Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorGuerrero Pabón, Mario Francisco
dc.contributor.advisorMartínez Ramírez, Jorge Ariel
dc.contributor.authorLancheros Sanabria, Andrés Ricardo
dc.date.accessioned2023-08-08T16:17:54Z
dc.date.available2023-08-08T16:17:54Z
dc.date.issued2023-01-31
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84487
dc.descriptionilustraciones, diagramas
dc.description.abstractLa presente investigación quiere reconocer si es comparable el efecto anticonvulsivante del aceite destilado de Cannabis yoda en las crisis convulsivas tónico-clónicas, mioclónicas, y de bajo umbral frente a patrones reconocidos para cada crisis. Y determinar si el posible efecto protector es análogo, superior o inferior que el cannabidiol aislado (CBD). Lo anterior debido que la epilepsia tiene un alto impacto sobre la salud pública del mundo, especialmente en países en vía de desarrollo, y que las líneas de tratamiento tradicional para esta patología traen consigo efectos indeseados para el paciente que conllevan a un abandono de la terapia; por lo que se hace necesario aumentar los esfuerzos en la investigación de alternativas terapéuticas que prioricen la efectividad y seguridad en el control de las crisis convulsivas, como lo pueden ser los derivados de Cannabis. La investigación se realizó a través de modelos experimentales sobre modelo murino para las crisis tónico-clónicas inducidas por electrochoque máximo (MES), mioclónicas inducidas por pentilentetrazol (PTZ) y de bajo umbral o refractarias producidas por electrochoque a baja frecuencia, observando si los individuos presentaban las crisis características de cada modelo. Adicionalmente, se incluyó el modelo del eje rodante para determinar si las sustancias evaluadas afectan el desempeño motor del individuo. Asimismo, para reconocer los protagonistas del potencial efecto protector en cada crisis, se realizó la evaluación fitoquímica preliminar a través de técnicas cromatográficas de identificación y cuantificación. Los resultados mostraron que el aceite destilado no presentó una protección estadísticamente significativa en el modelo MES a pesar de proteger algunos individuos, caso contrario al modelo de las crisis de bajo umbral, donde si se pudo evidenciar un índice de protección estadísticamente significativo, versus la molécula aislada y el patrón, a todas las dosis evaluadas. Finalmente, en el modelo PTZ, se pudo observar una protección estadísticamente significativa atribuible principalmente al cannabidiol (CBD) en los intervalos de dosis 50 y 300 mg/Kg. Respecto al análisis cromatográfico, se pudo identificar en el aceite destilado fitocannabinoides y terpenos comunes de este género, cuantificando solamente CBD y THC con porcentajes de 15.6 y 1.3 respectivamente. Se pudo concluir que ninguna sustancia evaluada afectaba el desempeño motor de los individuos, que el aceite destilado y el CBD tienen un índice de protección para las crisis convulsivas evaluadas y que la mayor protección atribuida en el modelo de bajo umbral para el aceite destilado está correlacionada con la presencia de moléculas anexas como compuestos de tipo isoprenoide y cannabinoides adicionales que mediarian una mayor respuesta a través del efecto séquito y sus múltiples blancos bioquímicos relacionados con la epilepsia. (Texto tomado de la fuente)
dc.description.abstractThe present investigation aims to recognize whether the anticonvulsant effect of Cannabis yoda distillate oil on tonic-clonic, myoclonic, and low-threshold seizures is comparable to recognized patterns for each seizure. And to determine if the possible protective effect is analogous, superior, or inferior to isolated cannabidiol (CBD). This is due to the fact that epilepsy has a high impact on public health in the world, especially in developing countries. And that the traditional lines of treatment for this pathology bring with them undesired effects for the patient that lead to the abandonment of the therapy; therefore, it is necessary to increase efforts in the research of therapeutic alternatives that prioritize effectiveness and safety in the control of convulsive crises, such as Cannabis derivatives. The research was carried out through experimental models on murine model for tonic-clonic seizures induced by maximum electroshock (MES), myoclonic seizures induced by pentylenetetrazol (PTZ), and low threshold or refractory seizures produced by electroshock at low frequency, observing if the individuals presented the characteristic seizures of each model. Additionally, the rota-rod model was included to determine whether the substances evaluated affect the individual's motor performance. Likewise, in order to recognize the protagonists of the potential protective effect in each crisis, preliminary phytochemical evaluation was carried out through chromatographic techniques of identification and quantification. The results showed that the distilled oil did not present a statistically significant protection in the MES model in spite of protecting some individuals, contrary to the low-threshold crisis model, where a statistically significant protection index could be evidenced, versus the isolated molecule and the standard, at all the doses evaluated. Finally, in the PTZ model, statistically significant protection was observed, mainly attributable to cannabidiol (CBD) in the 50 and 300 mg/kg dose intervals. Regarding the chromatographic analysis, it was possible to identify in the distilled oil phytocannabinoids and terpenes common to this genus, quantifying only CBD and THC with percentages of 15.6 and 1.3, respectively. It could be concluded that no substance evaluated affected the motor performance of individuals, that the distilled oil and CBD have a protective index for the seizures evaluated, and that the greater protection attributed in the low threshold model for the distilled oil is correlated with the presence of annexed molecules such as isoprenoidtype compounds and additional cannabinoids that mediate a greater response through the entourage effect and its multiple biochemical targets related to epilepsy
dc.format.extent87 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc610 - Medicina y salud
dc.titleCaracterización fitoquímica de un aceite destilado de Cannabis yoda y evaluación farmacológica en modelos de epilepsia en roedores
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Farmacología
dc.contributor.researchgroupGrupo de Investigaciones en Farmacología Molecular (Farmol)
dc.contributor.researchgroupInvestigaciones Toxicológicas
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Farmacología
dc.description.researchareaFarmacología experimental del Sistema Nervioso Central
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbramovici, S., & Bagić, A. (2016). Epidemiology of epilepsy. En Handbook of Clinical Neurology (1a ed., Vol. 138). Elsevier B.V. https://doi.org/10.1016/B978-0-12-802973-2.00010-0
dc.relation.referencesAlachkar, A., Ojha, S. K., Sadeq, A., Adem, A., Frank, A., Stark, H., & Sadek, B. (2020). Experimental Models for the Discovery of Novel Anticonvulsant Drugs: Focus on Pentylenetetrazole-Induced Seizures and Associated Memory Deficits. Current Pharmaceutical Design, 26(15), 1693–1711. https://doi.org/10.2174/1381612826666200131105324
dc.relation.referencesAmin, M. R., & Ali, D. W. (2019). Pharmacology of Medical Cannabis. Advances in Experimental Medicine and Biology, 1162, 151–165. https://doi.org/10.1007/978-3-030-21737-2_8
dc.relation.referencesAnderson, L. L., Low, I. K., Banister, S. D., McGregor, I. S., & Arnold, J. C. (2019). Pharmacokinetics of Phytocannabinoid Acids and Anticonvulsant Effect of Cannabidiolic Acid in a Mouse Model of Dravet Syndrome. Journal of Natural Products, 82(11), 3047–3055. https://doi.org/10.1021/ACS.JNATPROD.9B00600
dc.relation.referencesArzimanoglou, A., Brandl, U., Cross, J. H., Gil-Nagel, A., Lagae, L., Landmark, C. J., Specchio, N., Nabbout, R., Thiele, E. A., & Gubbay, O. (2020). Epilepsy and cannabidiol: a guide to treatment. Epileptic Disorders : International Epilepsy Journal with Videotape, 22(1), 1–14. https://doi.org/10.1684/EPD.2020.1141
dc.relation.referencesAsadi-Pooya, A. A., Brigo, F., Lattanzi, S., Karakis, I., Asadollahi, M., Trinka, E., Talaat El Ghoneimy, L., Pretorius, C., Contreras, G., Daza-Restrepo, A., Valente, K., D’Alessio, L., Turuspekova, S. T., Aljandeel, G., Khachatryan, S., Ashkanani, A., Tomson, T., Kutlubaev, M., Guekht, A., … Jusupova, A. (2021). Complementary and alternative medicine in epilepsy: A global survey of physicians’ opinions. Epilepsy & Behavior, 117, 107835. https://doi.org/10.1016/J.YEBEH.2021.107835
dc.relation.referencesAtakan, Z. (2012). Cannabis, a complex plant: Different compounds and different effects on individuals. En Therapeutic Advances in Psychopharmacology (Vol. 2, Issue 6, pp. 241–254). https://doi.org/10.1177/2045125312457586
dc.relation.referencesBahi, A., al Mansouri, S., al Memari, E., al Ameri, M., Nurulain, S. M., & Ojha, S. (2014). β-Caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice. Physiology & Behavior, 135, 119–124. https://doi.org/10.1016/J.PHYSBEH.2014.06.003
dc.relation.referencesBarker-Haliski, M., & Steve White, H. (2020). Validated animal models for antiseizure drug (ASD) discovery: Advantages and potential pitfalls in ASD screening. Neuropharmacology, 167. https://doi.org/10.1016/J.NEUROPHARM.2019.107750
dc.relation.referencesBeghi, E. (2020). The Epidemiology of Epilepsy. Neuroepidemiology, 54(2), 185–191. https://doi.org/10.1159/000503831
dc.relation.referencesBen-Shabat, S., Fride, E., Sheskin, T., Tamiri, T., Rhee, M. H., Vogel, Z., Bisogno, T., de Petrocellis, L., di Marzo, V., & Mechoulam, R. (1998). An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. European Journal of Pharmacology, 353(1), 23–31. https://doi.org/10.1016/S0014-2999(98)00392-6
dc.relation.referencesBlair, R. E., Deshpande, L. S., & DeLorenzo, R. J. (2015). Cannabinoids: is there a potential treatment role in epilepsy? Expert Opinion on Pharmacotherapy, 16(13), 1911.
dc.relation.referencesBromfield, E., Cavazos, J., & Sirven, J. (2006). An Introduction to Epilepsy. West Hartford (CT): American Epilepsy Society, Chapter 1, 1–26. http://www.ncbi.nlm.nih.gov/books/NBK2510/
dc.relation.referencesBurstein, S., Levin, E., & Varanelli, C. (1973). Prostaglandins and cannabis-II inhibition of biosynthesis by the naturally occurring cannabinoids. Biochemical Pharmacology, 22(22), 2905–2910. https://doi.org/10.1016/0006-2952(73)90158-5
dc.relation.referencesCarrizosa Moog, J. (2007). Prevalencia, Incidencia y Brecha terapéutica en la Epilepsia. Iatreia, 20(3), 282–296.
dc.relation.referencesCastel-Branco, M. M., Alves, G. L., Figueiredo, I. v., Falcão, A. C., & Caramona, M. M. (2009). The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drugs. Methods and Findings in Experimental and Clinical Pharmacology, 31(2), 101–106. https://doi.org/10.1358/MF.2009.31.2.1338414
dc.relation.referencesCogan, P. S. (2020). The “entourage effect” or “hodge-podge hashish”: the questionable rebranding, marketing, and expectations of cannabis polypharmacy. Expert Review of Clinical Pharmacology, 13(8), 835–845. https://doi.org/10.1080/17512433.2020.1721281
dc.relation.referencesLey No. 1787, (2016).
dc.relation.referencesCote, M., Quevedo, W., Sabogal, JS., Martinez, E., Cruz, U., Lastra, S., Riaño, M., Peña, A., & Reyes, Y. (2015). Marihuana Cannabis, Aspectos toxicológicos, clínicos, sociales y potenciales usos terapéuticos. (Jairo. Tellez, Ed.). https://docplayer.es/38004528-Marihuana-cannabis-aspectos-toxicologicos-clinicos-sociales-y-potenciales-usos-terapeuticos-jairo-tellez-mosquera-editor.html
dc.relation.referencesDevinsky, O., Cilio, M. R., Cross, H., Fernandez-Ruiz, J., French, J., Hill, C., Katz, R., di Marzo, V., Jutras-Aswad, D., Notcutt, W. G., Martinez-Orgado, J., Robson, P. J., Rohrback, B. G., Thiele, E., Whalley, B., & Friedman, D. (2014). Cannabidiol: Pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia, 55(6), 791–802. https://doi.org/10.1111/epi.12631
dc.relation.referencesDevinsky, Orrin., Schachter, S. C., & Pacia, S. (2005). Complementary and alternative therapies for epilepsy. Demos.
dc.relation.referencesdi Marzo, V., & Piscitelli, F. (2015). The Endocannabinoid System and its Modulation by Phytocannabinoids. Neurotherapeutics : The Journal of the American Society for Experimental NeuroTherapeutics, 12(4), 692–698. https://doi.org/10.1007/S13311-015-0374-6
dc.relation.referencesEnna, S. J. (1998). Current protocols in pharmacology. https://books.google.com/books/about/Current_Protocols_in_Pharmacology.html?hl=es&id=lYnOjwEACAAJ
dc.relation.referencesEspinosa Jovel, C. A., Pardo, C. M., Moreno, C. M., Vergara, J., Hedmont, D., & Sobrino Mejía, F. E. (2016). Perfil demográfico y social de la epilepsia en una población vulnerable y de bajos recursos económicos en Bogotá, Colombia. Neurología, 31(8), 528–534. https://doi.org/10.1016/J.NRL.2014.10.016
dc.relation.referencesFalco-Walter, J. (2020). Epilepsy-Definition, Classification, Pathophysiology, and Epidemiology. Seminars in Neurology, 40(6), 617–623. https://doi.org/10.1055/S-0040-1718719
dc.relation.referencesFarag, S., & Kayser, O. (2017). The Cannabis Plant: Botanical Aspects. En Handbook of Cannabis and Related Pathologies: Biology, Pharmacology, Diagnosis, and Treatment (pp. 3–12). https://doi.org/10.1016/B978-0-12-800756-3.00001-6
dc.relation.referencesFarrelly, A. M., Vlachou, S., & Grintzalis, K. (2021). Efficacy of Phytocannabinoids in Epilepsy Treatment: Novel Approaches and Recent Advances. International Journal of Environmental Research and Public Health, 18(8). https://doi.org/10.3390/IJERPH18083993
dc.relation.referencesFDA. (2019). FDA Regulation of Cannabis and Cannabis-Derived Products, Including Cannabidiol (CBD). U.S Food & Drug Administration. https://www.fda.gov/news-events/public-health-focus/fda-regulation-cannabis-and-cannabis-derived-products-including-cannabidiol-cbd
dc.relation.referencesFeigin, V. L., Nichols, E., Alam, T., Bannick, M. S., Beghi, E., Blake, N., Culpepper, W. J., Dorsey, E. R., Elbaz, A., Ellenbogen, R. G., Fisher, J. L., Fitzmaurice, C., Giussani, G., Glennie, L., James, S. L., Johnson, C. O., Kassebaum, N. J., Logroscino, G., Marin, B., … Vos, T. (2019). Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(5), 459–480. https://doi.org/10.1016/S1474-4422(18)30499-X/ATTACHMENT/2830E1E6-5A7C-42F2-AC83-0BD8437532C0/MMC1.PDF
dc.relation.referencesFerber, S. G., Namdar, D., Hen-Shoval, D., Eger, G., Koltai, H., Shoval, G., Shbiro, L., & Weller, A. (2020). The “Entourage Effect”: Terpenes Coupled with Cannabinoids for the Treatment of Mood Disorders and Anxiety Disorders. Current Neuropharmacology, 18(2), 87–96. https://doi.org/10.2174/1570159X17666190903103923
dc.relation.referencesFiest, K. M., Sauro, K. M., Wiebe, S., Patten, S. B., Kwon, C. S., Dykeman, J., Pringsheim, T., Lorenzetti, D. L., & Jetté, N. (2017). Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology, 88(3), 296–303. https://doi.org/10.1212/WNL.0000000000003509
dc.relation.referencesFisher, R. S., Acevedo, C., Arzimanoglou, A., Bogacz, A., Cross, J. H., Elger, C. E., Engel, J., Forsgren, L., French, J. A., Glynn, M., Hesdorffer, D. C., Lee, B. I., Mathern, G. W., Moshé, S. L., Perucca, E., Scheffer, I. E., Tomson, T., Watanabe, M., & Wiebe, S. (2014). ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia, 55(4), 475–482. https://doi.org/10.1111/epi.12550
dc.relation.referencesFisher, R. S., Helen Cross, J., French, J. A., Higurashi, N., Hirsch, E., Jansen, F. E., Lagae, L., Moshe, S. L., Peltola, J., Roulet Perez, E., Scheffer, I. E., & Zuberi, S. M. (2017). Clasificación operacional de los tipos de crisis por la Liga Internacional contra la Epilepsia: Documento-Posición de la Comisión para Clasificación y Terminología de la ILAE. Epilepsia, 58(4), 522–530. https://doi.org/10.1111/epi.13670
dc.relation.referencesFriedman, D., & Devinsky, O. (2015). Cannabinoids in the Treatment of Epilepsy. The New England Journal of Medicine, 373(11), 1048–1058. https://doi.org/10.1056/NEJMra1407304
dc.relation.referencesGaston, T. E., & Friedman, D. (2017). Pharmacology of cannabinoids in the treatment of epilepsy. Epilepsy & Behavior : E&B, 70(Pt B), 313–318. https://doi.org/10.1016/J.YEBEH.2016.11.016
dc.relation.referencesGaston, T. E., & Szaflarski, J. P. (2018). Cannabis for the Treatment of Epilepsy: an Update. Current Neurology and Neuroscience Reports, 18(11). https://doi.org/10.1007/s11910-018-0882-y
dc.relation.referencesGiardina, W. J. (2000). Models of Epilepsy: Electroshock and Chemical Induced Convulsions in the Mouse. Current Protocols in Pharmacology, 10(1), 5.22.1-5.22.22. https://doi.org/10.1002/0471141755.PH0522S10
dc.relation.referencesGina W, Alejandro G, Luis R, Elkin O, & Luis C. (2014). Guia de Práctica Clínica (GPC) sobre diagnóstico y tratamiento de epilepsia.
dc.relation.referencesGolub, V., & Reddy, D. S. (2021). Cannabidiol Therapy for Refractory Epilepsy and Seizure Disorders. Advances in Experimental Medicine and Biology, 1264, 93–110. https://doi.org/10.1007/978-3-030-57369-0_7
dc.relation.referencesGomes, P. B., Feitosa, M. L., Silva, M. I. G., Noronha, E. C., Moura, B. A., Venâncio, E. T., Rios, E. R. V., de Sousa, D. P., de Vasconcelos, S. M. M., Fonteles, M. M. de F., & de Sousa, F. C. F. (2010). Anxiolytic-like effect of the monoterpene 1,4-cineole in mice. Pharmacology Biochemistry and Behavior, 96(3), 287–293. https://doi.org/10.1016/J.PBB.2010.05.019
dc.relation.referencesGómez, JG., Arciniegas, E., & Torres, J. (1978). Prevalence of epilepsy in Bogotá, Colombia. Neurology, 28, 90–94.
dc.relation.referencesHanuš, L. O., & Hod, Y. (2020). Terpenes/Terpenoids in Cannabis: Are They Important? Medical Cannabis and Cannabinoids, 3(1), 25–60. https://doi.org/10.1159/000509733
dc.relation.referencesHartsel, J. A., Eades, J., Hickory, B., & Makriyannis, A. (2016). Cannabis sativa and Hemp. En Nutraceuticals: Efficacy, Safety and Toxicity (pp. 735–754). Elsevier Inc. https://doi.org/10.1016/B978-0-12-802147-7.00053-X
dc.relation.referencesHill, A. J., Mercier, M. S., Hill, T. D. M., Glyn, S. E., Jones, N. A., Yamasaki, Y., Futamura, T., Duncan, M., Stott, C. G., Stephens, G. J., Williams, C. M., & Whalley, B. J. (2012). Cannabidivarin is anticonvulsant in mouse and rat. British Journal of Pharmacology, 167(8), 1629–1642. https://doi.org/10.1111/J.1476-5381.2012.02207.X
dc.relation.referencesHill, A. J., Williams, C. M., Whalley, B. J., & Stephens, G. J. (2012). Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacology & Therapeutics, 133(1), 79–97. https://doi.org/10.1016/J.PHARMTHERA.2011.09.002
dc.relation.referencesHill, T. D. M., Cascio, M. G., Romano, B., Duncan, M., Pertwee, R. G., Williams, C. M., Whalley, B. J., & Hill, A. J. (2013). Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor-independent mechanism. British Journal of Pharmacology, 170(3), 679–692. https://doi.org/10.1111/bph.12321
dc.relation.referencesHuntsman, R. J., Tang-Wai, R., & Shackelford, A. E. (2020). Cannabis for Pediatric Epilepsy. Journal of Clinical Neurophysiology : Official Publication of the American Electroencephalographic Society, 37(1), 2–8. https://doi.org/10.1097/WNP.0000000000000641
dc.relation.referencesINVIMA. (2022). Sistema de Tramites en Linea - Consultas Publicas. https://consultaregistro.invima.gov.co/Consultas/consultas/consreg_encabcum.jsp
dc.relation.referencesJanisset, N. R. L. L., Romariz, S. A. A., Hashiguchi, D., Quintella, M. L., Gimenes, C., Yokoyama, T., Filev, R., Carlini, E., Barbosa da Silva, R., Faber, J., & Longo, B. M. (2022). Partial protective effects of cannabidiol against PTZ-induced acute seizures in female rats during the proestrus-estrus transition. Epilepsy & Behavior : E&B, 129. https://doi.org/10.1016/J.YEBEH.2022.108615
dc.relation.referencesJin, Y., Cui, R., Zhao, L., Fan, J., & Li, B. (2019). Mechanisms of Panax ginseng action as an antidepressant. Cell Proliferation, 52(6). https://doi.org/10.1111/CPR.12696
dc.relation.referencesJoshi, S. M., Singh, R. K., & Shellhaas, R. A. (2013). Advanced treatments for childhood epilepsy: Beyond antiseizure medications. En Archives of Pediatrics and Adolescent Medicine (Vol. 167, Issue 1, pp. 76–89). https://doi.org/10.1001/jamapediatrics.2013.424
dc.relation.referencesKarler, R., & Turkanis, S. A. (1980). Subacute cannabinoid treatment: anticonvulsant activity and withdrawal excitability in mice. British Journal of Pharmacology, 68(3), 479–484. https://doi.org/10.1111/j.1476-5381.1980.tb14562.x
dc.relation.referencesKitanaka, J., Kitanaka, N., Scott Hall, F., Uhl, G. R., Tanaka, K. I., Nishiyama, N., & Takemura, M. (2012). Straub tail reaction in mice treated with σ1 receptor antagonist in combination with methamphetamine. Brain Research, 1482, 40–46. https://doi.org/10.1016/J.BRAINRES.2012.09.001
dc.relation.referencesKlein, B. D., Jacobson, C. A., Metcalf, C. S., Smith, M. D., Wilcox, K. S., Hampson, A. J., & Kehne, J. H. (2017). Evaluation of Cannabidiol in Animal Seizure Models by the Epilepsy Therapy Screening Program (ETSP). Neurochemical Research, 42(7), 1939–1948. https://doi.org/10.1007/S11064-017-2287-8
dc.relation.referencesKnupp, K. G., Rice, J. D., Helmkamp, L. J., Galinkin, J., Sempio, C., Jost, K., & Chapman, K. E. (2019). Prospective evaluation of oral cannabis extracts in children with epilepsy. Seizure, 72, 23–27. https://doi.org/10.1016/j.seizure.2019.09.007
dc.relation.referencesKuribara, H., Higuchi, Y., & Tadokoro, S. (1977). Effects of Central Depressants on Rota-Rod and Traction Performances in Mice. Japanese Journal of Pharmacology, 27(1), 117–126. https://doi.org/10.1254/JJP.27.117
dc.relation.referencesLaura C. Ruíz, & Cesar G. Girón. (2022). Implementación del modelo de convulsión con descargas eléctricas de baja frecuencia. Universidad Nacional de Colombia.
dc.relation.referencesLinnaeus, C. (1753). Tropicos | Name - Cannabis sativa L. http://www.tropicos.org/Name/21302042
dc.relation.referencesLópez, Á., Esther, G., Niizawa, C., & Martinez, R. (2014). Cannabis sativa L ., una planta singular. Revista Mexicana de Ciencias Farmacéuticas, 45(4).
dc.relation.referencesLöscher, W. (2017a). Animal Models of Seizures and Epilepsy: Past, Present, and Future Role for the Discovery of Antiseizure Drugs. Neurochemical Research, 42(7), 1873–1888. https://doi.org/10.1007/S11064-017-2222-Z
dc.relation.referencesLöscher, W. (2017b). The Search for New Screening Models of Pharmacoresistant Epilepsy: Is Induction of Acute Seizures in Epileptic Rodents a Suitable Approach? Neurochemical Research, 42(7), 1926–1938. https://doi.org/10.1007/S11064-016-2025-7
dc.relation.referencesLowe, H., Toyang, N., Steele, B., Bryant, J., & Ngwa, W. (2021). The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases. International Journal of Molecular Sciences, 22(17). https://doi.org/10.3390/IJMS22179472
dc.relation.referencesLowenstein, D. H. (2018). Convulsiones y epilepsia. En J. L. Jameson, A. S. Fauci, D. L. Kasper, S. L. Hauser, D. L. Longo, & J. Loscalzo (Eds.), Harrison. Principios de Medicina Interna, 20e. McGraw-Hill Education. http://accessmedicina.mhmedical.com/content.aspx?aid=1162004996
dc.relation.referencesLu, H. C., & Mackie, K. (2021). Review of the Endocannabinoid System. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 6(6), 607–615. https://doi.org/10.1016/J.BPSC.2020.07.016
dc.relation.referencesMackie, K. (2008). Cannabinoid receptors: where they are and what they do. Journal of Neuroendocrinology, 20 Suppl 1(SUPPL. 1), 10–14. https://doi.org/10.1111/J.1365-2826.2008.01671.X
dc.relation.referencesMangoato, I. M., Mahadevappa, C. P., & Matsabisa, M. G. (2019). Cannabis sativa L. Extracts can reverse drug resistance in colorectal carcinoma cells in vitro. Synergy, 9. https://doi.org/10.1016/j.synres.2019.100056
dc.relation.referencesMann, A., & Chesselet, M. F. (2015). Techniques for Motor Assessment in Rodents. En Movement Disorders: Genetics and Models: Second Edition (pp. 139–157). Elsevier Inc. https://doi.org/10.1016/B978-0-12-405195-9.00008-1
dc.relation.referencesMcWilliam, M., & al Khalili, Y. (2019). Idiopathic Generalized Epilepsy.
dc.relation.referencesMechoulam, R. (1982). Chemistry of Cannabis. En Psychotropic Agents (pp. 119–134). https://doi.org/10.1007/978-3-642-67770-0_7
dc.relation.referencesMechoulam, R., & Hanuš, L. (2002). Cannabidiol: An overview of some chemical and pharmacological aspects. Part I: Chemical aspects. Chemistry and Physics of Lipids, 121(1–2), 35–43. https://doi.org/10.1016/S0009-3084(02)00144-5
dc.relation.referencesMechoulam, R., Peters, M., Murillo-Rodriguez, E., & Hanuš, L. O. (2007). Cannabidiol – Recent Advances. Chemistry & Biodiversity, 4(8), 1678–1692. https://doi.org/10.1002/cbdv.200790147
dc.relation.referencesMegiddo, I., Colson, A., Chisholm, D., Dua, T., Nandi, A., & Laxminarayan, R. (2016). Health and economic benefits of public financing of epilepsy treatment in India: An agent-based simulation model. Epilepsia, 57(3), 464–474. https://doi.org/10.1111/epi.13294
dc.relation.referencesMinisterio de Salud y Protección Social. (2017). Epilepsia: mucho más que convulsiones. 13/02/2017 Boletin de Prensa No 016 de 2017. https://www.minsalud.gov.co/Paginas/Epilepsia-mucho-mas-que-convulsiones.aspx
dc.relation.referencesMlost, J., Bryk, M., & Starowicz, K. (2020). Cannabidiol for Pain Treatment: Focus on Pharmacology and Mechanism of Action. International Journal of Molecular Sciences, 21(22), 1–22. https://doi.org/10.3390/IJMS21228870
dc.relation.referencesMorai, R. M., & Díazii, C. P. (2017). Evolución de niños con insulto perinatal estimulados mediante un programa de atención comunitaria temprana. Revista Cubana de Medicina Física y Rehabilitación, 2(2), 3–14. https://revrehabilitacion.sld.cu/index.php/reh/article/view/53
dc.relation.referencesMorano, A., Fanella, M., Albini, M., Cifelli, P., Palma, E., Giallonardo, A. T., & di Bonaventura, C. (2020). Cannabinoids in the Treatment of Epilepsy: Current Status and Future Prospects. Neuropsychiatric Disease and Treatment, 16, 381–396. https://doi.org/10.2147/NDT.S203782
dc.relation.referencesMora-Pérez, A., & Hernández-Medel, M. del R. (2016). Actividad anticonvulsivante del extracto metanólico de tallo y raíz de Kalanchoe pinnata Lam. en ratones: Comparación con diazepam. Neurologia, 31(3), 161–168. https://doi.org/10.1016/j.nrl.2015.06.008
dc.relation.referencesNeves, G., Menegatti, R., Antonio, C. B., Grazziottin, L. R., Vieira, R. O., Rates, S. M. K., Noël, F., Barreiro, E. J., & Fraga, C. A. M. (2010). Searching for multi-target antipsychotics: Discovery of orally active heterocyclic N-phenylpiperazine ligands of D2-like and 5-HT1A receptors. Bioorganic and Medicinal Chemistry, 18(5), 1925–1935. https://doi.org/10.1016/J.BMC.2010.01.040
dc.relation.referencesNgugi, A. K., Bottomley, C., Kleinschmidt, I., Sander, J. W., & Newton, C. R. (2010). Estimation of the burden of active and life-time epilepsy: A meta-analytic approach. Epilepsia, 51(5), 883–890. https://doi.org/10.1111/j.1528-1167.2009.02481.x
dc.relation.referencesNICE. (2022). Epilepsies in children, young people and adults NICE guideline. www.nice.org.uk/guidance/ng217
dc.relation.referencesO’Connell, B. K., Gloss, D., & Devinsky, O. (2017). Cannabinoids in treatment-resistant epilepsy: A review. Epilepsy & Behavior : E&B, 70(Pt B), 341–348. https://doi.org/10.1016/J.YEBEH.2016.11.012
dc.relation.referencesOrganización Mundial de la Salud. (2022, febrero 9). Epilepsia. https://www.who.int/es/news-room/fact-sheets/detail/epilepsy
dc.relation.referencesOrozco-Hernández, J. P., Quintero-Moreno, J. F., Marín-Medina, D. S., Castaño-Montoya, J. P., Hernández-Coral, P., Pineda, M., Vélez, J. D., Villada, H. C., Martínez, J. W., & Lizcano, A. (2019). Perfil clínico y sociodemográfico de la epilepsia en adultos de un centro de referencia de Colombia. Neurología, 34(7), 437–444. https://doi.org/10.1016/J.NRL.2017.02.013
dc.relation.referencesPack, A. M. (2019). Epilepsy Overview and Revised Classification of Seizures and Epilepsies. CONTINUUM Lifelong Learning in Neurology, 25(2), 306–321. https://doi.org/10.1212/CON.0000000000000707
dc.relation.referencesPamplona, F. A., da Silva, L. R., & Coan, A. C. (2018). Potential Clinical Benefits of CBD-Rich Cannabis Extracts Over Purified CBD in Treatment-Resistant Epilepsy: Observational Data Meta-analysis. Frontiers in Neurology, 9(SEP). https://doi.org/10.3389/FNEUR.2018.00759
dc.relation.referencesPatil, M. S., Patil, C. R., Patil, S. W., & Jadhav, R. B. (2011). Anticonvulsant activity of aqueous root extract of Ficus religiosa. Journal of Ethnopharmacology, 133(1), 92–96. https://doi.org/10.1016/j.jep.2010.09.004
dc.relation.referencesPatra, P. H., Barker-Haliski, M., White, H. S., Whalley, B. J., Glyn, S., Sandhu, H., Jones, N., Bazelot, M., Williams, C. M., & McNeish, A. J. (2019). Cannabidiol reduces seizures and associated behavioral comorbidities in a range of animal seizure and epilepsy models. Epilepsia, 60(2), 303–314. https://doi.org/10.1111/EPI.14629
dc.relation.referencesPellati, F., Borgonetti, V., Brighenti, V., Biagi, M., Benvenuti, S., & Corsi, L. (2018). Cannabis sativa L. and Nonpsychoactive Cannabinoids: Their Chemistry and Role against Oxidative Stress, Inflammation, and Cancer. BioMed Research International, 2018. https://doi.org/10.1155/2018/1691428
dc.relation.referencesPerucca, P., & Gilliam, F. G. (2012). Adverse effects of antiepileptic drugs. The Lancet. Neurology, 11(9), 792–802. https://doi.org/10.1016/S1474-4422(12)70153-9
dc.relation.referencesPorcari, G. S., Fu, C., Doll, E. D., Carter, E. G., & Carson, R. P. (2018). Efficacy of artisanal preparations of cannabidiol for the treatment of epilepsy: Practical experiences in a tertiary medical center. Epilepsy and Behavior, 80, 240–246. https://doi.org/10.1016/j.yebeh.2018.01.026
dc.relation.referencesPorter, R. J., Dhir, A., Macdonald, R. L., & Rogawski, M. A. (2012). Mechanisms of action of antiseizure drugs. Handbook of Clinical Neurology, 108, 663–681. https://doi.org/10.1016/B978-0-444-52899-5.00021-6
dc.relation.referencesRicotti, V., & Delanty, N. (2006). Use of complementary and alternative medicine in epilepsy. Current Neurology and Neuroscience Reports, 6(4), 347–353. https://doi.org/10.1007/S11910-006-0029-4
dc.relation.referencesRock, E. M., & Parker, L. A. (2021). Constituents of Cannabis Sativa. Advances in Experimental Medicine and Biology, 1264, 1–13. https://doi.org/10.1007/978-3-030-57369-0_1
dc.relation.referencesRosenberg, E. C., Tsien, R. W., Whalley, B. J., & Devinsky, O. (2015). Cannabinoids and Epilepsy. Neurotherapeutics : The Journal of the American Society for Experimental NeuroTherapeutics, 12(4), 747–768. https://doi.org/10.1007/S13311-015-0375-5
dc.relation.referencesRusso, E. B. (2011). Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. British Journal of Pharmacology, 163(7), 1344–1364. https://doi.org/10.1111/J.1476-5381.2011.01238.X
dc.relation.referencesRusso, E. B. (2018). The Case for the Entourage Effect and Conventional Breeding of Clinical Cannabis: No “Strain,” No Gain. Frontiers in Plant Science, 9. https://doi.org/10.3389/FPLS.2018.01969
dc.relation.referencesRusso, E., & Grotenhermen, F. (2013). Cannabis and Cannabinoids Pharmacology , Toxicology ,.
dc.relation.referencesSavic, I. (2014). Sex differences in human epilepsy. En Experimental Neurology (Vol. 259, pp. 38–43). Academic Press Inc. https://doi.org/10.1016/j.expneurol.2014.04.009
dc.relation.referencesScheffer, I. E., Berkovic, S., Capovilla, G., Connolly, M. B., French, J., Guilhoto, L., Hirsch, E., Jain, S., Mathern, G. W., Moshe, S. L., Nordli, D. R., & Dra Ingrid Scheffer, L. E. (2017). DOCUMENTO DE POSICIÓN DE LA ILAE Clasificación de las epilepsias de la ILAE: Documento de posición de la Comisión de Clasificación y Terminología de la ILAE. 58(4), 512–521. https://doi.org/10.1111/epi.13709
dc.relation.referencesSills, G. J., & Brodie, M. J. (2009). Antiepileptic Drugs: Preclinical Drug Development in Epilepsy. En Encyclopedia of Basic Epilepsy Research (pp. 97–103). Elsevier Inc. https://doi.org/10.1016/B978-012373961-2.00032-1
dc.relation.referencesSingh, A., & Trevick, S. (2016). The Epidemiology of Global Epilepsy. En Neurologic Clinics (Vol. 34, Issue 4, pp. 837–847). https://doi.org/10.1016/j.ncl.2016.06.015
dc.relation.referencesSingh, T., Mishra, A., & Goel, R. K. (2021). PTZ kindling model for epileptogenesis, refractory epilepsy, and associated comorbidities: relevance and reliability. Metabolic Brain Disease, 36(7), 1573–1590. https://doi.org/10.1007/S11011-021-00823-3
dc.relation.referencesSmith, M. D., Metcalf, C. S., & Wilcox, K. S. (2019). Farmacoterapia de la epilepsia. En Las Bases Farmacológicas De La Terapéutica (13a ed., pp. 1–38).
dc.relation.referencesSouza, M. A., Scapinello, J., Guzatti, J. G. G., Scatolin, M., Martello, R., Schindler, M. S. Z., Calisto, J. F. F., Alves, B., Morgan, L. v., Oliveira, J. V., Magro, J. D., & Müller, L. G. (2021). Antinociceptive effect and mechanism of supercritical carbon dioxide extract of Aloysia gratissima leaves in mice. Biomedical Journal, 44(6), S63–S72. https://doi.org/10.1016/J.BJ.2020.06.009
dc.relation.referencesStephen, L. J., & Brodie, M. J. (2000). Epilepsy in elderly people. En Lancet (Vol. 355, Issue 9213, pp. 1441–1446). Elsevier Limited. https://doi.org/10.1016/S0140-6736(00)02149-8
dc.relation.referencesStone, N. L., Murphy, A. J., England, T. J., & O’Sullivan, S. E. (2020). A systematic review of minor phytocannabinoids with promising neuroprotective potential. British Journal of Pharmacology, 177(19), 4330–4352. https://doi.org/10.1111/BPH.15185
dc.relation.referencesThijs, R. D., Surges, R., O’Brien, T. J., & Sander, J. W. (2019). Epilepsy in adults. Lancet (London, England), 393(10172), 689–701. https://doi.org/10.1016/S0140-6736(18)32596-0
dc.relation.referencesThomas, A., Stevenson, L. A., Wease, K. N., Price, M. R., Baillie, G., Ross, R. A., & Pertwee, R. G. (2005). Evidence that the plant cannabinoid Δ 9- tetrahydrocannabivarin is a cannabinoid CB 1 and CB 2 receptor antagonist. British Journal of Pharmacology, 146(7), 917–926. https://doi.org/10.1038/sj.bjp.0706414
dc.relation.referencesThomas, B. F., & ElSohly, M. A. (2016). The Botany of Cannabis sativa L. En The Analytical Chemistry of Cannabis (pp. 1–26). Elsevier. https://doi.org/10.1016/b978-0-12-804646-3.00001-1
dc.relation.referencesTorres-Hernández, B. A., del Valle-Mojica, L. M., & Ortíz, J. G. (2015). Valerenic acid and Valeriana officinalis extracts delay onset of Pentylenetetrazole (PTZ)-Induced seizures in adult Danio rerio (Zebrafish). BMC Complementary and Alternative Medicine, 15(1). https://doi.org/10.1186/s12906-015-0731-3
dc.relation.referencesTzadok, M., Uliel-Siboni, S., Linder, I., Kramer, U., Epstein, O., Menascu, S., Nissenkorn, A., Yosef, O. B., Hyman, E., Granot, D., Dor, M., Lerman-Sagie, T., & Ben-Zeev, B. (2016). CBD-enriched medical cannabis for intractable pediatric epilepsy: The current Israeli experience. Seizure, 35, 41–44. https://doi.org/10.1016/J.SEIZURE.2016.01.004
dc.relation.referencesUliel-Sibony, S., Hausman-Kedem, M., Fattal-Valevski, A., & Kramer, U. (2021). Cannabidiol-enriched oil in children and adults with treatment-resistant epilepsy-does tolerance exist? Brain and Development, 43(1), 89–96. https://doi.org/10.1016/j.braindev.2020.06.018
dc.relation.referencesUttl, L., Hložek, T., Mareš, P., Páleníček, T., & Kubová, H. (2021). Anticonvulsive Effects and Pharmacokinetic Profile of Cannabidiol (CBD) in the Pentylenetetrazol (PTZ) or N-Methyl-D-Aspartate (NMDA) Models of Seizures in Infantile Rats. International Journal of Molecular Sciences, 23(1). https://doi.org/10.3390/ijms23010094
dc.relation.referencesvan Vliet, E. A., & Gorter, J. A. (2017). Electrical Stimulation Seizure Models. En Models of Seizures and Epilepsy: Second Edition (pp. 474–488). Elsevier Inc. https://doi.org/10.1016/B978-0-12-804066-9.00034-1
dc.relation.referencesVelez, A., & Eslava-Cobos, J. (2006). Epilepsy in Colombia: Epidemiologic profile and classification of epileptic seizures and syndromes. Epilepsia, 47(1), 193–201. https://doi.org/10.1111/j.1528-1167.2006.00387.x
dc.relation.referencesVezzani, A., Balosso, S., & Ravizza, T. (2019). Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nature Reviews. Neurology, 15(8), 459–472. https://doi.org/10.1038/S41582-019-0217-X
dc.relation.referencesWallace, M. J., Martin, B. R., & DeLorenzo, R. J. (2002). Evidence for a physiological role of endocannabinoids in the modulation of seizure threshold and severity. European Journal of Pharmacology, 452(3), 295–301. https://doi.org/10.1016/s0014-2999(02)02331-2
dc.relation.referencesWallace, M. J., Wiley, J. L., Martin, B. R., & DeLorenzo, R. J. (2001). Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. European Journal of Pharmacology, 428(1), 51–57. https://doi.org/10.1016/S0014-2999(01)01243-2
dc.relation.referencesWitherspoon, E., Quinlan, S., & Forcelli, P. A. (2022). Preclinical efficacy of cannabidiol for the treatment of early-life seizures. Pharmacological Reports : PR, 74(5), 1092–1098. https://doi.org/10.1007/S43440-022-00413-9
dc.relation.referencesYeung, K. S., Hernandez, M., Mao, J. J., Haviland, I., & Gubili, J. (2018). Herbal medicine for depression and anxiety: A systematic review with assessment of potential psycho-oncologic relevance. Phytotherapy Research : PTR, 32(5), 865–891. https://doi.org/10.1002/PTR.6033
dc.relation.referencesZagaja, M., Bryda, J., Szewczyk, A., Szala-Rycaj, J., Łuszczki, J. J., Walczak, M., Kuś, K., & Andres-Mach, M. (2022). Xanthotoxin enhances the anticonvulsant potency of levetiracetam and valproate in the 6-Hz corneal stimulation model in mice. Fundamental and Clinical Pharmacology, 36(1), 133–142. https://doi.org/10.1111/FCP.12713
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocCannabis
dc.subject.lembACEITES MINERALES
dc.subject.lembMineral oils
dc.subject.proposalEpilepsia
dc.subject.proposalConvulsión
dc.subject.proposalCromatografia
dc.subject.proposalCannabis
dc.subject.proposalCannabidiol
dc.subject.proposalPentilentetrazol
dc.subject.proposalEpilepsy
dc.subject.proposalSeizure
dc.subject.proposalChromatography
dc.subject.proposalPentylenetetrazol
dc.subject.proposalCannabidiol
dc.title.translatedPhytochemical characterization of Cannabis yoda distilled oil and pharmacological evaluation in rodent models of epilepsy
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit