and pineapple residues: A methodological approach for application to higher scale. Waste Management, 78, 58–68. https://doi.org/10.1016/j.wasman.2018.05.020
dc.relation.referencesRollas, S., & Küçükgüzel, Ş. G. (2007). Biological activities of hydrazone derivatives. Molecules, 12(8), 1910–1939. https://doi.org/10.3390/12081910
dc.relation.referencesRosales, E., Escudero, S., Pazos, M., & Sanromán, M. A. (2019). Sustainable removal of Cr(VI) by lime peel and pineapple core wastes. Applied Sciences (Switzerland), 9(10). https://doi.org/10.3390/app9101967
dc.relation.referencesSaha, S. C., Das, B. K., Ray, P. K., Pandey, S. N., & Goswami, K. (1990). SEM Studies of the Surface and Fracture Morphology of Pineapple Leaf Fibers. Textile Research Journal, 60(12), 726–731. https://doi.org/10.1177/004051759006001205
dc.relation.referencesSánchez Pardo, M. E., Ramos Cassellis, M. E., Mora Escobedo, R., & Jiménez García, E. (2014). Chemical Characterisation of the Industrial Residues of the Pineapple (Ananas comosus). Journal of Agricultural Chemistry and Environment, 03(02), 53–56. https://doi.org/10.4236/jacen.2014.32b009
dc.relation.referencesSangkharak, K., Wangsirikul, P., Pichid, N., Yunu, T., & Prasertsan, P. (2016). Partitioning of bromelain from pineapple stem (Smooth cayenne) by aqueous two phase system and its application for recovery and purification of polyhydroxyalkanoate. Chiang Mai Journal of Science, 43(4), 794–807.
dc.relation.referencesSantos, D. I., Martins, C. F., Amaral, R. A., Saraiva, J. A., Vicente, A., & Mold, M. (2021). Pineapple (Ananas comosus L.) By-Products Valorization: Novel Bio Ingredients for Functional Foods. Molecules.
dc.relation.referencesSecor, E. R., Carson IV, W. F., Cloutier, M. M., Guernsey, L. A., Schramm, C. M., Wu, C. A., & Thrall, R. S. (2005). Bromelain exerts anti-inflammatory effects in an ovalbumin-induced murine model of allergic airway disease. Cellular Immunology, 237(1), 68–75. https://doi.org/10.1016/j.cellimm.2005.10.002
dc.relation.referencesSeguí, L., & Fito Maupoey, P. (2018). An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues. Journal of Cleaner Production, 172, 1224–1231. https://doi.org/10.1016/j.jclepro.2017.10.284
dc.relation.referencesŞehirli, A. Ö., Sayiner, S., Savtekin, G., & Velioğlu-Öğünç, A. (2020). Protective effect of bromelain on corrosive burn in rats. Burns, 6–12. https://doi.org/10.1016/j.burns.2020.12.006
dc.relation.referencesSelani, M. M., Brazaca, S. G. C., Dos Santos Dias, C. T., Ratnayake, W. S., Flores, R. A., & Bianchini, A. (2014). Characterisation and potential application of pineapple pomace in an extruded product for fibre enhancement. Food Chemistry, 163, 23–30. https://doi.org/10.1016/j.foodchem.2014.04.076
dc.relation.referencesSelani, M., Shirado, G. A. N., Margiotta, G. B., Saldaña, E., Spada, F. P., Piedade, S. M. S., Contreras-Castillo, C. J., & Canniatti-Brazaca, S. G. (2016). Effects of pineapple byproduct and canola oil as fat replacers on physicochemical and sensory qualities of low-fat beef burger. Meat Science, 112, 69–76. https://doi.org/10.1016/j.meatsci.2015.10.020
dc.relation.referencesSepúlveda, L., Romaní, A., Aguilar, C. N., & Teixeira, J. (2018). Valorization of pineapple waste for the extraction of bioactive compounds and glycosides using autohydrolysis. Innovative Food Science and Emerging Technologies, 47, 38–45. https://doi.org/10.1016/j.ifset.2018.01.012
dc.relation.referencesSilva, C. N. da, Bronzato, G. R. F., Cesarino, I., & Leão, A. L. (2020). Second-generation ethanol from pineapple leaf fibers. Journal of Natural Fibers, 17(1), 113–121. https://doi.org/10.1080/15440478.2018.1469453
dc.relation.referencesSilva, G., Kim, S., Aguilar, R., & Nakamatsu, J. (2020). Natural fibers as reinforcement additives for geopolymers – A review of potential eco-friendly applications to the construction industry. Sustainable Materials and Technologies, 23, e00132. https://doi.org/10.1016/j.susmat.2019.e00132
dc.relation.referencesSingh, B., Singh, J. P., Kaur, A., & Singh, N. (2020). Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Research International, 132, 109114. https://doi.org/10.1016/j.foodres.2020.109114
dc.relation.referencesSingh, Y., Kumar, J., Pramod Naik, T., Pabla, B. S., & Singh, I. (2021). Processing and characterization of pineapple fiber reinforced recycled polyethylene composites. Materials Today: Proceedings, 44, 2153–2157. https://doi.org/10.1016/j.matpr.2020.12.278
dc.relation.referencesStaszowska-Karkut, M., & Materska, M. (2020). Phenolic composition, mineral content, and beneficial bioactivities of leaf extracts from black currant (Ribes nigrum l.), raspberry (Rubus idaeus), and aronia (Aronia melanocarpa). Nutrients, 12(2). https://doi.org/10.3390/nu12020463
dc.relation.referencesSteingass, C. B., Glock, M. P., Schweiggert, R. M., & Carle, R. (2015). Studies into the phenolic patterns of different tissues of pineapple (Ananas comosus [L.] Merr.) infructescence by HPLC-DAD-ESI-MSn and GC-MS analysis. Analytical and Bioanalytical Chemistry, 407(21), 6463–6479. https://doi.org/10.1007/s00216-015-8811-2
dc.relation.referencesStevanic, J. S., Joly, C., Mikkonen, K. S., Pirkkalainen, K., Serimaa, R., Re´mond, C., Toriz, G., Gatenholm, P., Tenkanen, M., & Salme´n, L. (2011). Bacterial Nanocellulose-Reinforced Arabinoxylan Films. Journal of Applied Polymer Science, 122, 1030–1039. https://doi.org/10.1002/app.34217
dc.relation.referencesSubramaniyan, S., Paramasivam, S., Kannaiyan, M., & Chinnaiyan, U. (2019). Utilization of Fruit Waste for the Production of Citric Acid by using Aspergillus niger. Journal of Drug Delivery and Therapeutics, 9, 9–14. https://doi.org/10.22270/jddt.v9i4-A.3487
dc.relation.referencesSukruansuwan, V., & Napathorn, S. C. (2018). Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04. Biotechnology for Biofuels, 11(1), 1–15. https://doi.org/10.1186/s13068-018-1207-8
dc.relation.referencesUpadhyay, A., Lama, J. P., & Tawata, S. (2010). Utilization of Pineapple Waste: A Review. Journal of Food Science and Technology Nepal, 6(0), 10–18. https://doi.org/10.3126/jfstn.v6i0.8255
dc.relation.referencesVerma, D. (2015). Bagasse fiber composites : A Review Bagasse Fiber Composites-A Review.
dc.relation.referencesWu, L., & Parhofer, K. G. (2014). Diabetic dyslipidemia. Metabolism: Clinical and Experimental, 63(12), 1469–1479. https://doi.org/10.1016/j.metabol.2014.08.010
dc.relation.referencesXie, W., Wang, W., Su, H., Xing, D., Pan, Y., & Du, L. (2006). Effect of ethanolic extracts of Ananas comosus L. leaves on insulin sensitivity in rats and HepG2. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 143(4), 429–435. https://doi.org/10.1016/j.cbpc.2006.04.002
dc.relation.referencesXie, W., Xing, D., Sun, H., Wang, W., Ding, Y., & Du, L. (2005). The effects of Ananas comosus L. leaves on diabetic-dyslipidemic rats induced by alloxan and a high-fat/high-cholesterol diet. American Journal of Chinese Medicine, 33(1), 95–105. https://doi.org/10.1142/S0192415X05002692
dc.relation.referencesZain, N. A. M., Aziman, S. N., Suhaimi, M. S., & Idris, A. (2021). Optimization of L(+) Lactic Acid Production from Solid Pineapple Waste (SPW) by Rhizopus oryzae NRRL 395. Journal of Polymers and the Environment, 29(1), 230–249. https://doi.org/10.1007/s10924-020-01862-0
dc.relation.referencesZhang, B., Zhang, Y., Li, H., Deng, Z., & Tsao, R. (2020). A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives. Trends in Food Science and Technology, 105, 347–362. https://doi.org/10.1016/j.tifs.2020.09.029
dc.relation.referencesZhuang, Y., Liu, J., Chen, J., & Fei, P. (2020). Modified pineapple bran cellulose by potassium permanganate as a copper ion adsorbent and its adsorption kinetic and adsorption thermodynamic. Food and Bioproducts Processing, 122, 82–88. https://doi.org/10.1016/j.fbp.2020.04.008
dc.relation.referencesAcosta-Estrada, B. A., Gutiérrez-Uribe, J. A., & Serna-Saldívar, S. O. (2014). Bound phenolics in foods, a review. Food Chemistry, 152, 46–55. https://doi.org/10.1016/j.foodchem.2013.11.093
dc.relation.referencesAguilar, C. N., Favela-Torres, E., Viniegra-González, G., & Augur, C. (2002). Culture conditions dictate protease and tannase production in submerged and solid-state cultures of Aspergillus niger Aa-20. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 102–103, 407–414. https://doi.org/10.1385/ABAB:102-103:1-6:407
dc.relation.referencesAguilar, C. N., Rodríguez, R., Gutiérrez-Sánchez, G., Augur, C., Favela-Torres, E., Prado-Barragan, L. A., Ramírez-Coronel, A., & Contreras-Esquivel, J. C. (2007). Microbial tannases: Advances and perspectives. Applied Microbiology and Biotechnology, 76(1), 47–59. https://doi.org/10.1007/s00253-007-1000-2
dc.relation.referencesAliyah, A., Alamsyah, G., Ramadhani, R., & Hermansyah, H. (2017). Production of α-Amylase and β-Glucosidase from Aspergillus niger by solid state fermentation method on biomass waste substrates from rice husk, bagasse and corn cob. Energy Procedia, 136, 418–423. https://doi.org/10.1016/j.egypro.2017.10.269
dc.relation.referencesAOAC 920.39. (1990). Official methods of analysis of the association of official analytical chamist. In AOAC.
dc.relation.referencesAOAC 973.18. (1990). Official methods of analysis of the Association of Oficial Analytical Chemists International. Fiber (acid detergent) and lignin (H2SO4) in animal feed.
dc.relation.referencesAscacio-Valdés, J. A., Aguilera-Carbó, A. F., Buenrostro, J. J., Prado-Barragán, A., Rodríguez-Herrera, R., & Aguilar, C. N. (2016). The complete biodegradation pathway of ellagitannins by Aspergillus niger in solid-state fermentation. Journal of Basic Microbiology, 56(4), 329–336. https://doi.org/10.1002/jobm.201500557
dc.relation.referencesBehera, B. C., Sethi, B. K., Mishra, R. R., Dutta, S. K., & Thatoi, H. N. (2017). Microbial cellulases – Diversity & biotechnology with reference to mangrove environment: A review. Journal of Genetic Engineering and Biotechnology, 15(1), 197–210. https://doi.org/10.1016/j.jgeb.2016.12.001
dc.relation.referencesBriante, R., Patumi, M., Limongelli, S., Febbraio, F., Vaccaro, C., Di, A., La, F., & Nucci, R. (2002). Changes in phenolic and enzymatic activities content during fruit ripening in two Italian cultivars of Olea europaea L. 162, 791–798. https://doi-org.ezproxy.unal.edu.co/10.1016/S0168-9452(02)00022-5
dc.relation.referencesBuenrostro-Figueroa, J. J., Velázquez, M., Flores-Ortega, O., Ascacio-Valdés, J. A., Huerta-Ochoa, S., Aguilar, C. N., & Prado-Barragán, L. A. (2017). Solid state fermentation of fig (Ficus carica L.) by-products using fungi to obtain phenolic compounds with antioxidant activity and qualitative evaluation of phenolics obtained. Process Biochemistry, 62, 16–23. https://doi.org/10.1016/j.procbio.2017.07.016
dc.relation.referencesChakraborty, S., Gupta, R., Jain, K. K., & Kuhad, R. C. (2016). Cost-effective production of cellulose hydrolysing enzymes from Trichoderma sp. RCK65 under SSF and its evaluation in saccharification of cellulosic substrates. Bioprocess and Biosystems Engineering, 39(11), 1659–1670. https://doi.org/10.1007/s00449-016-1641-6
dc.relation.referencesChen, Y. hung, Chen, Y. J., Chou, C. Y., Wen, C. C., & Cheng, C. C. (2019). UV-protective activities of pineapple leaf extract in zebrafish embryos. Research on Chemical Intermediates, 45(1), 65–75. https://doi.org/10.1007/s11164-018-3632-5
dc.relation.referencesCizeikiene, D., Juodeikiene, G., & Damasius, J. (2018). Use of wheat straw biomass in production of L-lactic acid applying biocatalysis and combined lactic acid bacteria strains belonging to the genus Lactobacillus. Biocatalysis and Agricultural Biotechnology, 15, 185–191. https://doi.org/10.1016/j.bcab.2018.06.015
dc.relation.referencesCrognale, S., Liuzzi, F., D’Annibale, A., de Bari, I., & Petruccioli, M. (2019). Cynara cardunculus a novel substrate for solid-state production of Aspergillus tubingensis cellulases and sugar hydrolysates. Biomass and Bioenergy, 127, 105276. https://doi.org/10.1016/j.biombioe.2019.105276
dc.relation.referencesCruz-Hernández, M., Augur, C., Rodríguez, R., Contreras-Esquivel, J. C., & Aguilar, C. N. (2006). Evaluation of culture conditions for tannase production by Aspergillus niger GH1. Food Technology and Biotechnology, 44(4), 541–544
dc.relation.referencesda Silva, D. I. S., Nogueira, G. D. R., Duzzioni, A. G., & Barrozo, M. A. S. (2013). Changes of antioxidant constituents in pineapple (Ananas comosus) residue during drying process. Industrial Crops and Products, 50, 557–562. https://doi.org/10.1016/j.indcrop.2013.08.001
dc.relation.referencesde Oliveira, A. C., Valentim, I. B., Silva, C. A., Bechara, E. J. H., Barros, M. P. de, Mano, C. M., & Goulart, M. O. F. (2009). Total phenolic content and free radical scavenging activities of methanolic extract powders of tropical fruit residues. Food Chemistry, 115(2), 469–475. https://doi.org/10.1016/j.foodchem.2008.12.045
dc.relation.referencesDifonzo, G., Vollmer, K., Caponio, F., Pasqualone, A., Carle, R., & Steingass, C. B. (2019). Characterisation and classification of pineapple (Ananas comosus [L.] Merr.) juice from pulp and peel. Food Control, 96, 260–270. https://doi.org/10.1016/j.foodcont.2018.09.015
dc.relation.referencesdos Santos, A. C., Ximenes, E., Kim, Y., & Ladisch, M. R. (2019). Lignin–Enzyme Interactions in the Hydrolysis of Lignocellulosic Biomass. Trends in Biotechnology, 37(5), 518–531. https://doi.org/10.1016/j.tibtech.2018.10.010
dc.relation.referencesDu, S. kui,
dc.relation.referencesDu, S. kui, Jiang, H., Yu, X., & Jane, J. lin. (2014). Physicochemical and functional properties of whole legume flour. LWT - Food Science and Technology, 55(1), 308–313. https://doi.org/10.1016/j.lwt.2013.06.001
dc.relation.referencesGligor, O., Mocan, A., Moldovan, C., Locatelli, M., Crișan, G., & Ferreira, I. C. F. R. (2019). Enzyme-assisted extractions of polyphenols – A comprehensive review. Trends in Food Science and Technology, 88, 302–315. https://doi.org/10.1016/j.tifs.2019.03.029
dc.relation.referencesIdris, A. S. O., Pandey, A., Rao, S. S., & Sukumaran, R. K. (2017). Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. Bioresource Technology, 242, 265–271. https://doi.org/10.1016/j.biortech.2017.03.092
dc.relation.referencesJericó Santos, T. R., Santos Vasconcelos, A. G., Lins de Aquino Santana, L. C., Gualberto, N. C., Buarque Feitosa, P. R., & Pires de Siqueira, A. C. (2020). Solid-state fermentation as a tool to enhance the polyphenolic compound contents of acidic Tamarindus indica by-products. Biocatalysis and Agricultural Biotechnology, 30. https://doi.org/10.1016/j.bcab.2020.101851
dc.relation.referencesKhanahmadi, M., Arezi, I., Amiri, M. sadat, & Miranzadeh, M. (2018). Bioprocessing of agro-industrial residues for optimization of xylanase production by solid- state fermentation in flask and tray bioreactor. Biocatalysis and Agricultural Biotechnology, 13, 272–282. https://doi.org/10.1016/j.bcab.2018.01.005
dc.relation.referencesKodagoda, K., & Marapana, R. (2017). Development of non-alcoholic wines from the wastes of Mauritius pineapple variety and its physicochemical properties KHGK Kodagoda and RAUJ Marapana. Journal of Pharmacognosy and Phytochemistry, 6(3), 492–497.
dc.relation.referencesKumar, M., Izyan, N., Azelee, W., Nor, A., & Ramli, M. (2022). International Journal of Food Microbiology Microbial biotechnology approaches for conversion of pineapple waste in to emerging source of healthy food for sustainable environment Pineapple flesh Pineapple leaves. International Journal of Food Microbiology, 373, 109714. https://doi.org/10.1016/j.ijfoodmicro.2022.109714
dc.relation.referencesLeite, P., Silva, C., Salgado, J. M., & Belo, I. (2019). Simultaneous production of lignocellulolytic enzymes and extraction of antioxidant compounds by solid-state fermentation of agro-industrial wastes. Industrial Crops and Products, 137, 315–322. https://doi.org/10.1016/j.indcrop.2019.04.044
dc.relation.referencesLi, Y., Saravana Kumar, P., qiu, J., Ran, Y., Tan, X., Zhao, R., Ai, L., Yuan, M., Zhu, J., & He, M. (2022). Production of bioactive compounds from callus of Pueraria thomsonii Benth with promising cytotoxic and antibacterial activities. Arabian Journal of Chemistry, 15(6), 103854. https://doi.org/10.1016/j.arabjc.2022.103854
dc.relation.referencesLu, X., Li, F., Zhou, X., Hu, J., & Liu, P. (2022). Biomass, lignocellulolytic enzyme production and lignocellulose degradation patterns by Auricularia auricula during solid state fermentation of corn stalk residues under different pretreatments. Food Chemistry, 384, 132622. https://doi.org/10.1016/j.foodchem.2022.132622
dc.relation.referencesMakkar, H. P. S. (2003). Makkar, H. P. S. (2003). Measurement of total phenolics and tannins using Folin-Ciocalteu method. Quantification of Tannins in Tree and Shrub Foliage, 49–51. doi:10.1007/978-94-017-0273-7_3. 2, 49–51.
dc.relation.referencesManfrin Dias, L., Vieira dos Santos, Beatriz Brant Albuquerque, C. J., Bruno, E., Pasquini, D., & Alves Baffi, M. (2016). Biomass sorghum as a novel substrate in solid state fermentation for the production of hemicellulases and cellulases by Aspergillus niger and A. fumigatus. Journal of Applied Microbiology, 38, 42–49. https://doi.org/DOI: 10.1111/jam.13672
dc.relation.referencesMartinez-Medina, G. A., Chávez-González, M. L., Verma, D. K., Prado-Barragán, L. A., Martínez-Hernández, J. L., Flores-Gallegos, A. C., Thakur, M., Srivastav, P. P., & Aguilar, C. N. (2021). Bio-funcional components in mushrooms, a health opportunity: Ergothionine and huitlacohe as recent trends. Journal of Functional Foods, 77. https://doi.org/10.1016/j.jff.2020.104326
dc.relation.referencesMartins, S., Mussatto, S. I., Martínez-Avila, G., Montañez-Saenz, J., Aguilar, C. N., & Teixeira, J. A. (2011). Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnology Advances, 29(3), 365–373. https://doi.org/10.1016/j.biotechadv.2011.01.008
dc.relation.referencesMiller, G. (1959). Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar. Analitycal Chemistry, 31(3), 426–428. https://doi.org/https://doi.org/10.1021/ac60147a030
dc.relation.referencesMohamed, S. A., Saleh, R. M., Kabli, S. A., & Al-Garni, S. M. (2016). Influence of solid state fermentation by Trichoderma spp. on solubility, phenolic content, antioxidant, and antimicrobial activities of commercial turmeric. Bioscience, Biotechnology and Biochemistry, 80(5), 920–928. https://doi.org/10.1080/09168451.2015.1136879
dc.relation.referencesMolyneux, P. (2004). The use of the stable free radical diphenylpicryl- hydrazyl ( DPPH ) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(2), 211–219. 10.1016/S0891-5849(98)00315-3
dc.relation.referencesMussatto, S. I., Aguilar, C. N., Rodrigues, L. R., & Teixeira, J. A. (2009). Colonization of Aspergillus japonicus on synthetic materials and application to the production of fructooligosaccharides. Carbohydrate Research, 344(6), 795–800. https://doi.org/10.1016/j.carres.2009.01.025
dc.relation.referencesMussatto, S. I., Aguilar, C. N., Rodrigues, L. R., & Teixeira, J. A. (2009). Colonization of Aspergillus japonicus on synthetic materials and application to the production of fructooligosaccharides. Carbohydrate Research, 344(6), 795–800. https://doi.org/10.1016/j.carres.2009.01.025
dc.relation.referencesNagao, N., Matsuyama, T., Yamamoto, H., & Toda, T. (2003). A novel hybrid system of solid state and submerged fermentation with recycle for organic solid waste treatment. Process Biochemistry, 39(1), 37–43. https://doi.org/10.1016/S0032-9592(02)00292-3
dc.relation.referencesOroian, M., & Escriche, I. (2015). Antioxidants: Characterization, natural sources, extraction and analysis. Food Research International, 74, 10–36. https://doi.org/10.1016/j.foodres.2015.04.018
dc.relation.referencesPacheco, N., Méndez-Campos, G. K., Herrera-Pool, I. E., Alvarado-López, C. J., Ramos-Díaz, A., Ayora-Talavera, T., Talcott, S. U., & Cuevas-Bernardino, J. C. (2021). Physicochemical composition, phytochemical analysis and biological activity of ciricote (Cordia dodecandra A. D.C.) fruit from Yucatán. Natural Product Research, 36(1), 440–444. https://doi.org/10.1080/14786419.2020.1774763
dc.relation.referencesPandey, A., Soccol, C. R., & Mitchell, D. (2009). Pre-treatment of agro-industrial residues. Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues, 35, 13–33. https://doi.org/10.1007/978-1-4020-9942-7_2
dc.relation.referencesPatras, M. A., Jaiswal, R., & Kuhnert, N. (2017). Profiling and quantification of regioisomeric caffeoyl glucoses in Solanaceae vegetables. Food Chemistry, 237, 659–666. https://doi.org/10.1016/j.foodchem.2017.05.150
dc.relation.referencesPrajapati, B. P., Kumar Suryawanshi, R., Agrawal, S., Ghosh, M., & Kango, N. (2018). Characterization of cellulase from Aspergillus tubingensis NKBP-55 for generation of fermentable sugars from agricultural residues. Bioresource Technology, 250, 733–740. https://doi.org/10.1016/j.biortech.2017.11.099
dc.relation.referencesQdais, A. H., Abdulla, F., & Qrenawi, L. (2010). Solid Waste Landfills as a Source of Green Energy: Case Study of Al Akeeder Landfill. Jordan Journal of Mechanical and Industrial Engineering, 4(1), 69–74.
dc.relation.referencesRoasa, J., De Villa, R., Mine, Y., & Tsao, R. (2021). Phenolics of cereal, pulse and oilseed processing by-products and potential effects of solid-state fermentation on their bioaccessibility, bioavailability and health benefits: A review. Trends in Food Science and Technology, 116, 954–974. https://doi.org/10.1016/j.tifs.2021.08.027
dc.relation.referencesRobledo, A., Aguilera-Carbó, A., Rodriguez, R., Martinez, J. L., Garza, Y., & Aguilar, C. N. (2008). Ellagic acid production by Aspergillus niger in solid state fermentation of pomegranate residues. Journal of Industrial Microbiology and Biotechnology, 35(6), 507–513. https://doi.org/10.1007/s10295-008-0309-x
dc.relation.referencesRomero, C., Brenes, M., García, P., García, A., & Garrido, A. (2004). Polyphenol Changes during Fermentation of Naturally Black Olives. Journal of Agricultural and Food Chemistry, 52(7), 1973–1979. https://doi.org/10.1021/jf030726p
dc.relation.referencesSaenz-Mendoza, A. I., Zamudio-Flores, P. B., García-Anaya, M. C., Velasco, C. R., Acosta-Muñiz, C. H., de Jesús Ornelas-Paz, J., Hernández-González, M., Vargas-Torres, A., Aguilar-González, M. Á., & Salgado-Delgado, R. (2020). Characterization of insect chitosan films from Tenebrio molitor and Brachystola magna and its comparison with commercial chitosan of different molecular weights. International Journal of Biological Macromolecules, 160, 953–963. https://doi.org/10.1016/j.ijbiomac.2020.05.255
dc.relation.referencesSarangi, P. K., Singh, T. A., Singh, N. J., Shadangi, K. P., Srivastava, R. K., Singh, A. K., Chandel, A. K., Pareek, N., & Vivekanand, V. (2022). Sustainable utilization of pineapple wastes for production of bioenergy, biochemicals and value-added products: A review. Bioresource Technology, 127085. https://doi.org/10.1016/j.biortech.2022.127085
dc.relation.referencesSelvam, K., Govarthanan, M., Kamala-Kannan, S., Govindharaju, M., Senthilkumar, B., Selvankumar, T., & Sengottaiyan, A. (2014). Process optimization of cellulase production from alkali-treated coffee pulp and pineapple waste using Acinetobacter sp. TSK-MASC. RSC Advances, 4(25), 13045–13051. https://doi.org/10.1039/c4ra00066h
dc.relation.referencesSybron, A., Rai, D. K., Vaidya, K. R., Hossain, M. B., & Benkeblia, N. (2019). Scientia Horticulturae E ff ects of ripening stage on the content and antioxidant capacities of phenolic compounds of arils, seeds and husks of ackee fruit Blighia sapida Köenig. Scientia Horticulturae, 256, 108632. https://doi.org/10.1016/j.scienta.2019.108632
dc.relation.referencesTaherzadeh-Ghahfarokhi, M., Panahi, R., & Mokhtarani, B. (2019). Optimizing the combination of conventional carbonaceous additives of culture media to produce lignocellulose-degrading enzymes by Trichoderma reesei in solid state fermentation of agricultural residues. Renewable Energy, 131, 946–955. https://doi.org/10.1016/j.renene.2018.07.130
dc.relation.referencesTeles, A. S. C., Chávez, D. W. H., Santiago, M. C. P. de A., Gottschalk, L. M. F., & Tonon, R. V. (2021). Composition of different media for enzyme production and its effect on the recovery of phenolic compounds from grape pomace. Biocatalysis and Agricultural Biotechnology, 35. https://doi.org/10.1016/j.bcab.2021.102067
dc.relation.referencesTorres-León, C., Ramírez-Guzman, N., Londoño-Hernandez, L., Martinez-Medina, G. A., Díaz-Herrera, R., Navarro-Macias, V., Alvarez-Pérez, O. B., Picazo, B., Villarreal-Vázquez, M., Ascacio-Valdes, J., & Aguilar, C. N. (2018). Food Waste and Byproducts: An Opportunity to Minimize Malnutrition and Hunger in Developing Countries. Frontiers in Sustainable Food Systems, 2. https://doi.org/10.3389/fsufs.2018.00052
dc.relation.referencesTollin, N. (2016). Economía Circular para una Innovación Territorial: Un enfoque metabólico.
dc.relation.referencesXue, P., Liao, W., Chen, Y., Xie, J., Chang, X., & Peng, G. (2022). Release characteristic and mechanism of bound polyphenols from insoluble dietary fiber of navel orange peel via mixed solid-state fermentation with Trichoderma reesei and Aspergillus niger. LWT - Food Science and Technology, 113387. https://doi.org/10.1016/j.lwt.2022.113387
dc.relation.referencesYe, Y., Chen, Y., Hou, Y., Yu, H., Zhu, L., Sun, Y., Zhou, M., Chen, Y., & Dong, M. (2021). Two new benzoic acid derivatives from endophytic fungus Aspergillus versicolor. Natural Product Research, 36(1), 223–228. https://doi.org/10.1080/14786419.2020.1777121.
dc.relation.referencesYeo, J. D., Tsao, R., Sun, Y., & Shahidi, F. (2021). Liberation of insoluble-bound phenolics from lentil hull matrices as affected by Rhizopus oryzae fermentation: Alteration in phenolic profiles and their inhibitory capacities against low-density lipoprotein (LDL) and DNA oxidation. Food Chemistry, 363, 130275. https://doi.org/10.1016/j.foodchem.2021.130275
dc.relation.referencesZeng, R., Yin, X. Y., Ruan, T., Hu, Q., Hou, Y. L., Zuo, Z. Y., Huang, H., & Yang, Z. H. (2016). A novel cellulase produced by a newly isolated Trichoderma virens. Bioengineering, 3(2), 1–9. https://doi.org/10.3390/bioengineering3020013
dc.relation.referencesAtar, L. (2021). Physicochemical and antimicrobial properties of cassava starch films with ferulic or cinnamic acid ´ n Ordo n. LWT, 144. https://doi.org/10.1016/j.lwt.2021.111242
dc.relation.referencesAzevedo, D., Maria, T., Correia, S., Torres-le, C., Brayner, F. A., Ascacio-Valdes, J., & Alvarez-p, O. B. (2021). Antioxidant and anti-staphylococcal activity of polyphenolic-rich extracts from Ataulfo mango seed. LWT, 148. https://doi.org/10.1016/j.lwt.2021.111653
dc.relation.referencesAzi, F., Li, Z., Xu, P., & Dong, M. (2022). Transcriptomic analysis reveals the antibacterial mechanism of phenolic compounds from kefir fermented soy whey against Escherichia coli 0157 : H7 and Listeria monocytogenes. International Journal of Food Microbiology, 383(1), 109953. https://doi.org/10.1016/j.ijfoodmicro.2022.109953
dc.relation.referencesBarros, G., Melo, C., Oliveira, M., Silva, J., Santos, R., & Oliveira, S. (2020). Impacto financiero de la terapia con antibióticos en la resistencia a múltiples fármacos bacterianos en un hospital de emergencia en Pernambuco, Brasil. Ars Pharmaceutica, 61(2), 121–126. http://dx.doi.org/10.30827/ars.v61i2.115337
dc.relation.referencesBabii, C., Bahrin, L. G., Neagu, A., Gostin, I., Mihasan, M., Birsa, L. M., & Stefan, M. (2016). Antibacterial activity and proposed action mechanism of a new class of synthetic tricyclic flavonoids. https://doi.org/10.1111/jam.13048
dc.relation.referencesBouarab-Chibane, L., Forquet, V., Lantéri, P., Clément, Y., Léonard-Akkari, L., Oulahal, N., Degraeve, P., & Bordes, C. (2019). Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative structure-activity relationship) models. Frontiers in Microbiology, 10(APR). https://doi.org/10.3389/fmicb.2019.00829
dc.relation.referencesBouarab Chibane, L., Degraeve, P., Ferhout, H., Bouajila, J., & Oulahal, N. (2019). Plant antimicrobial polyphenols as potential natural food preservatives. Journal of the Science of Food and Agriculture, 99(4), 1457–1474. https://doi.org/10.1002/jsfa.9357
dc.relation.referencesBrahmi, F., Blando, F., Sellami, R., Mehdi, S., De Bellis, L., Negro, C., Haddadi-Guemghar, H., Madani, K., & Makhlouf-Boulekbache, L. (2022). Optimization of the conditions for ultrasound-assisted extraction of phenolic compounds from Opuntia ficus-indica [L.] Mill. flowers and comparison with conventional procedures. Industrial Crops and Products, 184, 114977. https://doi.org/10.1016/j.indcrop.2022.114977
dc.relation.referencesCasadey, R., Challier, C., Altamirano, M., Spesia, M. B., & Criado, S. (2021). Antioxidant and antimicrobial properties of tyrosol and derivative- compounds in the presence of vitamin B2. Assays of synergistic antioxidant effect with commercial food additives. Food Chemistry, 335, 127576. https://doi.org/10.1016/j.foodchem.2020.127576
dc.relation.referencesCalder, M., & Iztapalapa, U. (2016). LWT - Food Science and Technology Optimization of the antioxidant and antimicrobial response of the combined effect of nisin and avocado byproducts Jos e. 65, 46–52. https://doi.org/10.1016/j.lwt.2015.07.048
dc.relation.referencesDiarra, M. S., Hassan, Y. I., Block, G. S., Drover, J. C. G., Delaquis, P., & Oomah, B. D. (2020). Antibacterial activities of a polyphenolic-rich extract prepared from American cranberry (Vaccinium macrocarpon) fruit pomace against Listeria spp. Lwt, 123, 109056. https://doi.org/10.1016/j.lwt.2020.109056
dc.relation.referencesGarmus, T. T., Paviani, L. C., Queiroga, C. L., & Cabral, F. A. (2015). Extraction of phenolic compounds from pepper-rosmarin (Lippia sidoides Cham.) leaves by sequential extraction in fixed bed extractor using supercritical CO2, ethanol and water as solvents. Journal of Supercritical Fluids, 99, 68–75. https://doi.org/10.1016/j.supflu.2015.01.016
dc.relation.referencesGomes, F., Martins, N., Barros, L., Elisa, M., Oliveira, M. B. P. P., Henriques, M., & Ferreira, I. C. F. R. (2018). Plant phenolic extracts as an effective strategy to control Staphylococcus aureus, the dairy industry pathogen. Industrial Crops & Products, 112, 515–520. https://doi.org/10.1016/j.indcrop.2017.12.027
dc.relation.referencesLi, F., Chen, B., Han, Y., Cao, Y., Hong, X., & Xu, M. (2021). Enhanced adsorption of caprolactam on phenols-modified Amberlita XAD16. 161. Reactive and Functional Polymers.161. https://doi-org.ezproxy.unal.edu.co/10.1016/j.reactfunctpolym.2021.104850
dc.relation.referencesLoureiro, R. J., Roque, F., Teixeira Rodrigues, A., Herdeiro, M. T., & Ramalheira, E. (2016). Use of antibiotics and bacterial resistances: Brief notes on its evolution. Revista Portuguesa de Saude Publica, 34(1), 77–84. https://doi.org/10.1016/j.rpsp.2015.11.003
dc.relation.referencesLourenço, S. C., Campos, D. A., Gómez-García, R., Pintado, M., Oliveira, M. C., Santos, D. I., Corrêa-Filho, L. C., Moldão-Martins, M., & Alves, V. D. (2021). Optimization of natural antioxidants extraction from pineapple peel and their stabilization by spray drying. Foods, 10(6). https://doi.org/10.3390/foods10061255
dc.relation.referencesLuque-Garcia, J., & Luque de Castro, M. (2003). Ultrasound: a powerful tool for leaching. TrAC Trends in Analytical Chemistry, 22(1), 41–47. https://doi-org.ezproxy.unal.edu.co/10.1016/S0165-9936(03)00102-X
dc.relation.referencesM’hiri, N., Ioannou, I., Ghoul, M., & Boudhrioua, N. M. (2014). Extraction Methods of Citrus Peel Phenolic Compounds. Food Reviews International, 30(4), 265–290. https://doi.org/10.1080/87559129.2014.924139
dc.relation.referencesMonente, C., Bravo, J., Vitas, A. I., Arbillaga, L., De Peña, M. P., & Cid, C. (2015). Coffee and spent coffee extracts protect against cell mutagens and inhibit growth of food-borne pathogen microorganisms. Journal of Functional Foods, 12, 365–374. https://doi.org/10.1016/j.jff.2014.12.006
dc.relation.referencesOrtega-Vidal, J., Cobo, A., Ortega-Morente, E., Gálvez, A., Martínez-Bailén, M., Salido, S., & Altarejos, J. (2022). Antimicrobial activity of phenolics isolated from the pruning wood residue of European plum (Prunus domestica L.). Industrial Crops and Products, 176. https://doi.org/10.1016/j.indcrop.2021.114296
dc.relation.referencesPastoriza, S., Ru, A., & Jim, A. (2015). Revalorization of coffee by-products . Prebiotic , antimicrobial and antioxidant properties. LWT - Food Science and Technology. 61, 12–18. https://doi.org/10.1016/j.lwt.2014.11.031
dc.relation.referencesPérez-Jiménez, J., Arranz, S., Tabernero, M., Díaz- Rubio, M. E., Serrano, J., Goñi, I., & Saura-Calixto, F. (2008). Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Research International, 41(3), 274–285. https://doi.org/10.1016/j.foodres.2007.12.004
dc.relation.referencesRasheed, A., Cobham, E., Zeighami, M., & Ong, S. (2012). Extraction of Phenolic Compouds from Pineapple Fruit. The 2nd International Symposium on Processing & Drying of Foods, Vegetables and Fruits, 3–7.
dc.relation.referencesSafdar, M. N., Kausar, T., Jabbar, S., Mumtaz, A., Ahad, K., & Saddozai, A. A. (2017). Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. Journal of Food and Drug Analysis, 25(3), 488–500. https://doi.org/10.1016/j.jfda.2016.07.010
dc.relation.referencesSalman, S., Öz, G., Felek, R., Haznedar, A., Turna, T., & Özdemir, F. (2022). Effects of fermentation time on phenolic composition, antioxidant and antimicrobial activities of green, oolong, and black teas. Food Bioscience, 49, 101884. https://doi.org/10.1016/j.fbio.2022.101884
dc.relation.referencesSelahvarzi, A., Ramezan, Y., Reza, M., & Namdar, B. (2022). Food Bioscience Optimization of ultrasonic-assisted extraction of phenolic compounds from pomegranate and orange peels and their antioxidant activity in a functional drink. Food Bioscience, 49, 101918. https://doi.org/10.1016/j.fbio.2022.101918
dc.relation.referencesSerna, L., & Enríquez, C. E. (2013). Antimicrobial activity of Weisella confusa and its metabolites against Escherichia coli and Klebsiella pneumoniae. Revista Colombiana de Biotecnolgía, 15(2), 63–70. https://doi:1015446/rev.colomb.biote.v15n2.34979
dc.relation.referencesTorres-León, C., Rojas, R., Serna-Cock, L., Belmares-Cerda, R., & Aguilar, C. N. (2017). Extraction of antioxidants from mango seed kernel: Optimization assisted by microwave. Food and Bioproducts Processing, 105, 188–196. https://doi.org/10.1016/j.fbp.2017.07.005
dc.relation.referencesVenkateswara, M., Singh, A., Sunil, C. K., & Rawson, A. (2021). Trends in Food Science & Technology Ultrasonication - A green technology extraction technique for spices : A review. Trends in Food Science & Technology, 116, 975–991. https://doi.org/10.1016/j.tifs.2021.09.006
dc.relation.referencesYuste, S., Ludwig, I. A., Rubió, L., Romero, M., & Pedret, A. (2019). In vivo biotransformation of (poly) phenols and anthocyanins of red-fleshed apple and identification of intake biomarkers. Journal of Functional Foods, 55,146–155. https://doi.org/10.1016/j.jff.2019.02.013
dc.relation.referencesZaidan, M. R., Noor Rain, A., Badrul, A. R., Adlin, A., Norazah, A., & Zakiah, I. (2005). In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method. Tropical Biomedicine, 22(2), 165–170.
dc.relation.referencesZamuz, S., Munekata, P. E. S., Dzuvor, C. K. O., Zhang, W., Sant’Ana, A. S., & Lorenzo, J. M. (2021). The role of phenolic compounds against Listeria monocytogenes in food. A review. Trends in Food Science and Technology, 110,385–392. https://doi.org/10.1016/j.tifs.2021.01.068
dc.relation.referencesZeng, W., He, Q., Sun, Q., Zhong, K., & Gao, H. (2012). International Journal of Food Microbiology Antibacterial activity of water-soluble extract from pine needles of Cedrus deodara. International Journal of Food Microbiology, 153(1–2), 78–84. https://doi.org/10.1016/j.ijfoodmicro.2011.10.019
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsAntioxidantes
dc.subject.lembExtractos vegetales
dc.subject.lembResiduos agrícolas
dc.subject.lembProcesamiento de frutas
dc.subject.lembPiña - Producción
dc.subject.lembPiña - Productos derivados
dc.subject.proposalResiduos de piña
dc.subject.proposalCompuestos bioactivos
dc.subject.proposalCapacidad antimicrobiana.
dc.subject.proposalCapacidad antioxidante
dc.subject.proposalPineapple by-products
dc.subject.proposalBioactive compounds
dc.subject.proposalPhenolic compounds
dc.subject.proposalBiological properties
dc.subject.proposalAntioxidant activity
dc.subject.proposalAntimicrobial capacity
dc.title.translatedExtraction of bioactive compounds from pineapple (Anana comosus) residues using solid-state fermentation
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleExtracción de compuestos bioactivos de residuos de piña (Anana comosus) usando fermentación en estado sólido
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea curricular Biotecnología
dc.contributor.orcid0000-0003-3877-4418
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000052773


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit