Caracterización fitoquímica de un aceite destilado de Cannabis yoda y evaluación farmacológica en modelos de epilepsia en roedores
dc.rights.license | Atribución-NoComercial 4.0 Internacional |
dc.contributor.advisor | Guerrero Pabón, Mario Francisco |
dc.contributor.advisor | Martínez Ramírez, Jorge Ariel |
dc.contributor.author | Lancheros Sanabria, Andrés Ricardo |
dc.date.accessioned | 2023-08-08T16:17:54Z |
dc.date.available | 2023-08-08T16:17:54Z |
dc.date.issued | 2023-01-31 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84487 |
dc.description | ilustraciones, diagramas |
dc.description.abstract | La presente investigación quiere reconocer si es comparable el efecto anticonvulsivante del aceite destilado de Cannabis yoda en las crisis convulsivas tónico-clónicas, mioclónicas, y de bajo umbral frente a patrones reconocidos para cada crisis. Y determinar si el posible efecto protector es análogo, superior o inferior que el cannabidiol aislado (CBD). Lo anterior debido que la epilepsia tiene un alto impacto sobre la salud pública del mundo, especialmente en países en vía de desarrollo, y que las líneas de tratamiento tradicional para esta patología traen consigo efectos indeseados para el paciente que conllevan a un abandono de la terapia; por lo que se hace necesario aumentar los esfuerzos en la investigación de alternativas terapéuticas que prioricen la efectividad y seguridad en el control de las crisis convulsivas, como lo pueden ser los derivados de Cannabis. La investigación se realizó a través de modelos experimentales sobre modelo murino para las crisis tónico-clónicas inducidas por electrochoque máximo (MES), mioclónicas inducidas por pentilentetrazol (PTZ) y de bajo umbral o refractarias producidas por electrochoque a baja frecuencia, observando si los individuos presentaban las crisis características de cada modelo. Adicionalmente, se incluyó el modelo del eje rodante para determinar si las sustancias evaluadas afectan el desempeño motor del individuo. Asimismo, para reconocer los protagonistas del potencial efecto protector en cada crisis, se realizó la evaluación fitoquímica preliminar a través de técnicas cromatográficas de identificación y cuantificación. Los resultados mostraron que el aceite destilado no presentó una protección estadísticamente significativa en el modelo MES a pesar de proteger algunos individuos, caso contrario al modelo de las crisis de bajo umbral, donde si se pudo evidenciar un índice de protección estadísticamente significativo, versus la molécula aislada y el patrón, a todas las dosis evaluadas. Finalmente, en el modelo PTZ, se pudo observar una protección estadísticamente significativa atribuible principalmente al cannabidiol (CBD) en los intervalos de dosis 50 y 300 mg/Kg. Respecto al análisis cromatográfico, se pudo identificar en el aceite destilado fitocannabinoides y terpenos comunes de este género, cuantificando solamente CBD y THC con porcentajes de 15.6 y 1.3 respectivamente. Se pudo concluir que ninguna sustancia evaluada afectaba el desempeño motor de los individuos, que el aceite destilado y el CBD tienen un índice de protección para las crisis convulsivas evaluadas y que la mayor protección atribuida en el modelo de bajo umbral para el aceite destilado está correlacionada con la presencia de moléculas anexas como compuestos de tipo isoprenoide y cannabinoides adicionales que mediarian una mayor respuesta a través del efecto séquito y sus múltiples blancos bioquímicos relacionados con la epilepsia. (Texto tomado de la fuente) |
dc.description.abstract | The present investigation aims to recognize whether the anticonvulsant effect of Cannabis yoda distillate oil on tonic-clonic, myoclonic, and low-threshold seizures is comparable to recognized patterns for each seizure. And to determine if the possible protective effect is analogous, superior, or inferior to isolated cannabidiol (CBD). This is due to the fact that epilepsy has a high impact on public health in the world, especially in developing countries. And that the traditional lines of treatment for this pathology bring with them undesired effects for the patient that lead to the abandonment of the therapy; therefore, it is necessary to increase efforts in the research of therapeutic alternatives that prioritize effectiveness and safety in the control of convulsive crises, such as Cannabis derivatives. The research was carried out through experimental models on murine model for tonic-clonic seizures induced by maximum electroshock (MES), myoclonic seizures induced by pentylenetetrazol (PTZ), and low threshold or refractory seizures produced by electroshock at low frequency, observing if the individuals presented the characteristic seizures of each model. Additionally, the rota-rod model was included to determine whether the substances evaluated affect the individual's motor performance. Likewise, in order to recognize the protagonists of the potential protective effect in each crisis, preliminary phytochemical evaluation was carried out through chromatographic techniques of identification and quantification. The results showed that the distilled oil did not present a statistically significant protection in the MES model in spite of protecting some individuals, contrary to the low-threshold crisis model, where a statistically significant protection index could be evidenced, versus the isolated molecule and the standard, at all the doses evaluated. Finally, in the PTZ model, statistically significant protection was observed, mainly attributable to cannabidiol (CBD) in the 50 and 300 mg/kg dose intervals. Regarding the chromatographic analysis, it was possible to identify in the distilled oil phytocannabinoids and terpenes common to this genus, quantifying only CBD and THC with percentages of 15.6 and 1.3, respectively. It could be concluded that no substance evaluated affected the motor performance of individuals, that the distilled oil and CBD have a protective index for the seizures evaluated, and that the greater protection attributed in the low threshold model for the distilled oil is correlated with the presence of annexed molecules such as isoprenoidtype compounds and additional cannabinoids that mediate a greater response through the entourage effect and its multiple biochemical targets related to epilepsy |
dc.format.extent | 87 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ |
dc.subject.ddc | 610 - Medicina y salud |
dc.title | Caracterización fitoquímica de un aceite destilado de Cannabis yoda y evaluación farmacológica en modelos de epilepsia en roedores |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Farmacología |
dc.contributor.researchgroup | Grupo de Investigaciones en Farmacología Molecular (Farmol) |
dc.contributor.researchgroup | Investigaciones Toxicológicas |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magíster en Ciencias - Farmacología |
dc.description.researcharea | Farmacología experimental del Sistema Nervioso Central |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ciencias |
dc.publisher.place | Bogotá, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Abramovici, S., & Bagić, A. (2016). Epidemiology of epilepsy. En Handbook of Clinical Neurology (1a ed., Vol. 138). Elsevier B.V. https://doi.org/10.1016/B978-0-12-802973-2.00010-0 |
dc.relation.references | Alachkar, A., Ojha, S. K., Sadeq, A., Adem, A., Frank, A., Stark, H., & Sadek, B. (2020). Experimental Models for the Discovery of Novel Anticonvulsant Drugs: Focus on Pentylenetetrazole-Induced Seizures and Associated Memory Deficits. Current Pharmaceutical Design, 26(15), 1693–1711. https://doi.org/10.2174/1381612826666200131105324 |
dc.relation.references | Amin, M. R., & Ali, D. W. (2019). Pharmacology of Medical Cannabis. Advances in Experimental Medicine and Biology, 1162, 151–165. https://doi.org/10.1007/978-3-030-21737-2_8 |
dc.relation.references | Anderson, L. L., Low, I. K., Banister, S. D., McGregor, I. S., & Arnold, J. C. (2019). Pharmacokinetics of Phytocannabinoid Acids and Anticonvulsant Effect of Cannabidiolic Acid in a Mouse Model of Dravet Syndrome. Journal of Natural Products, 82(11), 3047–3055. https://doi.org/10.1021/ACS.JNATPROD.9B00600 |
dc.relation.references | Arzimanoglou, A., Brandl, U., Cross, J. H., Gil-Nagel, A., Lagae, L., Landmark, C. J., Specchio, N., Nabbout, R., Thiele, E. A., & Gubbay, O. (2020). Epilepsy and cannabidiol: a guide to treatment. Epileptic Disorders : International Epilepsy Journal with Videotape, 22(1), 1–14. https://doi.org/10.1684/EPD.2020.1141 |
dc.relation.references | Asadi-Pooya, A. A., Brigo, F., Lattanzi, S., Karakis, I., Asadollahi, M., Trinka, E., Talaat El Ghoneimy, L., Pretorius, C., Contreras, G., Daza-Restrepo, A., Valente, K., D’Alessio, L., Turuspekova, S. T., Aljandeel, G., Khachatryan, S., Ashkanani, A., Tomson, T., Kutlubaev, M., Guekht, A., … Jusupova, A. (2021). Complementary and alternative medicine in epilepsy: A global survey of physicians’ opinions. Epilepsy & Behavior, 117, 107835. https://doi.org/10.1016/J.YEBEH.2021.107835 |
dc.relation.references | Atakan, Z. (2012). Cannabis, a complex plant: Different compounds and different effects on individuals. En Therapeutic Advances in Psychopharmacology (Vol. 2, Issue 6, pp. 241–254). https://doi.org/10.1177/2045125312457586 |
dc.relation.references | Bahi, A., al Mansouri, S., al Memari, E., al Ameri, M., Nurulain, S. M., & Ojha, S. (2014). β-Caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice. Physiology & Behavior, 135, 119–124. https://doi.org/10.1016/J.PHYSBEH.2014.06.003 |
dc.relation.references | Barker-Haliski, M., & Steve White, H. (2020). Validated animal models for antiseizure drug (ASD) discovery: Advantages and potential pitfalls in ASD screening. Neuropharmacology, 167. https://doi.org/10.1016/J.NEUROPHARM.2019.107750 |
dc.relation.references | Beghi, E. (2020). The Epidemiology of Epilepsy. Neuroepidemiology, 54(2), 185–191. https://doi.org/10.1159/000503831 |
dc.relation.references | Ben-Shabat, S., Fride, E., Sheskin, T., Tamiri, T., Rhee, M. H., Vogel, Z., Bisogno, T., de Petrocellis, L., di Marzo, V., & Mechoulam, R. (1998). An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. European Journal of Pharmacology, 353(1), 23–31. https://doi.org/10.1016/S0014-2999(98)00392-6 |
dc.relation.references | Blair, R. E., Deshpande, L. S., & DeLorenzo, R. J. (2015). Cannabinoids: is there a potential treatment role in epilepsy? Expert Opinion on Pharmacotherapy, 16(13), 1911. |
dc.relation.references | Bromfield, E., Cavazos, J., & Sirven, J. (2006). An Introduction to Epilepsy. West Hartford (CT): American Epilepsy Society, Chapter 1, 1–26. http://www.ncbi.nlm.nih.gov/books/NBK2510/ |
dc.relation.references | Burstein, S., Levin, E., & Varanelli, C. (1973). Prostaglandins and cannabis-II inhibition of biosynthesis by the naturally occurring cannabinoids. Biochemical Pharmacology, 22(22), 2905–2910. https://doi.org/10.1016/0006-2952(73)90158-5 |
dc.relation.references | Carrizosa Moog, J. (2007). Prevalencia, Incidencia y Brecha terapéutica en la Epilepsia. Iatreia, 20(3), 282–296. |
dc.relation.references | Castel-Branco, M. M., Alves, G. L., Figueiredo, I. v., Falcão, A. C., & Caramona, M. M. (2009). The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drugs. Methods and Findings in Experimental and Clinical Pharmacology, 31(2), 101–106. https://doi.org/10.1358/MF.2009.31.2.1338414 |
dc.relation.references | Cogan, P. S. (2020). The “entourage effect” or “hodge-podge hashish”: the questionable rebranding, marketing, and expectations of cannabis polypharmacy. Expert Review of Clinical Pharmacology, 13(8), 835–845. https://doi.org/10.1080/17512433.2020.1721281 |
dc.relation.references | Ley No. 1787, (2016). |
dc.relation.references | Cote, M., Quevedo, W., Sabogal, JS., Martinez, E., Cruz, U., Lastra, S., Riaño, M., Peña, A., & Reyes, Y. (2015). Marihuana Cannabis, Aspectos toxicológicos, clínicos, sociales y potenciales usos terapéuticos. (Jairo. Tellez, Ed.). https://docplayer.es/38004528-Marihuana-cannabis-aspectos-toxicologicos-clinicos-sociales-y-potenciales-usos-terapeuticos-jairo-tellez-mosquera-editor.html |
dc.relation.references | Devinsky, O., Cilio, M. R., Cross, H., Fernandez-Ruiz, J., French, J., Hill, C., Katz, R., di Marzo, V., Jutras-Aswad, D., Notcutt, W. G., Martinez-Orgado, J., Robson, P. J., Rohrback, B. G., Thiele, E., Whalley, B., & Friedman, D. (2014). Cannabidiol: Pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia, 55(6), 791–802. https://doi.org/10.1111/epi.12631 |
dc.relation.references | Devinsky, Orrin., Schachter, S. C., & Pacia, S. (2005). Complementary and alternative therapies for epilepsy. Demos. |
dc.relation.references | di Marzo, V., & Piscitelli, F. (2015). The Endocannabinoid System and its Modulation by Phytocannabinoids. Neurotherapeutics : The Journal of the American Society for Experimental NeuroTherapeutics, 12(4), 692–698. https://doi.org/10.1007/S13311-015-0374-6 |
dc.relation.references | Enna, S. J. (1998). Current protocols in pharmacology. https://books.google.com/books/about/Current_Protocols_in_Pharmacology.html?hl=es&id=lYnOjwEACAAJ |
dc.relation.references | Espinosa Jovel, C. A., Pardo, C. M., Moreno, C. M., Vergara, J., Hedmont, D., & Sobrino Mejía, F. E. (2016). Perfil demográfico y social de la epilepsia en una población vulnerable y de bajos recursos económicos en Bogotá, Colombia. Neurología, 31(8), 528–534. https://doi.org/10.1016/J.NRL.2014.10.016 |
dc.relation.references | Falco-Walter, J. (2020). Epilepsy-Definition, Classification, Pathophysiology, and Epidemiology. Seminars in Neurology, 40(6), 617–623. https://doi.org/10.1055/S-0040-1718719 |
dc.relation.references | Farag, S., & Kayser, O. (2017). The Cannabis Plant: Botanical Aspects. En Handbook of Cannabis and Related Pathologies: Biology, Pharmacology, Diagnosis, and Treatment (pp. 3–12). https://doi.org/10.1016/B978-0-12-800756-3.00001-6 |
dc.relation.references | Farrelly, A. M., Vlachou, S., & Grintzalis, K. (2021). Efficacy of Phytocannabinoids in Epilepsy Treatment: Novel Approaches and Recent Advances. International Journal of Environmental Research and Public Health, 18(8). https://doi.org/10.3390/IJERPH18083993 |
dc.relation.references | FDA. (2019). FDA Regulation of Cannabis and Cannabis-Derived Products, Including Cannabidiol (CBD). U.S Food & Drug Administration. https://www.fda.gov/news-events/public-health-focus/fda-regulation-cannabis-and-cannabis-derived-products-including-cannabidiol-cbd |
dc.relation.references | Feigin, V. L., Nichols, E., Alam, T., Bannick, M. S., Beghi, E., Blake, N., Culpepper, W. J., Dorsey, E. R., Elbaz, A., Ellenbogen, R. G., Fisher, J. L., Fitzmaurice, C., Giussani, G., Glennie, L., James, S. L., Johnson, C. O., Kassebaum, N. J., Logroscino, G., Marin, B., … Vos, T. (2019). Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(5), 459–480. https://doi.org/10.1016/S1474-4422(18)30499-X/ATTACHMENT/2830E1E6-5A7C-42F2-AC83-0BD8437532C0/MMC1.PDF |
dc.relation.references | Ferber, S. G., Namdar, D., Hen-Shoval, D., Eger, G., Koltai, H., Shoval, G., Shbiro, L., & Weller, A. (2020). The “Entourage Effect”: Terpenes Coupled with Cannabinoids for the Treatment of Mood Disorders and Anxiety Disorders. Current Neuropharmacology, 18(2), 87–96. https://doi.org/10.2174/1570159X17666190903103923 |
dc.relation.references | Fiest, K. M., Sauro, K. M., Wiebe, S., Patten, S. B., Kwon, C. S., Dykeman, J., Pringsheim, T., Lorenzetti, D. L., & Jetté, N. (2017). Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology, 88(3), 296–303. https://doi.org/10.1212/WNL.0000000000003509 |
dc.relation.references | Fisher, R. S., Acevedo, C., Arzimanoglou, A., Bogacz, A., Cross, J. H., Elger, C. E., Engel, J., Forsgren, L., French, J. A., Glynn, M., Hesdorffer, D. C., Lee, B. I., Mathern, G. W., Moshé, S. L., Perucca, E., Scheffer, I. E., Tomson, T., Watanabe, M., & Wiebe, S. (2014). ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia, 55(4), 475–482. https://doi.org/10.1111/epi.12550 |
dc.relation.references | Fisher, R. S., Helen Cross, J., French, J. A., Higurashi, N., Hirsch, E., Jansen, F. E., Lagae, L., Moshe, S. L., Peltola, J., Roulet Perez, E., Scheffer, I. E., & Zuberi, S. M. (2017). Clasificación operacional de los tipos de crisis por la Liga Internacional contra la Epilepsia: Documento-Posición de la Comisión para Clasificación y Terminología de la ILAE. Epilepsia, 58(4), 522–530. https://doi.org/10.1111/epi.13670 |
dc.relation.references | Friedman, D., & Devinsky, O. (2015). Cannabinoids in the Treatment of Epilepsy. The New England Journal of Medicine, 373(11), 1048–1058. https://doi.org/10.1056/NEJMra1407304 |
dc.relation.references | Gaston, T. E., & Friedman, D. (2017). Pharmacology of cannabinoids in the treatment of epilepsy. Epilepsy & Behavior : E&B, 70(Pt B), 313–318. https://doi.org/10.1016/J.YEBEH.2016.11.016 |
dc.relation.references | Gaston, T. E., & Szaflarski, J. P. (2018). Cannabis for the Treatment of Epilepsy: an Update. Current Neurology and Neuroscience Reports, 18(11). https://doi.org/10.1007/s11910-018-0882-y |
dc.relation.references | Giardina, W. J. (2000). Models of Epilepsy: Electroshock and Chemical Induced Convulsions in the Mouse. Current Protocols in Pharmacology, 10(1), 5.22.1-5.22.22. https://doi.org/10.1002/0471141755.PH0522S10 |
dc.relation.references | Gina W, Alejandro G, Luis R, Elkin O, & Luis C. (2014). Guia de Práctica Clínica (GPC) sobre diagnóstico y tratamiento de epilepsia. |
dc.relation.references | Golub, V., & Reddy, D. S. (2021). Cannabidiol Therapy for Refractory Epilepsy and Seizure Disorders. Advances in Experimental Medicine and Biology, 1264, 93–110. https://doi.org/10.1007/978-3-030-57369-0_7 |
dc.relation.references | Gomes, P. B., Feitosa, M. L., Silva, M. I. G., Noronha, E. C., Moura, B. A., Venâncio, E. T., Rios, E. R. V., de Sousa, D. P., de Vasconcelos, S. M. M., Fonteles, M. M. de F., & de Sousa, F. C. F. (2010). Anxiolytic-like effect of the monoterpene 1,4-cineole in mice. Pharmacology Biochemistry and Behavior, 96(3), 287–293. https://doi.org/10.1016/J.PBB.2010.05.019 |
dc.relation.references | Gómez, JG., Arciniegas, E., & Torres, J. (1978). Prevalence of epilepsy in Bogotá, Colombia. Neurology, 28, 90–94. |
dc.relation.references | Hanuš, L. O., & Hod, Y. (2020). Terpenes/Terpenoids in Cannabis: Are They Important? Medical Cannabis and Cannabinoids, 3(1), 25–60. https://doi.org/10.1159/000509733 |
dc.relation.references | Hartsel, J. A., Eades, J., Hickory, B., & Makriyannis, A. (2016). Cannabis sativa and Hemp. En Nutraceuticals: Efficacy, Safety and Toxicity (pp. 735–754). Elsevier Inc. https://doi.org/10.1016/B978-0-12-802147-7.00053-X |
dc.relation.references | Hill, A. J., Mercier, M. S., Hill, T. D. M., Glyn, S. E., Jones, N. A., Yamasaki, Y., Futamura, T., Duncan, M., Stott, C. G., Stephens, G. J., Williams, C. M., & Whalley, B. J. (2012). Cannabidivarin is anticonvulsant in mouse and rat. British Journal of Pharmacology, 167(8), 1629–1642. https://doi.org/10.1111/J.1476-5381.2012.02207.X |
dc.relation.references | Hill, A. J., Williams, C. M., Whalley, B. J., & Stephens, G. J. (2012). Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacology & Therapeutics, 133(1), 79–97. https://doi.org/10.1016/J.PHARMTHERA.2011.09.002 |
dc.relation.references | Hill, T. D. M., Cascio, M. G., Romano, B., Duncan, M., Pertwee, R. G., Williams, C. M., Whalley, B. J., & Hill, A. J. (2013). Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor-independent mechanism. British Journal of Pharmacology, 170(3), 679–692. https://doi.org/10.1111/bph.12321 |
dc.relation.references | Huntsman, R. J., Tang-Wai, R., & Shackelford, A. E. (2020). Cannabis for Pediatric Epilepsy. Journal of Clinical Neurophysiology : Official Publication of the American Electroencephalographic Society, 37(1), 2–8. https://doi.org/10.1097/WNP.0000000000000641 |
dc.relation.references | INVIMA. (2022). Sistema de Tramites en Linea - Consultas Publicas. https://consultaregistro.invima.gov.co/Consultas/consultas/consreg_encabcum.jsp |
dc.relation.references | Janisset, N. R. L. L., Romariz, S. A. A., Hashiguchi, D., Quintella, M. L., Gimenes, C., Yokoyama, T., Filev, R., Carlini, E., Barbosa da Silva, R., Faber, J., & Longo, B. M. (2022). Partial protective effects of cannabidiol against PTZ-induced acute seizures in female rats during the proestrus-estrus transition. Epilepsy & Behavior : E&B, 129. https://doi.org/10.1016/J.YEBEH.2022.108615 |
dc.relation.references | Jin, Y., Cui, R., Zhao, L., Fan, J., & Li, B. (2019). Mechanisms of Panax ginseng action as an antidepressant. Cell Proliferation, 52(6). https://doi.org/10.1111/CPR.12696 |
dc.relation.references | Joshi, S. M., Singh, R. K., & Shellhaas, R. A. (2013). Advanced treatments for childhood epilepsy: Beyond antiseizure medications. En Archives of Pediatrics and Adolescent Medicine (Vol. 167, Issue 1, pp. 76–89). https://doi.org/10.1001/jamapediatrics.2013.424 |
dc.relation.references | Karler, R., & Turkanis, S. A. (1980). Subacute cannabinoid treatment: anticonvulsant activity and withdrawal excitability in mice. British Journal of Pharmacology, 68(3), 479–484. https://doi.org/10.1111/j.1476-5381.1980.tb14562.x |
dc.relation.references | Kitanaka, J., Kitanaka, N., Scott Hall, F., Uhl, G. R., Tanaka, K. I., Nishiyama, N., & Takemura, M. (2012). Straub tail reaction in mice treated with σ1 receptor antagonist in combination with methamphetamine. Brain Research, 1482, 40–46. https://doi.org/10.1016/J.BRAINRES.2012.09.001 |
dc.relation.references | Klein, B. D., Jacobson, C. A., Metcalf, C. S., Smith, M. D., Wilcox, K. S., Hampson, A. J., & Kehne, J. H. (2017). Evaluation of Cannabidiol in Animal Seizure Models by the Epilepsy Therapy Screening Program (ETSP). Neurochemical Research, 42(7), 1939–1948. https://doi.org/10.1007/S11064-017-2287-8 |
dc.relation.references | Knupp, K. G., Rice, J. D., Helmkamp, L. J., Galinkin, J., Sempio, C., Jost, K., & Chapman, K. E. (2019). Prospective evaluation of oral cannabis extracts in children with epilepsy. Seizure, 72, 23–27. https://doi.org/10.1016/j.seizure.2019.09.007 |
dc.relation.references | Kuribara, H., Higuchi, Y., & Tadokoro, S. (1977). Effects of Central Depressants on Rota-Rod and Traction Performances in Mice. Japanese Journal of Pharmacology, 27(1), 117–126. https://doi.org/10.1254/JJP.27.117 |
dc.relation.references | Laura C. Ruíz, & Cesar G. Girón. (2022). Implementación del modelo de convulsión con descargas eléctricas de baja frecuencia. Universidad Nacional de Colombia. |
dc.relation.references | Linnaeus, C. (1753). Tropicos | Name - Cannabis sativa L. http://www.tropicos.org/Name/21302042 |
dc.relation.references | López, Á., Esther, G., Niizawa, C., & Martinez, R. (2014). Cannabis sativa L ., una planta singular. Revista Mexicana de Ciencias Farmacéuticas, 45(4). |
dc.relation.references | Löscher, W. (2017a). Animal Models of Seizures and Epilepsy: Past, Present, and Future Role for the Discovery of Antiseizure Drugs. Neurochemical Research, 42(7), 1873–1888. https://doi.org/10.1007/S11064-017-2222-Z |
dc.relation.references | Löscher, W. (2017b). The Search for New Screening Models of Pharmacoresistant Epilepsy: Is Induction of Acute Seizures in Epileptic Rodents a Suitable Approach? Neurochemical Research, 42(7), 1926–1938. https://doi.org/10.1007/S11064-016-2025-7 |
dc.relation.references | Lowe, H., Toyang, N., Steele, B., Bryant, J., & Ngwa, W. (2021). The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases. International Journal of Molecular Sciences, 22(17). https://doi.org/10.3390/IJMS22179472 |
dc.relation.references | Lowenstein, D. H. (2018). Convulsiones y epilepsia. En J. L. Jameson, A. S. Fauci, D. L. Kasper, S. L. Hauser, D. L. Longo, & J. Loscalzo (Eds.), Harrison. Principios de Medicina Interna, 20e. McGraw-Hill Education. http://accessmedicina.mhmedical.com/content.aspx?aid=1162004996 |
dc.relation.references | Lu, H. C., & Mackie, K. (2021). Review of the Endocannabinoid System. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 6(6), 607–615. https://doi.org/10.1016/J.BPSC.2020.07.016 |
dc.relation.references | Mackie, K. (2008). Cannabinoid receptors: where they are and what they do. Journal of Neuroendocrinology, 20 Suppl 1(SUPPL. 1), 10–14. https://doi.org/10.1111/J.1365-2826.2008.01671.X |
dc.relation.references | Mangoato, I. M., Mahadevappa, C. P., & Matsabisa, M. G. (2019). Cannabis sativa L. Extracts can reverse drug resistance in colorectal carcinoma cells in vitro. Synergy, 9. https://doi.org/10.1016/j.synres.2019.100056 |
dc.relation.references | Mann, A., & Chesselet, M. F. (2015). Techniques for Motor Assessment in Rodents. En Movement Disorders: Genetics and Models: Second Edition (pp. 139–157). Elsevier Inc. https://doi.org/10.1016/B978-0-12-405195-9.00008-1 |
dc.relation.references | McWilliam, M., & al Khalili, Y. (2019). Idiopathic Generalized Epilepsy. |
dc.relation.references | Mechoulam, R. (1982). Chemistry of Cannabis. En Psychotropic Agents (pp. 119–134). https://doi.org/10.1007/978-3-642-67770-0_7 |
dc.relation.references | Mechoulam, R., & Hanuš, L. (2002). Cannabidiol: An overview of some chemical and pharmacological aspects. Part I: Chemical aspects. Chemistry and Physics of Lipids, 121(1–2), 35–43. https://doi.org/10.1016/S0009-3084(02)00144-5 |
dc.relation.references | Mechoulam, R., Peters, M., Murillo-Rodriguez, E., & Hanuš, L. O. (2007). Cannabidiol – Recent Advances. Chemistry & Biodiversity, 4(8), 1678–1692. https://doi.org/10.1002/cbdv.200790147 |
dc.relation.references | Megiddo, I., Colson, A., Chisholm, D., Dua, T., Nandi, A., & Laxminarayan, R. (2016). Health and economic benefits of public financing of epilepsy treatment in India: An agent-based simulation model. Epilepsia, 57(3), 464–474. https://doi.org/10.1111/epi.13294 |
dc.relation.references | Ministerio de Salud y Protección Social. (2017). Epilepsia: mucho más que convulsiones. 13/02/2017 Boletin de Prensa No 016 de 2017. https://www.minsalud.gov.co/Paginas/Epilepsia-mucho-mas-que-convulsiones.aspx |
dc.relation.references | Mlost, J., Bryk, M., & Starowicz, K. (2020). Cannabidiol for Pain Treatment: Focus on Pharmacology and Mechanism of Action. International Journal of Molecular Sciences, 21(22), 1–22. https://doi.org/10.3390/IJMS21228870 |
dc.relation.references | Morai, R. M., & Díazii, C. P. (2017). Evolución de niños con insulto perinatal estimulados mediante un programa de atención comunitaria temprana. Revista Cubana de Medicina Física y Rehabilitación, 2(2), 3–14. https://revrehabilitacion.sld.cu/index.php/reh/article/view/53 |
dc.relation.references | Morano, A., Fanella, M., Albini, M., Cifelli, P., Palma, E., Giallonardo, A. T., & di Bonaventura, C. (2020). Cannabinoids in the Treatment of Epilepsy: Current Status and Future Prospects. Neuropsychiatric Disease and Treatment, 16, 381–396. https://doi.org/10.2147/NDT.S203782 |
dc.relation.references | Mora-Pérez, A., & Hernández-Medel, M. del R. (2016). Actividad anticonvulsivante del extracto metanólico de tallo y raíz de Kalanchoe pinnata Lam. en ratones: Comparación con diazepam. Neurologia, 31(3), 161–168. https://doi.org/10.1016/j.nrl.2015.06.008 |
dc.relation.references | Neves, G., Menegatti, R., Antonio, C. B., Grazziottin, L. R., Vieira, R. O., Rates, S. M. K., Noël, F., Barreiro, E. J., & Fraga, C. A. M. (2010). Searching for multi-target antipsychotics: Discovery of orally active heterocyclic N-phenylpiperazine ligands of D2-like and 5-HT1A receptors. Bioorganic and Medicinal Chemistry, 18(5), 1925–1935. https://doi.org/10.1016/J.BMC.2010.01.040 |
dc.relation.references | Ngugi, A. K., Bottomley, C., Kleinschmidt, I., Sander, J. W., & Newton, C. R. (2010). Estimation of the burden of active and life-time epilepsy: A meta-analytic approach. Epilepsia, 51(5), 883–890. https://doi.org/10.1111/j.1528-1167.2009.02481.x |
dc.relation.references | NICE. (2022). Epilepsies in children, young people and adults NICE guideline. www.nice.org.uk/guidance/ng217 |
dc.relation.references | O’Connell, B. K., Gloss, D., & Devinsky, O. (2017). Cannabinoids in treatment-resistant epilepsy: A review. Epilepsy & Behavior : E&B, 70(Pt B), 341–348. https://doi.org/10.1016/J.YEBEH.2016.11.012 |
dc.relation.references | Organización Mundial de la Salud. (2022, febrero 9). Epilepsia. https://www.who.int/es/news-room/fact-sheets/detail/epilepsy |
dc.relation.references | Orozco-Hernández, J. P., Quintero-Moreno, J. F., Marín-Medina, D. S., Castaño-Montoya, J. P., Hernández-Coral, P., Pineda, M., Vélez, J. D., Villada, H. C., Martínez, J. W., & Lizcano, A. (2019). Perfil clínico y sociodemográfico de la epilepsia en adultos de un centro de referencia de Colombia. Neurología, 34(7), 437–444. https://doi.org/10.1016/J.NRL.2017.02.013 |
dc.relation.references | Pack, A. M. (2019). Epilepsy Overview and Revised Classification of Seizures and Epilepsies. CONTINUUM Lifelong Learning in Neurology, 25(2), 306–321. https://doi.org/10.1212/CON.0000000000000707 |
dc.relation.references | Pamplona, F. A., da Silva, L. R., & Coan, A. C. (2018). Potential Clinical Benefits of CBD-Rich Cannabis Extracts Over Purified CBD in Treatment-Resistant Epilepsy: Observational Data Meta-analysis. Frontiers in Neurology, 9(SEP). https://doi.org/10.3389/FNEUR.2018.00759 |
dc.relation.references | Patil, M. S., Patil, C. R., Patil, S. W., & Jadhav, R. B. (2011). Anticonvulsant activity of aqueous root extract of Ficus religiosa. Journal of Ethnopharmacology, 133(1), 92–96. https://doi.org/10.1016/j.jep.2010.09.004 |
dc.relation.references | Patra, P. H., Barker-Haliski, M., White, H. S., Whalley, B. J., Glyn, S., Sandhu, H., Jones, N., Bazelot, M., Williams, C. M., & McNeish, A. J. (2019). Cannabidiol reduces seizures and associated behavioral comorbidities in a range of animal seizure and epilepsy models. Epilepsia, 60(2), 303–314. https://doi.org/10.1111/EPI.14629 |
dc.relation.references | Pellati, F., Borgonetti, V., Brighenti, V., Biagi, M., Benvenuti, S., & Corsi, L. (2018). Cannabis sativa L. and Nonpsychoactive Cannabinoids: Their Chemistry and Role against Oxidative Stress, Inflammation, and Cancer. BioMed Research International, 2018. https://doi.org/10.1155/2018/1691428 |
dc.relation.references | Perucca, P., & Gilliam, F. G. (2012). Adverse effects of antiepileptic drugs. The Lancet. Neurology, 11(9), 792–802. https://doi.org/10.1016/S1474-4422(12)70153-9 |
dc.relation.references | Porcari, G. S., Fu, C., Doll, E. D., Carter, E. G., & Carson, R. P. (2018). Efficacy of artisanal preparations of cannabidiol for the treatment of epilepsy: Practical experiences in a tertiary medical center. Epilepsy and Behavior, 80, 240–246. https://doi.org/10.1016/j.yebeh.2018.01.026 |
dc.relation.references | Porter, R. J., Dhir, A., Macdonald, R. L., & Rogawski, M. A. (2012). Mechanisms of action of antiseizure drugs. Handbook of Clinical Neurology, 108, 663–681. https://doi.org/10.1016/B978-0-444-52899-5.00021-6 |
dc.relation.references | Ricotti, V., & Delanty, N. (2006). Use of complementary and alternative medicine in epilepsy. Current Neurology and Neuroscience Reports, 6(4), 347–353. https://doi.org/10.1007/S11910-006-0029-4 |
dc.relation.references | Rock, E. M., & Parker, L. A. (2021). Constituents of Cannabis Sativa. Advances in Experimental Medicine and Biology, 1264, 1–13. https://doi.org/10.1007/978-3-030-57369-0_1 |
dc.relation.references | Rosenberg, E. C., Tsien, R. W., Whalley, B. J., & Devinsky, O. (2015). Cannabinoids and Epilepsy. Neurotherapeutics : The Journal of the American Society for Experimental NeuroTherapeutics, 12(4), 747–768. https://doi.org/10.1007/S13311-015-0375-5 |
dc.relation.references | Russo, E. B. (2011). Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. British Journal of Pharmacology, 163(7), 1344–1364. https://doi.org/10.1111/J.1476-5381.2011.01238.X |
dc.relation.references | Russo, E. B. (2018). The Case for the Entourage Effect and Conventional Breeding of Clinical Cannabis: No “Strain,” No Gain. Frontiers in Plant Science, 9. https://doi.org/10.3389/FPLS.2018.01969 |
dc.relation.references | Russo, E., & Grotenhermen, F. (2013). Cannabis and Cannabinoids Pharmacology , Toxicology ,. |
dc.relation.references | Savic, I. (2014). Sex differences in human epilepsy. En Experimental Neurology (Vol. 259, pp. 38–43). Academic Press Inc. https://doi.org/10.1016/j.expneurol.2014.04.009 |
dc.relation.references | Scheffer, I. E., Berkovic, S., Capovilla, G., Connolly, M. B., French, J., Guilhoto, L., Hirsch, E., Jain, S., Mathern, G. W., Moshe, S. L., Nordli, D. R., & Dra Ingrid Scheffer, L. E. (2017). DOCUMENTO DE POSICIÓN DE LA ILAE Clasificación de las epilepsias de la ILAE: Documento de posición de la Comisión de Clasificación y Terminología de la ILAE. 58(4), 512–521. https://doi.org/10.1111/epi.13709 |
dc.relation.references | Sills, G. J., & Brodie, M. J. (2009). Antiepileptic Drugs: Preclinical Drug Development in Epilepsy. En Encyclopedia of Basic Epilepsy Research (pp. 97–103). Elsevier Inc. https://doi.org/10.1016/B978-012373961-2.00032-1 |
dc.relation.references | Singh, A., & Trevick, S. (2016). The Epidemiology of Global Epilepsy. En Neurologic Clinics (Vol. 34, Issue 4, pp. 837–847). https://doi.org/10.1016/j.ncl.2016.06.015 |
dc.relation.references | Singh, T., Mishra, A., & Goel, R. K. (2021). PTZ kindling model for epileptogenesis, refractory epilepsy, and associated comorbidities: relevance and reliability. Metabolic Brain Disease, 36(7), 1573–1590. https://doi.org/10.1007/S11011-021-00823-3 |
dc.relation.references | Smith, M. D., Metcalf, C. S., & Wilcox, K. S. (2019). Farmacoterapia de la epilepsia. En Las Bases Farmacológicas De La Terapéutica (13a ed., pp. 1–38). |
dc.relation.references | Souza, M. A., Scapinello, J., Guzatti, J. G. G., Scatolin, M., Martello, R., Schindler, M. S. Z., Calisto, J. F. F., Alves, B., Morgan, L. v., Oliveira, J. V., Magro, J. D., & Müller, L. G. (2021). Antinociceptive effect and mechanism of supercritical carbon dioxide extract of Aloysia gratissima leaves in mice. Biomedical Journal, 44(6), S63–S72. https://doi.org/10.1016/J.BJ.2020.06.009 |
dc.relation.references | Stephen, L. J., & Brodie, M. J. (2000). Epilepsy in elderly people. En Lancet (Vol. 355, Issue 9213, pp. 1441–1446). Elsevier Limited. https://doi.org/10.1016/S0140-6736(00)02149-8 |
dc.relation.references | Stone, N. L., Murphy, A. J., England, T. J., & O’Sullivan, S. E. (2020). A systematic review of minor phytocannabinoids with promising neuroprotective potential. British Journal of Pharmacology, 177(19), 4330–4352. https://doi.org/10.1111/BPH.15185 |
dc.relation.references | Thijs, R. D., Surges, R., O’Brien, T. J., & Sander, J. W. (2019). Epilepsy in adults. Lancet (London, England), 393(10172), 689–701. https://doi.org/10.1016/S0140-6736(18)32596-0 |
dc.relation.references | Thomas, A., Stevenson, L. A., Wease, K. N., Price, M. R., Baillie, G., Ross, R. A., & Pertwee, R. G. (2005). Evidence that the plant cannabinoid Δ 9- tetrahydrocannabivarin is a cannabinoid CB 1 and CB 2 receptor antagonist. British Journal of Pharmacology, 146(7), 917–926. https://doi.org/10.1038/sj.bjp.0706414 |
dc.relation.references | Thomas, B. F., & ElSohly, M. A. (2016). The Botany of Cannabis sativa L. En The Analytical Chemistry of Cannabis (pp. 1–26). Elsevier. https://doi.org/10.1016/b978-0-12-804646-3.00001-1 |
dc.relation.references | Torres-Hernández, B. A., del Valle-Mojica, L. M., & Ortíz, J. G. (2015). Valerenic acid and Valeriana officinalis extracts delay onset of Pentylenetetrazole (PTZ)-Induced seizures in adult Danio rerio (Zebrafish). BMC Complementary and Alternative Medicine, 15(1). https://doi.org/10.1186/s12906-015-0731-3 |
dc.relation.references | Tzadok, M., Uliel-Siboni, S., Linder, I., Kramer, U., Epstein, O., Menascu, S., Nissenkorn, A., Yosef, O. B., Hyman, E., Granot, D., Dor, M., Lerman-Sagie, T., & Ben-Zeev, B. (2016). CBD-enriched medical cannabis for intractable pediatric epilepsy: The current Israeli experience. Seizure, 35, 41–44. https://doi.org/10.1016/J.SEIZURE.2016.01.004 |
dc.relation.references | Uliel-Sibony, S., Hausman-Kedem, M., Fattal-Valevski, A., & Kramer, U. (2021). Cannabidiol-enriched oil in children and adults with treatment-resistant epilepsy-does tolerance exist? Brain and Development, 43(1), 89–96. https://doi.org/10.1016/j.braindev.2020.06.018 |
dc.relation.references | Uttl, L., Hložek, T., Mareš, P., Páleníček, T., & Kubová, H. (2021). Anticonvulsive Effects and Pharmacokinetic Profile of Cannabidiol (CBD) in the Pentylenetetrazol (PTZ) or N-Methyl-D-Aspartate (NMDA) Models of Seizures in Infantile Rats. International Journal of Molecular Sciences, 23(1). https://doi.org/10.3390/ijms23010094 |
dc.relation.references | van Vliet, E. A., & Gorter, J. A. (2017). Electrical Stimulation Seizure Models. En Models of Seizures and Epilepsy: Second Edition (pp. 474–488). Elsevier Inc. https://doi.org/10.1016/B978-0-12-804066-9.00034-1 |
dc.relation.references | Velez, A., & Eslava-Cobos, J. (2006). Epilepsy in Colombia: Epidemiologic profile and classification of epileptic seizures and syndromes. Epilepsia, 47(1), 193–201. https://doi.org/10.1111/j.1528-1167.2006.00387.x |
dc.relation.references | Vezzani, A., Balosso, S., & Ravizza, T. (2019). Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nature Reviews. Neurology, 15(8), 459–472. https://doi.org/10.1038/S41582-019-0217-X |
dc.relation.references | Wallace, M. J., Martin, B. R., & DeLorenzo, R. J. (2002). Evidence for a physiological role of endocannabinoids in the modulation of seizure threshold and severity. European Journal of Pharmacology, 452(3), 295–301. https://doi.org/10.1016/s0014-2999(02)02331-2 |
dc.relation.references | Wallace, M. J., Wiley, J. L., Martin, B. R., & DeLorenzo, R. J. (2001). Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. European Journal of Pharmacology, 428(1), 51–57. https://doi.org/10.1016/S0014-2999(01)01243-2 |
dc.relation.references | Witherspoon, E., Quinlan, S., & Forcelli, P. A. (2022). Preclinical efficacy of cannabidiol for the treatment of early-life seizures. Pharmacological Reports : PR, 74(5), 1092–1098. https://doi.org/10.1007/S43440-022-00413-9 |
dc.relation.references | Yeung, K. S., Hernandez, M., Mao, J. J., Haviland, I., & Gubili, J. (2018). Herbal medicine for depression and anxiety: A systematic review with assessment of potential psycho-oncologic relevance. Phytotherapy Research : PTR, 32(5), 865–891. https://doi.org/10.1002/PTR.6033 |
dc.relation.references | Zagaja, M., Bryda, J., Szewczyk, A., Szala-Rycaj, J., Łuszczki, J. J., Walczak, M., Kuś, K., & Andres-Mach, M. (2022). Xanthotoxin enhances the anticonvulsant potency of levetiracetam and valproate in the 6-Hz corneal stimulation model in mice. Fundamental and Clinical Pharmacology, 36(1), 133–142. https://doi.org/10.1111/FCP.12713 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.agrovoc | Cannabis |
dc.subject.lemb | ACEITES MINERALES |
dc.subject.lemb | Mineral oils |
dc.subject.proposal | Epilepsia |
dc.subject.proposal | Convulsión |
dc.subject.proposal | Cromatografia |
dc.subject.proposal | Cannabis |
dc.subject.proposal | Cannabidiol |
dc.subject.proposal | Pentilentetrazol |
dc.subject.proposal | Epilepsy |
dc.subject.proposal | Seizure |
dc.subject.proposal | Chromatography |
dc.subject.proposal | Pentylenetetrazol |
dc.subject.proposal | Cannabidiol |
dc.title.translated | Phytochemical characterization of Cannabis yoda distilled oil and pharmacological evaluation in rodent models of epilepsy |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Investigadores |
Files in this item
This item appears in the following Collection(s)
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit