Show simple item record

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorCastellanos Hernández, Leonardo
dc.contributor.authorSepúlveda Sánchez, Lady Yohanna
dc.date.accessioned2023-08-31T21:28:49Z
dc.date.available2023-08-31T21:28:49Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84624
dc.descriptionilustraciones, diagramas
dc.description.abstractLa proliferación de las algas marinas en los arrecifes del Caribe colombiano ha causado una perdida en la biodiversidad de estos ecosistemas. Con el fin de darle un aprovechamiento a esta biomasa, en este documento se investigó su potencial en la producción de cosméticos despigmentantes y antienvejecimiento. Este estudio se compone de cinco capítulos que abarcan aspectos como la revisión bibliográfica, la extracción de compuestos químicos, el análisis mediante Resonancia Magnética Nuclear (RMN) y espectrometría de masas (EM), la evaluación de la actividad inhibitoria enzimática, así como un estudio químico detallado de una de las algas más prometedoras. La revisión bibliográfica se enfoca en los antecedentes de la industria cosmética en Colombia y los avances en formulaciones antienvejecimiento . Además, se profundiza en las características y el potencial de las algas marinas como ingredientes cosméticos. En el segundo capítulo, se exploran diferentes metodologías de extracción de algas pardas y rojas, y se llevó a cabo el perfilado químico de las muestras seleccionadas usando RMN. El tercer capítulo se centra en el análisis de los extractos utilizando espectrometría de masas (LC-MS/MS) con el fin de obtener una visión detallada de su diversidad química, empleando redes moleculares construidas en la plataforma GNPS Global Natural Products Social Molecular Networking. En el cuarto capítulo, se evaluó la actividad antioxidante (DPPH) e inhibitoria de los extractos previamente obtenidos frente a las enzimas tirosinasa, colagenasa y hialuronidasa. Para los extractos más promisorios se evaluó su actividad citotóxica frente a queratinocitos humanos inmortalizados HaCaT y se encontró que Dictyopteris justii, un alga colectada en Providencia, tiene un potencial prometedor para la industria cosmética debido a su actividad inhibidora de las enzimas de interés y su baja toxicidad. Además, se encontró que algunas especies de Sargassum también son candidatas para futuros estudios. Por consiguiente, en el quinto capítulo se realizó el estudio químico de los extractos butanólicos de muestras de D. justii en diferentes locaciones y en diferentes épocas del año en Providencia, encontrando que, sin importar la muestra, la actividad antioxidante y su capacidad de inhibir las enzimas de interés se mantiene, además los compuestos responsables de dicha actividad corresponden a los florotaninos. Como conclusión, se destaca el potencial de estas algas marinas como valiosas materias primas en la industria cosmética, subrayando la importancia de realizar pruebas de seguridad rigurosas antes de su aplicación comercial. Esta tesis integra herramientas de machine learning, metabolómica y análisis multivariado, con el propósito de explorar el potencial de las algas marinas del Caribe colombiano en la industria cosmética. Los resultados destacan el extracto de Dictyopteris justii como un candidato prometedor y resaltan la necesidad de realizar más investigaciones en este campo.(Texto tomado de la fuente)
dc.description.abstractThe proliferation of marine algae in the Colombian Caribbean reefs has led to biodiversity loss in these ecosystems. In order to find a use for this biomass, this document explores its potential in the production of depigmenting and anti-aging cosmetics. This study consists of five chapters covering aspects such as literature review, chemical compound extraction, analysis through Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS), evaluation of enzymatic inhibitory activity, as well as a detailed chemical study of one of the most promising algae. The literature review focuses on Colombia's cosmetic industry background and advances in anti-aging formulations. Additionally, it delves into the characteristics and potential of marine algae as cosmetic ingredients. In the second chapter, various methodologies for extracting brown and red algae are explored, and the chemical profiling of selected samples was carried out using NMR. The third chapter analyzes the extracts using mass spectrometry (LC-MS/MS) to obtain a detailed view of their chemical diversity, employing molecular networks built on the GNPS platform Global Natural Products Social Molecular Networking. The fourth chapter evaluated the antioxidant (DPPH) and inhibitory activity of the previously obtained extracts against tyrosinase, collagenase, and hyaluronidase enzymes. For the most promising extracts, their cytotoxic activity against immortalized human keratinocytes (HaCaT) was evaluated, and it was found that Dictyopteris justii, algae collected in Providencia, holds promising potential for the cosmetic industry due to its inhibitory activity on the enzymes of interest and low toxicity. Furthermore, certain species of Sargassum were also identified as candidates for future studies. Consequently, the fifth chapter conducted a chemical study of butanol extracts from samples of D. justii in different locations and times of the year in Providencia. It was found that, regardless of the sample, the antioxidant activity and its ability to inhibit the enzymes of interest remained consistent. Additionally, the compounds responsible for this activity were identified as phlorotannins. In conclusion, the potential of these marine algae as valuable raw materials in the cosmetic industry is emphasized, underscoring the importance of conducting rigorous safety tests before commercial application. This thesis integrates machine learning, metabolomics, and multivariate analysis tools to explore the potential of marine algae from the Colombian Caribbean in the cosmetic industry. The results highlight the extract of Dictyopteris justii as a promising candidate and emphasize the need for further research.
dc.format.extentxxxvi, 309 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.titleBúsqueda de compuestos con posible actividad inhibitoria de enzimas de interés cosmético a partir de algas del Caribe colombiano
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.contributor.researchgroupGrupo de Investigación: Estudio y Aprovechamiento de Productos Naturales Marinos y Frutas de Colombia
dc.coverage.countryColombia
dc.coverage.regionCaribe
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias - Química
dc.description.researchareaProductos Naturales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesStatista. Cosmetics and personal care Market. https://www.statista.com/outlook/70000000/103/cosmetics-and-personal-care/latinamerica# (accessed 2018-04-02).
dc.relation.referencesStatista Research Department. Valor del mercado de cosméticos en Colombia de 2019 a 2021. https://es.statista.com/estadisticas/1320185/colombia-tamano-delmercado-de-cosmeticos/ (accessed 2022-07-10).
dc.relation.referencesAUNAP. Plan Nacional Para El Desarrollo de La Acuicultura Sostenible En Colombia - PlaNDAS; Bogotá, 2014. http://aunap.gov.co/wp-content/uploads/2016/04/PlanNacional-para-el-Desarrollo-de-la-Acuicultura-Sostenible-Colombia.pdf (accessed 2018-11-30).
dc.relation.referencesComisión de la Comunidad Andina. DECISIÓN 833 Modificación de la Decisión 516: “Armonización de legislaciones en materia de productos cosméticos.” http://www.sice.oas.org/trade/JUNAC/Decisiones/DEC833_s.pdf (accessed 2022- 07-13)
dc.relation.referencesCosmetics and Personal Care Products | TLC Exportador. http://ftaus.procolombia.co/offer-by-sector/manufacturing-and-supplies/cosmetics-andpersonal-care-products (accessed 2018-04-02).
dc.relation.referencesinexmoda. INFORME DEL SECTOR COSMÉTICO. http://www.saladeprensainexmoda.com/wp-content/uploads/2019/01/informegastometria-cosmeticos-enero-2019.pdf (accessed 2019-04-21)
dc.relation.referencesDecreto 476 de 2020. https://coronaviruscolombia.gov.co/Covid19/docs/decretos/minsalud/113_decreto_ 476.pdf (accessed 2022-01-03).
dc.relation.referencesIngredientes Naturales para Cosméticos-guia exportación. https://gqspcolombia.org/wp-content/uploads/2021/12/Guia_exportar-ingredientesnaturales_Suiza_UE.pdf (accessed 2022-01-09).
dc.relation.referencesGQSP Colombia - Programa de Calidad para la Cadena de Químicos. Requisitos de calidad y sostenibilidad para ingredientes naturales en Suiza y la Unión Europea. https://gqspcolombia.org/wp-content/uploads/2021/12/Requisitos-de-calidad-ysostenibilidad-IN.pdf (accessed 2021-01-09).
dc.relation.referencesGQSP Colombia – Programa de Calidad para la Cadena de Químicos. https://gqspcolombia.org/#laboratorios (accessed 2022-01-03)
dc.relation.referencesGupta, M. A.; Gilchrest, B. A. Psychosocial Aspects Of Aging Skin. Dermatol. Clin. 2005, 23 (4), 643–648. https://doi.org/10.1016/j.det.2005.05.012
dc.relation.referencesDayan, N. Skin Aging Handbook: An Integrated Approach to Biochemistry and Product Development (Personal Care and Cosmetic Technology), 1st Editio.; William Andrew: New York, 2008.
dc.relation.referencesCouteau, C.; Coiffard, L. Pourquoi Les Cosmétiques Bio Ne Sont Pas Meilleurs Que Les Autres? Actual. Pharm. 2010, 49 (495), 32–35. https://doi.org/10.1016/S0515- 3700(10)70673-X.
dc.relation.referencesCouteau, C.; Coiffard, L. Pourquoi Les Cosmétiques Bio Ne Sont Pas Meilleurs Que Les Autres? Actual. Pharm. 2010, 49 (495), 32–35. https://doi.org/10.1016/S0515- 3700(10)70673-X.
dc.relation.referencesFDA. Prohibited & Restricted Ingredients in Cosmetics | FDA. https://www.fda.gov/cosmetics/cosmetics-laws-regulations/prohibited-restrictedingredients-cosmetics (accessed 2019-07-02)
dc.relation.referencesDreno, B.; Araviiskaia, E.; Berardesca, E.; Bieber, T.; Hawk, J.; Sanchez-Viera, M.; Wolkenstein, P. The Science of Dermocosmetics and Its Role in Dermatology. J. Eur. Acad. Dermatology Venereol. 2014, 28 (11), 1409–1417. https://doi.org/10.1111/jdv.12497
dc.relation.referencesONUDI Colombia. Análisis de la competitividad del sector cosméticos e ingredientes naturales.
dc.relation.referencesVermeer, B. J. Cosmeceuticals. Arch. Dermatol. 1996, 132 (3), 337. https://doi.org/10.1001/archderm.1996.03890270113017
dc.relation.referencesAgrawal, S.; Adholeya, A.; Barrow, C. J.; Deshmukh, S. K. Marine Fungi: An Untapped Bioresource for Future Cosmeceuticals. Phytochem. Lett. 2018, 23 (October 2017), 15–20. https://doi.org/10.1016/j.phytol.2017.11.003
dc.relation.referencesKikuchi, K.; Tagami, H. Dermatological Benefits of Cosmetics; Elsevier Inc., 2017. https://doi.org/10.1016/B978-0-12-802005-0.00007-0
dc.relation.referencesAmaied, E.; Vargiolu, R.; Bergheau, J. M.; Zahouani, H. Aging Effect on Tactile Perception: Experimental and Modelling Studies. Wear 2015, 332–333, 715–724. https://doi.org/10.1016/j.wear.2015.02.030
dc.relation.referencesThieulin, C.; Pailler-Mattei, C.; Abdouni, A.; Djaghloul, M.; Zahouani, H. Mechanical and Topographical Anisotropy for Human Skin: Ageing Effect. J. Mech. Behav. Biomed. Mater. 2020, 103 (October 2019), 103551. https://doi.org/10.1016/j.jmbbm.2019.103551
dc.relation.referencesOomens, C. W. J.; van Vijven, M.; Peters, G. W. M. Skin Mechanics. In Biomechanics of Living Organs; Elsevier, 2017; pp 347–357. https://doi.org/10.1016/B978-0-12- 804009-6.00016-X
dc.relation.referencesGilaberte, Y.; Prieto-Torres, L.; Pastushenko, I.; Juarranz, Á. Anatomy and Function of the Skin. In Nanoscience in Dermatology; Elsevier, 2016; pp 1–14. https://doi.org/10.1016/B978-0-12-802926-8.00001-X
dc.relation.referencesKim, H. M.; An, H. S.; Bae, J. S.; Kim, J. Y.; Choi, C. H.; Kim, J. Y.; Lim, J. H.; Choi, J. hun; Song, H.; Moon, S. H.; Park, Y. J.; Chang, S. J.; Choi, S. Y. Effects of Capítulo 1 39 Palmitoyl-KVK-L-Ascorbic Acid on Skin Wrinkles and Pigmentation. Arch. Dermatol. Res. 2017, 309 (5), 397–402. https://doi.org/10.1007/s00403-017-1731-6
dc.relation.referencesGanceviciene, R.; Liakou, A. I.; Theodoridis, A.; Makrantonaki, E.; Zouboulis, C. C. Skin Anti-Aging Strategies. Dermatoendocrinol. 2012, 4 (3), 308–319. https://doi.org/10.4161/derm.22804
dc.relation.referencesTobin, D. J. Introduction to Skin Aging. J. Tissue Viability 2017, 26 (1), 37–46. https://doi.org/10.1016/j.jtv.2016.03.002
dc.relation.referencesJenkins, G. Molecular Mechanisms of Skin Ageing. Mech. Ageing Dev. 2002, 123 (7), 801–810. https://doi.org/10.1016/S0047-6374(01)00425-0
dc.relation.referencesHetta, M. Hyaluronidase Inhibitors as Skin Rejuvenating Agents from Natural Source. Int. J. Phytocosmetics Nat. Ingredients 2020, 7, e4. https://doi.org/10.15171/ijpni.2020.04
dc.relation.referencesFreitas-Rodríguez, S.; Folgueras, A. R.; López-Otín, C. The Role of Matrix Metalloproteinases in Aging: Tissue Remodeling and Beyond. Biochim. Biophys. Acta - Mol. Cell Res. 2017, 1864 (11), 2015–2025. https://doi.org/10.1016/j.bbamcr.2017.05.007
dc.relation.referencesAhmed, I. A.; Mikail, M. A.; Zamakshshari, N.; Abdullah, A.-S. H. Natural Anti-Aging Skincare: Role and Potential. Biogerontology 2020, 21 (3), 293–310. https://doi.org/10.1007/s10522-020-09865-z
dc.relation.referencesFisher, G. J.; Kang, S.; Varani, J.; Bata-Csorgo, Z.; Wan, Y.; Datta, S.; Voorhees, J. J. Mechanisms of Photoaging and Chronological Skin Aging. Arch. Dermatol. 2002, 138 (11), 1462–1470. https://doi.org/10.1001/archderm.138.11.1462
dc.relation.referencesHwang, K.-A.; Yi, B.-R.; Choi, K.-C. Molecular Mechanisms and In Vivo Mouse Models of Skin Aging Associated with Dermal Matrix Alterations. Lab. Anim. Res. 2011, 27 (1), 1–8. https://doi.org/10.5625/lar.2011.27.1.1.
dc.relation.referencesShah, H.; Rawal Mahajan, S. Photoaging: New Insights into Its Stimulators, Complications, Biochemical Changes and Therapeutic Interventions. Biomed. Aging Pathol. 2013, 3 (3), 161–169. https://doi.org/10.1016/j.biomag.2013.05.003
dc.relation.referencesMumtaz, S.; Ali, S.; Tahir, H. M.; Kazmi, S. A. R.; Shakir, H. A.; Mughal, T. A.; Mumtaz, S.; Summer, M.; Farooq, M. A. Aging and Its Treatment with Vitamin C: A Comprehensive Mechanistic Review. Mol. Biol. Rep. 2021, 48 (12), 8141–8153. https://doi.org/10.1007/S11033-021-06781-4.
dc.relation.referencesKeen, M. Hyaluronic Acid in Dermatology. Skinmed 2017, 15, 441–448. (38) Hendry Henderson, A.; Nyoman Ehrich Lister, I.; Girsang, E.; Fachrial, E. Antioxidant and Anticollagenase Activity of Tomato (Solanum Lycopersicum L.) and Lycopene. Technol. Sci. Am. Sci. Res. J. Eng. 2019, 52 (1), 57–66
dc.relation.referencesGarg, C.; Khurana, P.; Garg, M. Molecular Mechanisms of Skin Photoaging and Plant Inhibitors. Int. J. Green Pharm. 2017, 11 (2), 217–232
dc.relation.referencesFonseca, Y. M.; Catini, C. D.; Vicentini, F. T. M. C.; Nomizo, A.; Gerlach, R. F.; Fonseca, M. J. V. Protective Effect of Calendula Officinalis Extract against UVBInduced Oxidative Stress in Skin: Evaluation of Reduced Glutathione Levels and Matrix Metalloproteinase Secretion. J. Ethnopharmacol. 2010, 127 (3), 596–601. https://doi.org/10.1016/j.jep.2009.12.019
dc.relation.referencesBylka, W.; Znajdek-Awiżeń, P.; Studzińska-Sroka, E.; Brzezińska, M. Centella Asiatica in Cosmetology. Adv. Dermatology Allergol. 2013, 1, 46–49. https://doi.org/10.5114/pdia.2013.33378
dc.relation.referencesSenol Deniz, F. S.; Orhan, I. E.; Duman, H. Profiling Cosmeceutical Effects of Various Herbal Extracts through Elastase, Collagenase, Tyrosinase Inhibitory and Antioxidant Assays. Phytochem. Lett. 2021, 45, 171–183.
dc.relation.referencesRoy, A.; Sahu, R.; Matlam, M.; Deshmukh, V.; Dwivedi, J.; Jha, A. In Vitro Techniques To Assess The Proficiency of Skin Care Cosmetic Formulations. Pharmacogn. Rev. 2013, 7 (14), 97–106. https://doi.org/10.4103/0973-7847.120507
dc.relation.referencesMoon, J. K.; Shibamoto, T. Antioxidant Assays for Plant and Food Components. Journal of Agricultural and Food Chemistry. March 11, 2009, pp 1655–1666. https://doi.org/10.1021/jf803537k
dc.relation.referencesZappelli, C.; Barbulova, A.; Apone, F.; Colucci, G. Effective Active Ingredients Obtained through Biotechnology. Cosmetics 2016, 3 (4), 39. https://doi.org/10.3390/cosmetics3040039
dc.relation.referencesBriganti, S.; Camera, E.; Picardo, M. Chemical and Instrumental Approaches to Treat Hyperpigmentation. Pigment Cell Res. 2003, 16 (2), 101–110. https://doi.org/10.1034/j.1600-0749.2003.00029.x
dc.relation.referencesVirador, V. M.; Kobayashi, N.; Matsunaga, J.; Hearing, V. J. A Standardized Protocol for Assessing Regulators of Pigmentation. Anal. Biochem. 1999, 270 (2), 207–219. https://doi.org/10.1006/abio.1999.4090
dc.relation.referencesGunia-Krzyżak, A.; Popiol, J.; Marona, H. Melanogenesis Inhibitors: Strategies for Searching for and Evaluation of Active Compounds. Curr. Med. Chem. 2016, 23 (31), 3548–3574. https://doi.org/10.2174/0929867323666160627094938
dc.relation.referencesThomas, N. V.; Kim, S.-K. Fucoidans from Marine Algae as Potential Matrix Metalloproteinase Inhibitors. In Advances in Food and Nutrition Research; Elsevier Inc., 2014; Vol. 72, pp 177–193. https://doi.org/10.1016/B978-0-12-800269-8.00010- 5
dc.relation.referencesGhersetich, I.; Troiano, M.; De Giorgi, V.; Lotti, T. Receptors in Skin Ageing and Antiageing Agents. Dermatol. Clin. 2007, 25 (4), 655–662. https://doi.org/10.1016/j.det.2007.06.018
dc.relation.referencesLiu, H.; Mander, L. Comprehensive Natural Products II - Chemistry and Biology - Volume_3, 1st editio.; Elsevier Science: Kidlington, 2010
dc.relation.referencesSYN®-COLL. https://www.dsm.com/personal-care/en_US/products/skinbioactives/syn-coll.html (accessed 2022-02-09)
dc.relation.referencesTRI-K Industries, I. DermaPep TM A440. Innovative Anti-Aging Tetrapeptide. https://www.ulprospector.com/documents/1185121.pdf?bs=1957&b=240140&st=20 &r=la&ind=personalcare (accessed 2022-02-18)
dc.relation.referencesInc., S.-C. I. SpecKare ® MBA (Maltobionic Acid). https://www.ulprospector.com/en/na/PersonalCare/Detail/5738/5492191/SpecKareMBA (accessed 2022-02-09)
dc.relation.referencesEspinosa-Leal, C.; Garcia-Lara, S. Current Methods for the Discovery of New Active Ingredients from Natural Products for Cosmeceutical Applications. Planta Med. 2019, 85 (07), 535–551. https://doi.org/10.1055/a-0857-6633
dc.relation.referencesHarjo, B.; Wibowo, C.; Ng, K. M. Development of Natural Product Manufacturing Processes: Phytochemicals. Chem. Eng. Res. Des. 2004, 82 (8), 1010–1028. https://doi.org/10.1205/0263876041580695
dc.relation.referencesTracy, L. E.; Minasian, R. A.; Caterson, E. J. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Adv. Wound Care 2016, 5 (3), 119–136. https://doi.org/10.1089/WOUND.2014.0561
dc.relation.referencesKim, S. W.; Kim, B.-H. A Web-Based Alternative Non-Animal Method Database for Safety Cosmetic Evaluations. Toxicol. Res. 2016, 32 (3), 259–267. https://doi.org/10.5487/TR.2016.32.3.259
dc.relation.referencesBurger, P.; Landreau, A.; Azoulay, S.; Michel, T.; Fernandez, X. Skin Whitening Cosmetics: Feedback and Challenges in the Development of Natural Skin Lighteners. Cosmetics 2016, 3 (4), 36. https://doi.org/10.3390/cosmetics3040036
dc.relation.referencesSkoczyńska, A.; Budzisz, E.; Trznadel-grodzka, E.; Rotsztejn, H. Melanin and Lipofuscin as Hallmarks of Skin Aging. 2017, 97–103
dc.relation.referencesChang, T.-S. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci. 2009, 10 (6), 2440–2475. https://doi.org/10.3390/ijms10062440
dc.relation.referencesPillaiyar, T.; Namasivayam, V.; Manickam, M.; Jung, S.-H. Inhibitors of Melanogenesis: An Updated Review. J. Med. Chem. 2018, 61 (17), 7395–7418. https://doi.org/10.1021/acs.jmedchem.7b00967
dc.relation.referencesPark, H. Y.; Kosmadaki, M.; Yaar, M.; Gilchrest, B. A. Cellular Mechanisms Regulating Human Melanogenesis. Cell. Mol. Life Sci. 2009, 66 (9), 1493–1506. https://doi.org/10.1007/s00018-009-8703-8
dc.relation.referencesCouteau, C.; Coiffard, L. Overview of Skin Whitening Agents: Drugs and Cosmetic Products. Cosmetics 2016, 3 (3), 27. https://doi.org/10.3390/cosmetics3030027
dc.relation.referencesZhu, W.; Gao, J. The Use of Botanical Extracts as Topical Skin-Lightening Agents for the Improvement of Skin Pigmentation Disorders. J. Investig. Dermatology Symp. Proc. 2008, 13 (1), 20–24. https://doi.org/10.1038/jidsymp.2008.8
dc.relation.referencesEuropean Commission. ANNEX II. List of Substances Prohibited in Cosmetic Products. https://ec.europa.eu/growth/tools-databases/cosing/pdf/COSING_Annex II_v2.pdf (accessed 2020-04-16)
dc.relation.referencesCabanes, J.; Chazarra, S.; Garcia-Carmona, F. Kojic Acid, a Cosmetic Skin Whitening Agent, Is a Slow-Binding Inhibitor of Catecholase Activity of Tyrosinase. J. Pharm. Pharmacol. 1994, 46 (12), 982–985. https://doi.org/10.1111/j.2042- 7158.1994.tb03253.x
dc.relation.referencesHakozaki, T.; Minwalla, L.; Zhuang, J.; Chhoa, M.; Matsubara, A.; Miyamoto, K.; Greatens, A.; Hillebrand, G. G.; Bissett, D. L.; Boissy, R. E. The Effect of Niacinamide on Reducing Cutaneous Pigmentation and Suppression of Melanosome Transfer. Br. J. Dermatol. 2002, 147 (1), 20–31. https://doi.org/10.1046/j.1365- 2133.2002.04834.x
dc.relation.referencesMaeda, K.; Fukuda, M. Arbutin: Mechanism of Its Depigmenting Action in Human Melanocyte Culture. J. Pharmacol. Exp. Ther. 1996, 276 (2), 765–769
dc.relation.referencesBowes, L. The Science of Hydroxy Acids: Mechanisms of Action, Types and Cosmetic Applications. J. Aesthetic Nurs. 2013, 2 (2), 77–81. https://doi.org/10.12968/joan.2013.2.2.77
dc.relation.referencesLP, X.; QX, C.; H, H.; HZ, W.; RQ, Z. Inhibitory Effects of Some Flavonoids on the Activity of Mushroom Tyrosinase. Biochem. (Mosc). 2003, 68 (4), 487–491
dc.relation.referencesArct, J.; Pytkowska, K. Flavonoids as Components of Biologically Active Cosmeceuticals. Clin. Dermatol. 2008, 26 (4), 347–357. https://doi.org/10.1016/j.clindermatol.2008.01.004
dc.relation.referencesRos, J. R.; Rodríguez-López, J. N.; García-Cánovas, F. Effect of L-Ascorbic Acid on the Monophenolase Activity of Tyrosinase. Biochem. J. 1993, 295 (1), 309–312. https://doi.org/10.1042/bj2950309
dc.relation.referencesLai, K.-Y.; Hu, H.-C.; Chiang, H.-M.; Liu, Y.-J.; Yang, J.-C.; Lin, Y.-A.; Chen, C.-J.; Chang, Y.-S.; Lee, C.-L. New Diterpenes Leojaponins G–L from Leonurus Japonicus. Fitoterapia 2018, 130 (June), 125–133. https://doi.org/10.1016/j.fitote.2018.08.014
dc.relation.referencesLi, X.; Kim, M. K.; Lee, U.; Kim, S.-K.; Kang, J. S.; Choi, H. D.; Son, B. W. Myrothenones A and B, Cyclopentenone Derivatives with Tyrosinase Inhibitory Activity from the Marine-Derived Fungus Myrothecium Sp. Chem. Pharm. Bull. (Tokyo). 2005, 53 (4), 453–455. https://doi.org/10.1248/cpb.53.453
dc.relation.referencesDeering, R. W.; Chen, J.; Sun, J.; Ma, H.; Dubert, J.; Barja, J. L.; Seeram, N. P.; Wang, H.; Rowley, D. C. N -Acyl Dehydrotyrosines, Tyrosinase Inhibitors from the Marine Bacterium Thalassotalea Sp. PP2-459. J. Nat. Prod. 2016, 79 (2), 447–450. https://doi.org/10.1021/acs.jnatprod.5b00972
dc.relation.referencesRomero-González, R. R.; Ávila-Núñez, J. L.; Aubert, L.; Alonso-Amelot, M. E. Labdane Diterpenes from Leonurus Japonicus Leaves. Phytochemistry 2006, 67 (10), 965–970. https://doi.org/10.1016/j.phytochem.2006.03.015
dc.relation.referencesBiodiversidad en cifras. https://cifras.biodiversidad.co/ (accessed 2020-06-17)
dc.relation.referencesANDI. Informe de sostenibilidad de Industria de cosmética y aseo 2015. http://www.andi.com.co/cica/Documents/Cosmeticos/Informes/InformeSostenibilida d.pdf (accessed 2022-01-12)
dc.relation.referencesSistema de Información de la Investigación - HERMES. http://www.hermes.unal.edu.co/pages/Consultas/Proyecto.xhtml?idProyecto=3867 3&opcion=1 (accessed 2020-07-06).
dc.relation.referencesBogotá le apuesta a la innovación natural - Cluster de Cosméticos, Cámara de Comercio de Bogotá. https://www.ccb.org.co/Clusters/Cluster-deCosmeticos/Noticias/2018/Septiembre-2018/Bogota-le-apuesta-a-la-innovacionnatural (accessed 2020-07-06)
dc.relation.referencesBravo, K.; Quintero, C.; Agudelo, C.; García, S.; Bríñez, A.; Osorio, E. CosIng Database Analysis and Experimental Studies to Promote Latin American Plant Biodiversity for Cosmetic Use. Ind. Crops Prod. 2020, 144 (May), 112007. https://doi.org/10.1016/j.indcrop.2019.112007
dc.relation.referencesEuropean Commission. CosIng - Cosmetics - GROWTH - European Commission. http://ec.europa.eu/growth/tools-databases/cosing/ (accessed 2018-12-04)
dc.relation.referencesBautista Rodríguez, C. A. Una Mirada Al Estado Actual de La Investigación En Productos Naturales Marinos de Colombia-Tesis de Maestría., Universidad Nacional de Colombia, 2017. https://repositorio.unal.edu.co/handle/unal/62225
dc.relation.referencesKim, S. K. Marine Cosmeceuticals. J. Cosmet. Dermatol. 2014, 13 (1), 56–67. https://doi.org/10.1111/jocd.12057
dc.relation.referencesViscasillas Clerch, A.; Pozo, A. El Uso de Las Algas En Cosmética. Offarm Farm. y Soc. 2005, 24 (2), 126–127
dc.relation.referencesLópez-Hortas, L.; Flórez-Fernández, N.; Torres, M. D.; Ferreira-Anta, T.; Casas, M. P.; Balboa, E. M.; Falqué, E.; Domínguez, H. Applying Seaweed Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics. Mar. Drugs 2021, 19 (10), 552. https://doi.org/10.3390/md19100552
dc.relation.referencesKim, S. K. Handbook of Marine Biotecnology; Springer, 2015
dc.relation.referencesFood and Agriculture Organization. Seaweeds And Microalgae: An Overview For Unlocking Their Potential In Global Aquaculture Development. NFIA/C1229 (En); Rome, 2021; Vol. 1229
dc.relation.referencesBiotechnica | Extractos de algas, bioestimulantes y biofertilizantes. https://biotechnica.co.uk/ (accessed 2020-11-15).
dc.relation.referencesSeaweed Solutions. https://seaweedsolutions.com/ (accessed 2020-11-15)
dc.relation.referencesAn innovative approach to develop sustainable marine active ingredients from macroalgae | SEPPIC. https://www.seppic.com/en/scientificcommunications/innovative-approach-develop-sustainable-marine-activeingredients (accessed 2020-11-15)
dc.relation.referencesMekideche, N. Brown Algae Cell Lyophilisate, Method For The Obtention Thereof . 20080089851, April 17, 2018. https://patents.justia.com/patent/20080089851 (accessed 2020-11-15)
dc.relation.referencesCattuzzato, L.; Le Gelebart, E. Method for Culturing Cells of Acrochaetium moniliforme Red Algae, Method for Obtaining an Extract of the Biomass Thereof, and Use of Same in Cosmetics. https://patents.justia.com/patent/20180117106 (accessed 2020-11-15)
dc.relation.referencesYong, W. T. L.; Thien, V. Y.; Rupert, R.; Rodrigues, K. F. Seaweed: A Potential Climate Change Solution. Renew. Sustain. Energy Rev. 2022, 159 (September 2021), 112222. https://doi.org/10.1016/j.rser.2022.112222
dc.relation.referencesRincón Díaz M N, G. B. Diversidad de Macroalgas Marinas Del Caribe Colombiano. Inst. Investig. Mar. y Costeras - Invemar. Dataset/Checklist. 2020, 2.8. https://doi.org/10.15472/alecqe
dc.relation.referencesRincon-Díaz, M. N. Diversidad de Macroalgas Marinas del Caribe colombiano. http://ipt.biodiversidad.co/sibm/resource?r=macroalgas_caribe_colombia#downloa ds (accessed 2018-12-05)
dc.relation.referencesArias-Echeverri, J. P.; Zapata-Ramírez, P. A.; Ramírez-Carmona, M.; RendónCastrillón, L.; Ocampo-López, C. Present and Future of Seaweed Cultivation and Its Applications in Colombia. J. Mar. Sci. Eng. 2022, 10 (2), 243. https://doi.org/10.3390/jmse10020243
dc.relation.referencesUTadeo. Establecimiento y desarrollo de un proyecto piloto de cultivo de algas y desarrollo de productos basados en su derivados | Universidad de Bogotá Jorge Tadeo Lozano. https://www.utadeo.edu.co/es/evento/academicos/establecimientoy-desarrollo-de-un-proyecto-piloto-de-cultivo-de-algas-y?page=5 (accessed 2018- 09-16)
dc.relation.referencesMolina-Vargas, J. N. Resultados Preliminares Del Cultivo Experimental de Gracilaria Verrucosa (Hudson) Papenfuss (=G. Caudata J. Agardh) (Rhodophyta: Gracilariaceae) En La Costa Caribe de Colombia. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 2014, 38 (146), 79. https://doi.org/10.18257/raccefyn.41
dc.relation.referencesCamacho, O.; Montaña-Fernández, J. Cultivo Experimental En El Mar Del Alga Roja Hypnea Musciformis En El Area de Santa Marta, Caribe Colombiano. Bol. Investig. Mar. y Costeras 2012, 41 (1), 29–46. https://doi.org/10.25268/bimc.invemar.2012.41.1.71
dc.relation.referencesAriede, M. B.; Candido, T. M.; Jacome, A. L. M.; Velasco, M. V. R.; de Carvalho, J. C. M.; Baby, A. R. Cosmetic Attributes of Algae - A Review. Algal Res. 2017, 25 (May), 483–487. https://doi.org/10.1016/j.algal.2017.05.019
dc.relation.referencesSalehi; Sharifi-Rad; Seca; Pinto; Michalak; Trincone; Mishra; Nigam; Zam; Martins. Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules 2019, 24 (22), 4182. https://doi.org/10.3390/molecules24224182
dc.relation.referencesFaulkner, D. J. Marine Natural Products: Metabolites of Marine Invertebrates. Nat. Prod. Rep. 1984, 1 (6), 551–598. https://doi.org/10.1039/NP9840100551
dc.relation.referencesPereira, L. Therapeutical and Nutritional Uses of Algae; CRC Press: Coimbra, Portugal, 2018
dc.relation.referencesSudhakar, K.; Mamat, R.; Samykano, M.; Azmi, W. H.; Ishak, W. F. W.; Yusaf, T. An Overview of Marine Macroalgae as Bioresource. Renew. Sustain. Energy Rev. 2018, 91 (May 2017), 165–179. https://doi.org/10.1016/j.rser.2018.03.100
dc.relation.referencesEl Gamal, A. A. Biological Importance of Marine Algae. Saudi Pharm. J. 2010, 18 (1), 1–25. https://doi.org/10.1016/j.jsps.2009.12.001
dc.relation.referencesMcHugh, D. J.; Food and Agriculture Organization of the United Nations. A Guide to the Seaweed Industry; Food and Agriculture Organization of the United Nations, 2003
dc.relation.referencesSanjeewa, K. K. A.; Kim, E. A.; Son, K. T.; Jeon, Y. J. Bioactive Properties and Potentials Cosmeceutical Applications of Phlorotannins Isolated from Brown Seaweeds: A Review. J. Photochem. Photobiol. B Biol. 2016, 162, 100–105. https://doi.org/10.1016/j.jphotobiol.2016.06.027
dc.relation.referencesMorton DW, A.-K. S.; Morton, D. W. Cosmeceuticals Derived from Bioactive Substances Found in Marine Algae. Oceanogr. Open Access 2013, 01 (02), 1–11. https://doi.org/10.4172/2332-2632.1000106
dc.relation.referencesHentati, F.; Tounsi, L.; Djomdi, D.; Pierre, G.; Delattre, C.; Ursu, A. V.; Fendri, I.; Abdelkafi, S.; Michaud, P. Bioactive Polysaccharides from Seaweeds. Molecules. July 9, 2020, p 3152. https://doi.org/10.3390/molecules25143152
dc.relation.referencesPádua, D.; Rocha, E.; Gargiulo, D.; Ramos, A. A. Bioactive Compounds from Brown Seaweeds: Phloroglucinol, Fucoxanthin and Fucoidan as Promising Therapeutic Agents against Breast Cancer. Phytochem. Lett. 2015, 14, 91–98. https://doi.org/10.1016/j.phytol.2015.09.007
dc.relation.referencesPradhan, B.; Bhuyan, P. P.; Patra, S.; Nayak, R.; Behera, P. K.; Behera, C.; Behera, A. K.; Ki, J.-S.; Jena, M. Beneficial Effects of Seaweeds and Seaweed-Derived Bioactive Compounds: Current Evidence and Future Prospective. Biocatal. Agric. Biotechnol. 2022, 39 (November 2021), 102242. https://doi.org/10.1016/j.bcab.2021.102242
dc.relation.referencesYi, H.; Hong, J.; Xiangzhao, M. A. O.; Fangfang, C. I. Laminarin and Laminarin Oligosaccharides Originating from Brown Algae : Preparation, Biological Activities, and Potential Applications. 2021, 20 (3), 641–653. https://doi.org/10.1007/s11802- 021-4584-8
dc.relation.referencesKadam, S. U.; Tiwari, B. K.; O’Donnell, C. P. Extraction, Structure and Biofunctional Activities of Laminarin from Brown Algae. Int. J. Food Sci. Technol. 2015, 50 (1), 24– 31. https://doi.org/10.1111/ijfs.12692
dc.relation.referencesMarinova. What is Fucoidan? https://www.marinova.com.au/what-is-fucoidan/ (accessed 2022-02-16).
dc.relation.referencesLemesheva, V.; Tarakhovskaya, E. Physiological Functions of Phlorotannins. Biol. Commun. 2018, 63 (1), 70–76. https://doi.org/10.21638/spbu03.2018.108
dc.relation.referencesHalvorson, H. O.; Quezada, F. Handbook of Marine Biotechnology; 2009.
dc.relation.referencesRubiano-Buitrago, P. A. Estudio de Diterpenos Marinos de Algas Del Género Dictyota Del Caribe Colombiano. Tesis de Maestría., Universidad Nacional de Colombia, 2017. http://www.bdigital.unal.edu.co/59276/
dc.relation.referencesPardo-Vargas, A. Bioprospección de Productos Naturales Marinos de Organismos Bentónicos Del Litoral Brasileño y Caribe Colombiano- Fase I Tribu Dictyoteae. Tesis de Maestría., Universidad Nacional de Colombia, 2013. http://www.bdigital.unal.edu.co/45387/
dc.relation.referencesTeixeira, V. L.; Kelecom, A. A Chemotaxonomic Study of Diterpenes from Marine Brown Algae of the Genus Dictyota. Sci. Total Environ. 1988, 75 (2–3), 271–283. https://doi.org/10.1016/0048-9697(88)90040-X
dc.relation.referencesKo, R. K.; Kang, M.-C.; Kim, S. S.; Oh, T. H.; Kim, G.-O.; Hyun, C.-G.; Hyun, J. W.; Lee, N. H. Anti-Melanogenesis Constituents from the Seaweed Dictyota Coriacea. Nat. Prod. Commun. 2013, 8 (4), 1934578X1300800. https://doi.org/10.1177/1934578X1300800401
dc.relation.referencesde Paula, J. C.; Vallim, M. A.; Teixeira, V. L. What Are and Where Are the Bioactive Terpenoids Metabolites from Dictyotaceae (Phaeophyceae). Brazilian Journal of Pharmacognosy. 2011, pp 216–228. https://doi.org/10.1590/S0102- 695X2011005000079
dc.relation.referencesHur, S.; Lee, H.; Kim, Y.; Lee, B. H.; Shin, J.; Kim, T. Y. Sargaquinoic Acid and Sargachromenol, Extracts of Sargassum Sagamianum, Induce Apoptosis in HaCaT Cells and Mice Skin: Its Potentiation of UVB-Induced Apoptosis. Eur. J. Pharmacol. 2008, 582 (1–3), 1–11. https://doi.org/10.1016/j.ejphar.2007.12.025
dc.relation.referencesPardo-Vargas, A.; de Barcelos Oliveira, I.; Stephens, P.; Cirne-Santos, C.; de Palmer Paixão, I.; Ramos, F.; Jiménez, C.; Rodríguez, J.; Resende, J.; Teixeira, V.; Castellanos, L. Dolabelladienols A–C, New Diterpenes Isolated from Brazilian Brown Alga Dictyota Pfaffii. Mar. Drugs 2014, 12 (7), 4247–4259. https://doi.org/10.3390/md12074247
dc.relation.referencesSoares, D. C.; Calegari-Silva, T. C.; Lopes, U. G.; Teixeira, V. L.; de Palmer Paixão, I. C. N.; Cirne-Santos, C.; Bou-Habib, D. C.; Saraiva, E. M. Dolabelladienetriol, a Compound from Dictyota Pfaffii Algae, Inhibits the Infection by Leishmania Amazonensis. PLoS Negl. Trop. Dis. 2012, 6 (9), 1–12. https://doi.org/10.1371/journal.pntd.0001787
dc.relation.referencesRubiano-Buitrago, P.; Duque, F.; Puyana, M.; Ramos, F. A.; Castellanos, L. Bacterial Biofilm Inhibitor Diterpenes from Dictyota Pinnatifida Collected from the Colombian Caribbean. Phytochem. Lett. 2019, 30, 74–80. https://doi.org/10.1016/j.phytol.2019.01.021.
dc.relation.referencesEchavarría, B. Z.; Franco, A. S.; Martínez, A. M. Evaluación de La Actividad Antioxidante y Determinación Del Contenido de Compuestos Fenólicos En Extractos de Macroalgas Del Caribe Colombiano. Vitae 2009, 16, 126–131
dc.relation.referencesYamthe, L. R. T.; Appiah-Opong, R.; Fokou, P. V. T.; Tsabang, N.; Boyom, F. F.; Nyarko, A. K.; Wilson, M. D. Marine Algae as Source of Novel Antileishmanial Drugs: A Review. Mar. Drugs 2017, 15 (11), 1–28. https://doi.org/10.3390/md15110323
dc.relation.referencesBalboa, E. M.; Conde, E.; Moure, A.; Falqué, E.; Domínguez, H. In Vitro Antioxidant Properties of Crude Extracts and Compounds from Brown Algae. Food Chem. 2013, 138 (2–3), 1764–1785. https://doi.org/10.1016/j.foodchem.2012.11.026
dc.relation.referencesSanjeewa, K. K. A.; Lee, J. S.; Kim, W. S.; Jeon, Y. J. The Potential of Brown-Algae Polysaccharides for the Development of Anticancer Agents: An Update on Anticancer Effects Reported for Fucoidan and Laminaran. Carbohydr. Polym. 2017, 177 (September), 451–459. https://doi.org/10.1016/j.carbpol.2017.09.005
dc.relation.referencesde Souza Barros, C.; Garrido, V.; Melchiades, V.; Gomes, R.; Gomes, M. W. L.; Teixeira, V. L.; de Palmer Paixão, I. C. N. Therapeutic Efficacy in BALB/C Mice of Extract from Marine Alga Canistrocarpus Cervicornis (Phaeophyceae) against Herpes Simplex Virus Type 1. J. Appl. Phycol. 2017, 29 (2), 769–773. https://doi.org/10.1007/s10811-016-0865-9
dc.relation.referencesKoishi, A. C.; Zanello, P. R.; Bianco, É. M.; Bordignon, J.; Nunes Duarte dos Santos, C. Screening of Dengue Virus Antiviral Activity of Marine Seaweeds by an In Situ Enzyme-Linked Immunosorbent Assay. PLoS One 2012, 7 (12), 1–11. https://doi.org/10.1371/journal.pone.0051089
dc.relation.referencesKremb, S.; Helfer, M.; Kraus, B.; Wolff, H.; Wild, C.; Schneider, M.; Voolstra, C. R.; Brack-Werner, R. Aqueous Extracts of the Marine Brown Alga Lobophora Variegata Inhibit HIV-1 Infection at the Level of Virus Entry into Cells. PLoS One 2014, 9 (8), 1–12. https://doi.org/10.1371/journal.pone.0103895
dc.relation.referencesBarbosa, J. P.; Pereira, R. C.; Abrantes, J. L.; Cirne Dos Santos, C. C.; Rebello, M. A.; De Palmer Paixão Frugulhetti, I. C.; Teixeira, V. L. In Vitro Antiviral Diterpenes from the Brazilian Brown Alga Dictyota Pfaffii. Planta Med. 2004, 70 (9), 856–860. https://doi.org/10.1055/s-2004-827235
dc.relation.referencesBianco, É. M.; Rogers, R.; Teixeira, V. L.; Pereira, R. C. Antifoulant Diterpenes Produced by the Brown Seaweed Canistrocarpus Cervicornis. J. Appl. Phycol. 2009, 21 (3), 341–346. https://doi.org/10.1007/s10811-008-9374-9
dc.relation.referencesBarbosa, J. P.; Fleury, B. G.; da Gama, B. A. P.; Teixeira, V. L.; Pereira, R. C. Natural Products as Antifoulants in the Brazilian Brown Alga Dictyota Pfaffii (Phaeophyta, Dictyotales). Biochem. Syst. Ecol. 2007, 35 (8), 549–553. https://doi.org/10.1016/j.bse.2007.01.010
dc.relation.referencesSchmitt, T. M.; Lindquist, N.; Hay, M. E. Seaweed Secondary Metabolites as Antifoulants: Effects of Dictyota Spp. Diterpenes on Survivorship, Settlement, and Development of Marine Invertebrate Larvae. Chemoecology 1998, 8 (3), 125–131. https://doi.org/10.1007/s000490050017
dc.relation.referencesSchmitt, T. M.; Lindquist, N.; Hay, M. E. Seaweed Secondary Metabolites as Antifoulants: Effects of Dictyota Spp. Diterpenes on Survivorship, Settlement, and Development of Marine Invertebrate Larvae. Chemoecology 1998, 8 (3), 125–131. https://doi.org/10.1007/s000490050017
dc.relation.referencesMorais, T.; Cotas, J.; Pacheco, D.; Pereira, L. Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients? Cosmetics 2021, 8 (1), 1–28. https://doi.org/10.3390/COSMETICS8010008
dc.relation.referencesTorres, M. D.; Flórez-Fernández, N.; Domínguez, H. Integral Utilization of Red Seaweed for Bioactive Production. Mar. Drugs 2019, 17 (6), 314. https://doi.org/10.3390/md17060314
dc.relation.referencesQiu, Y.; Jiang, H.; Fu, L.; Ci, F.; Mao, X. Porphyran and Oligo-Porphyran Originating from Red Algae Porphyra: Preparation, Biological Activities, and Potential Applications. Food Chem. 2021, 349 (February), 129209. https://doi.org/10.1016/j.foodchem.2021.129209
dc.relation.referencesBhatia, S.; Sharma, A.; Sharma, K.; Kavale, M.; Chaugule, B.; Dhalwal, K.; Mahadik, K. Novel Algal Polysaccharides from Marine Source : Porphyran. Pharmacogn. Rev. 2008, 2 (4), 271–276
dc.relation.referencesBhatia, S.; Garg, A.; Sharma, K.; Kumar, S.; Sharma, A.; Purohit, A. P. Mycosporine and Mycosporine-like Amino Acids: A Paramount Tool against Ultra Violet Irradiation. Pharmacogn. Rev. 2011, 5 (10), 138–146. https://doi.org/10.4103/0973-7847.91107
dc.relation.referencesmibellebiochemistry. HelioguardTM 365 A natural UV-screening active to protect against photo-aging. https://mibellebiochemistry.com/helioguardtm-365 (accessed 2022-02-23)
dc.relation.referencesSchmid, D.; Cornelia, S.; Fred, Z. UV-A Sunscreen from Red Algae for Protection against Premature Skin Aging. Cosmetics 2004, 139–143
dc.relation.referencesCardoso, S.; Carvalho, L.; Silva, P.; Rodrigues, M.; Pereira, O.; Pereira, L. Bioproducts from Seaweeds: A Review with Special Focus on the Iberian Peninsula. Curr. Org. Chem. 2014, 18 (7), 896–917. https://doi.org/10.2174/138527281807140515154116
dc.relation.referencesDong, H.; Dong, S.; Hansen, P. E.; Stagos, D.; Lin, X.; Liu, M. Progress of Bromophenols in Marine Algae from 2011 to 2020: Structure, Bioactivities, and Applications. Mar. Drugs 2020, 18 (8), 32–34. https://doi.org/10.3390/MD18080411
dc.relation.referencesPierre, G.; Delattre, C.; Laroche, C.; Michaud, P. Galactans and Its Applications. Polysaccharides 2014, No. ii, 1–37. https://doi.org/10.1007/978-3-319-03751-6
dc.relation.referencesPangestuti, R.; Siahaan, E.; Kim, S.-K. Photoprotective Substances Derived from Marine Algae. Mar. Drugs 2018, 16 (11), 399. https://doi.org/10.3390/md16110399
dc.relation.referencesMonsalve-Bustamante, Y.; Rincón-Valencia, S.; Mejía-Giraldo, J.; Moreno-Tirado, D.; Puertas-Mejía, M. Screening of the UV Absorption Capacity, Proximal and Chemical Characterization of Extracts, and Polysaccharide Fractions of the Gracilariopsis Tenuifrons Cultivated in Colombia. J. Appl. Pharm. Sci. 2019, 9 (10), 103–109. https://doi.org/10.7324/JAPS.2019.91014
dc.relation.referencesRozo, G.; Rozo, C.; Puyana, M.; Ramos, F. A.; Almonacid, C.; Castro, H. Two Compounds of the Colombian Algae Hypnea Musciformis Prevent Oxidative Damage in Human Low Density Lipoproteins LDLs. J. Funct. Foods 2019, 60 (May), 103399. https://doi.org/10.1016/j.jff.2019.06.001.
dc.relation.referencesVargas Aya, P. A.; Torres, G. R. Sunscreen and Moisturizer Cream Effects of Cosmetic Formulations Containing Extracts of Hypnea Musciformis Collected in the Colombian Caribbean. Pharm. Pharmacol. Int. J. 2020, 8 (3), 192–199. https://doi.org/10.15406/ppij.2020.08.00296.
dc.relation.referencesRozo, G.; Rozo, C. Procedimiento Para Extraer y Purificar Kappa Carragenina Obtenida a Partir de Hypnea Musciformis. Patente de Invención., 2008. http://sipi.sic.gov.co/sipi/Extra/IP/Mutual/Browse.aspx?sid=637816726784178661.
dc.relation.referencesvan Santen, J. A.; Jacob, G.; Singh, A. L.; Aniebok, V.; Balunas, M. J.; Bunsko, D.; Neto, F. C.; Castaño-Espriu, L.; Chang, C.; Clark, T. N.; Cleary Little, J. L.; Delgadillo, D. A.; Dorrestein, P. C.; Duncan, K. R.; Egan, J. M.; Galey, M. M.; Haeckl, F. P. J.; Hua, A.; Hughes, A. H.; Iskakova, D.; Khadilkar, A.; Lee, J.-H.; Lee, S.; LeGrow, N.; Liu, D. Y.; Macho, J. M.; McCaughey, C. S.; Medema, M. H.; Neupane, R. P.; O’Donnell, T. J.; Paula, J. S.; Sanchez, L. M.; Shaikh, A. F.; Soldatou, S.; Terlouw, B. R.; Tran, T. A.; Valentine, M.; van der Hooft, J. J. J.; Vo, D. A.; Wang, M.; Wilson, D.; Zink, K. E.; Linington, R. G. The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products Discovery. ACS Cent. Sci. 2019, 5 (11), 1824–1833. https://doi.org/10.1021/acscentsci.9b00806
dc.relation.referencesThirumurugan, D.; Cholarajan, A.; Raja, S. S. S.; Vijayakumar, R. An Introductory Chapter: Secondary Metabolites. In Secondary Metabolites - Sources and Applications; InTech, 2018; pp 3–22. https://doi.org/10.5772/intechopen.79766
dc.relation.referencesAhmed, E.; Arshad, M.; Khan, M.; Amjad, M.; Sadaf, H.; Riaz, I.; Sabir, S.; Ahmad, N.; Sabaoon; Correspondence Ejaz Ahmed, P.; Sabir, S. Secondary Metabolites and Their Multidimensional Prospective in Plant Life. J. Pharmacogn. Phytochem. 2017, 6 (2), 205–214
dc.relation.referencesAtanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; Supuran, C. T. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20 (3), 200–216. https://doi.org/10.1038/s41573-020-00114-z
dc.relation.referencesReynolds, W. F. Natural Product Structure Elucidation by NMR Spectroscopy. In Pharmacognosy; Elsevier, 2017; pp 567–596. https://doi.org/10.1016/B978-0-12- 802104-0.00029-9
dc.relation.referencesManchester, M.; Anand, A. Metabolomics: Strategies to Define the Role of Metabolism in Virus Infection and Pathogenesis. In Advances in Virus Research; Elsevier Inc., 2017; Vol. 98, pp 57–81. https://doi.org/10.1016/bs.aivir.2017.02.001
dc.relation.referencesBraga, C. P.; Adamec, J. Metabolome Analysis. Encycl. Bioinforma. Comput. Biol. ABC Bioinforma. 2018, 1–3, 463–475. https://doi.org/10.1016/B978-0-12-809633- 8.20134-9
dc.relation.referencesWishart, D. S. NMR Metabolomics: A Look Ahead. J. Magn. Reson. 2019, 306, 155– 161. https://doi.org/10.1016/j.jmr.2019.07.013
dc.relation.referencesKim, H. K.; Choi, Y. H.; Verpoorte, R. NMR-Based Metabolomic Analysis of Plants. Nat. Protoc. 2010, 5 (3), 536–549. https://doi.org/10.1038/nprot.2009.237
dc.relation.referencesPuchades-Carrasco, L.; Palomino-Schätzlein, M.; Pérez-Rambla, C.; PinedaLucena, A. Bioinformatics Tools for the Analysis of NMR Metabolomics Studies Focused on the Identification of Clinically Relevant Biomarkers. Brief. Bioinform. 2016, 17 (3), 541–552. https://doi.org/10.1093/bib/bbv077
dc.relation.referencesMandal, S.; Moudgil, M.; Mandal, S. K. Rational Drug Design. European Journal of Pharmacology. Elsevier December 2009, pp 90–100. https://doi.org/10.1016/j.ejphar.2009.06.065
dc.relation.referencesZuschin, M.; Hohenegger, J.; Steininger, F. Book Review of Littler DM. Littler MM (2000) Caribbean Reef Plants An Identification Guide to the Reef Plants of the Caribbean, Bahamas, Florida and Gulf of Mexico. Coral Reefs 2001, 20 (2), 106– 106. https://doi.org/10.1007/s003380100147
dc.relation.referencesPardo-Vargas, A. Bioprospección de Productos Naturales Marinos de Organismos Bentónicos Del Litoral Brasileño y Caribe Colombiano- Fase I Tribu Dictyoteae. Tesis de Maestría., Universidad Nacional de Colombia, 2013. http://www.bdigital.unal.edu.co/45387/.
dc.relation.referencesRubiano-Buitrago, P.; Duque, F.; Puyana, M.; Ramos, F. A.; Castellanos, L. Bacterial Biofilm Inhibitor Diterpenes from Dictyota Pinnatifida Collected from the Colombian Caribbean. Phytochem. Lett. 2019, 30, 74–80. https://doi.org/10.1016/j.phytol.2019.01.021
dc.relation.referencesOrfanoudaki, M.; Hartmann, A.; Karsten, U.; Ganzera, M. Chemical Profiling of Mycosporine‐like Amino Acids in Twenty‐three Red Algal Species. J. Phycol. 2019, 55 (2), 393–403. https://doi.org/10.1111/jpy.12827
dc.relation.referencesXia, J.; Psychogios, N.; Young, N.; Wishart, D. S. MetaboAnalyst: A Web Server for Metabolomic Data Analysis and Interpretation. Nucleic Acids Res. 2009, 37 (SUPPL. 2). https://doi.org/10.1093/nar/gkp356
dc.relation.referencesKo, R. K.; Kang, M.-C.; Kim, S. S.; Oh, T. H.; Kim, G.-O.; Hyun, C.-G.; Hyun, J. W.; Lee, N. H. Anti-Melanogenesis Constituents from the Seaweed Dictyota Coriacea. Nat. Prod. Commun. 2013, 8 (4), 1934578X1300800. https://doi.org/10.1177/1934578X1300800401
dc.relation.referencesGeneralić Mekinić, I.; Šimat, V.; Botić, V.; Crnjac, A.; Smoljo, M.; Soldo, B.; Ljubenkov, I.; Čagalj, M.; Skroza, D. Bioactive Phenolic Metabolites from Adriatic Brown Algae Dictyota Dichotoma and Padina Pavonica (Dictyotaceae). Foods 2021, 10 (6), 1187. https://doi.org/10.3390/foods10061187
dc.relation.referencesGeneralić Mekinić, I.; Šimat, V.; Botić, V.; Crnjac, A.; Smoljo, M.; Soldo, B.; Ljubenkov, I.; Čagalj, M.; Skroza, D. Bioactive Phenolic Metabolites from Adriatic Brown Algae Dictyota Dichotoma and Padina Pavonica (Dictyotaceae). Foods 2021, 10 (6), 1187. https://doi.org/10.3390/foods10061187
dc.relation.referencesArguelles, E. D. L. R.; Sapin, A. B. Bioprospecting of Turbinaria Ornata (Fucales, Phaeophyceae) for Cosmetic Application: Antioxidant, Tyrosinase Inhibition and Antibacterial Activities. J. Int. Soc. Southeast Asian Agric. Sci. 2020, 26 (2), 30–41
dc.relation.referencesVargas Aya, P. A.; Torres, G. R. Sunscreen and Moisturizer Cream Effects of Cosmetic Formulations Containing Extracts of Hypnea Musciformis Collected in the Colombian Caribbean. Pharm. Pharmacol. Int. J. 2020, 8 (3), 192–199. https://doi.org/10.15406/ppij.2020.08.00296
dc.relation.referencesDragan, A.-M.-L.; Sirbu, R.; Cadar, E. Valuable Bioactive Compounds Extracted from Ceramium Rubrum on the Romanian Seaside with Medical Interest. Eur. J. Med. Nat. Sci. 2022, 5 (1), 63. https://doi.org/10.26417/283lyu42
dc.relation.referencesMorton DW, A.-K. S.; Morton, D. W. Cosmeceuticals Derived from Bioactive Substances Found in Marine Algae. Oceanogr. Open Access 2013, 01 (02), 1–11. https://doi.org/10.4172/2332-2632.1000106
dc.relation.referencesBuedenbender, L.; Astone, F. A.; Tasdemir, D. Bioactive Molecular Networking for Mapping the Antimicrobial Constituents of the Baltic Brown Alga Fucus Vesiculosus. Mar. Drugs 2020, 18 (6), 311. https://doi.org/10.3390/md18060311
dc.relation.referencesMorais, T.; Cotas, J.; Pacheco, D.; Pereira, L. Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients? Cosmetics 2021, 8 (1), 1–28. https://doi.org/10.3390/COSMETICS8010008
dc.relation.referencesBustamam, M. S. A.; Pantami, H. A.; Azizan, A.; Shaari, K.; Min, C. C.; Abas, F.; Nagao, N.; Maulidiani, M.; Banerjee, S.; Sulaiman, F.; Ismail, I. S. Complementary Analytical Platforms of NMR Spectroscopy and LCMS Analysis in the Metabolite Profiling of Isochrysis Galbana. Mar. Drugs 2021, 19 (3), 139. https://doi.org/10.3390/md19030139
dc.relation.referencesJayalakshmi, K.; Ghoshal, U. C.; Kumar, S.; Misra, A.; Roy, R.; Khetrapal, C. L. Assessment of Small Intestinal Permeability Using 1H-NMR Spectroscopy. J Gastrointest. Liver Dis. 2009, 18 (1), 27–32
dc.relation.referencesWilliams, R. B.; O’Neil-Johnson, M.; Williams, A. J.; Wheeler, P.; Pol, R.; Moser, A. Dereplication of Natural Products Using Minimal NMR Data Inputs. Org. Biomol. Chem. 2015, 13 (39), 9957–9962. https://doi.org/10.1039/C5OB01713K
dc.relation.referencesCarpena, M.; Garcia-Perez, P.; Garcia-Oliveira, P.; Chamorro, F.; Otero, P.; Lourenço-Lopes, C.; Cao, H.; Simal-Gandara, J.; Prieto, M. A. Biological Properties and Potential of Compounds Extracted from Red Seaweeds. Phytochem. Rev. 2022, 1–32. https://doi.org/10.1007/s11101-022-09826-z
dc.relation.referencesGutbrod, P.; Yang, W.; Grujicic, G. V.; Peisker, H.; Gutbrod, K.; Du, L. F.; Dörmann, P. Phytol Derived from Chlorophyll Hydrolysis in Plants Is Metabolized via Phytenal. J. Biol. Chem. 2021, 296, 100530. https://doi.org/10.1016/j.jbc.2021.100530
dc.relation.referencesSohn, S.-I.; Rathinapriya, P.; Balaji, S.; Jaya Balan, D.; Swetha, T. K.; Durgadevi, R.; Alagulakshmi, S.; Singaraj, P.; Pandian, S. Phytosterols in Seaweeds: An Overview on Biosynthesis to Biomedical Applications. Int. J. Mol. Sci. 2021, 22 (23), 12691. https://doi.org/10.3390/ijms222312691.
dc.relation.referencesHannan, M. A.; Sohag, A. A. M.; Dash, R.; Haque, M. N.; Mohibbullah, M.; Oktaviani, D. F.; Hossain, M. T.; Choi, H. J.; Moon, I. S. Phytosterols of Marine Algae: Insights into the Potential Health Benefits and Molecular Pharmacology. Phytomedicine 2020, 69 (February), 153201. https://doi.org/10.1016/j.phymed.2020.153201
dc.relation.referencesda Costa, E.; Melo, T.; Reis, M.; Domingues, P.; Calado, R.; Abreu, M. H.; Domingues, M. R. Polar Lipids Composition, Antioxidant and Anti-Inflammatory Activities of the Atlantic Red Seaweed Grateloupia Turuturu. Mar. Drugs 2021, 19 (8), 414. https://doi.org/10.3390/md19080414
dc.relation.referencesPlouguerne, E.; da Gama, B. A. P.; Pereira, R. C.; Barreto-Bergter, E. Glycolipids from Seaweeds and Their Potential Biotechnological Applications. Front. Cell. Infect. Microbiol. 2014, 4 (NOV), 1–5. https://doi.org/10.3389/fcimb.2014.00174.
dc.relation.referencesAlexandri, E.; Ahmed, R.; Siddiqui, H.; Choudhary, M.; Tsiafoulis, C.; Gerothanassis, I. High Resolution NMR Spectroscopy as a Structural and Analytical Tool for Unsaturated Lipids in Solution. Molecules 2017, 22 (10), 1663. https://doi.org/10.3390/molecules22101663
dc.relation.referencesSuttiarporn, P.; Chumpolsri, W.; Mahatheeranont, S.; Luangkamin, S.; Teepsawang, S.; Leardkamolkarn, V. Structures of Phytosterols and Triterpenoids with Potential Anti-Cancer Activity in Bran of Black Non-Glutinous Rice. Nutrients 2015, 7 (3), 1672–1687. https://doi.org/10.3390/nu7031672
dc.relation.referencesMoriya, H.; Takita, Y.; Matsumoto, A.; Yamahata, Y.; Nishimukai, M.; Miyazaki, M.; Shimoi, H.; Kawai, S.-J.; Yamada, M. Cobetia Sp. Bacteria, Which Are Capable of Utilizing Alginate or Waste Laminaria Sp. for Poly(3-Hydroxybutyrate) Synthesis, Isolated From a Marine Environment. Front. Bioeng. Biotechnol. 2020, 8 (August). https://doi.org/10.3389/fbioe.2020.00974
dc.relation.referencesHuamán-Castilla, N. L.; Allcca-Alca, E. E.; Allcca-Alca, G. J.; Quispe-Pérez, M. L. Biopolymers Produced by Azotobacter: Synthesis and Production, PhysicoMechanical Properties, and Potential Industrial Applications. Sci. Agropecu. 2021, 12 (3), 369–377. https://doi.org/10.17268/sci.agropecu.2021.040.
dc.relation.referencesLi, R.; Jiang, Y.; Wang, X.; Yang, J.; Gao, Y.; Zi, X.; Zhang, X.; Gao, H.; Hu, N. Psychrotrophic Pseudomonas Mandelii CBS-1 Produces High Levels of Poly-βHydroxybutyrate. Springerplus 2013, 2 (1), 335. https://doi.org/10.1186/2193-1801- 2-335
dc.relation.referencesSabarinathan, D.; Chandrika, S. P.; Venkatraman, P.; Easwaran, M.; Sureka, C. S.; Preethi, K. Production of Polyhydroxybutyrate (PHB) from Pseudomonas Plecoglossicida and Its Application towards Cancer Detection. Informatics Med. Unlocked 2018, 11 (May), 61–67. https://doi.org/10.1016/j.imu.2018.04.009
dc.relation.referencesPereira, L. Therapeutical and Nutritional Uses of Algae; CRC Press: Coimbra, Portugal, 2018
dc.relation.referencesSudhakar, K.; Mamat, R.; Samykano, M.; Azmi, W. H.; Ishak, W. F. W.; Yusaf, T. An Overview of Marine Macroalgae as Bioresource. Renew. Sustain. Energy Rev. 2018, 91 (May 2017), 165–179. https://doi.org/10.1016/j.rser.2018.03.100
dc.relation.referencesSilberfeld, T.; Rousseau, F.; Reviers, B. de. An Updated Classification of Brown Algae (Ochrophyta, Phaeophyceae). Cryptogam. Algol. 2014, 35 (2), 117–156. https://doi.org/10.7872/crya.v35.iss2.2014.117
dc.relation.referencesRincon-Díaz, M. N. Diversidad de Macroalgas Marinas del Caribe colombiano. http://ipt.biodiversidad.co/sibm/resource?r=macroalgas_caribe_colombia#downloa ds (accessed 2018-12-05)
dc.relation.referencesde Paula, J. C.; Vallim, M. A.; Teixeira, V. L. What Are and Where Are the Bioactive Terpenoids Metabolites from Dictyotaceae (Phaeophyceae). Brazilian Journal of Pharmacognosy. 2011, pp 216–228. https://doi.org/10.1590/S0102- 695X2011005000079
dc.relation.referencesCikoš, A.-M.; Jurin, M.; Čož-Rakovac, R.; Jokić, S.; Jerković, I. Update on Monoterpenes from Red Macroalgae: Isolation, Analysis, and Bioactivity. Mar. Drugs 2019, 17 (9), 537. https://doi.org/10.3390/md17090537
dc.relation.referencesLiu, L.; Heinrich, M.; Myers, S.; Dworjanyn, S. A. Towards a Better Understanding of Medicinal Uses of the Brown Seaweed Sargassum in Traditional Chinese Medicine: A Phytochemical and Pharmacological Review. J. Ethnopharmacol. 2012, 142 (3), 591–619. https://doi.org/10.1016/j.jep.2012.05.046
dc.relation.referencesRushdi, M. I.; Abdel-Rahman, I. A. M.; Saber, H.; Attia, E. Z.; Abdelraheem, W. M.; Madkour, H. A.; Abdelmohsen, U. R. The Genus Turbinaria : Chemical and Pharmacological Diversity. Nat. Prod. Res. 2021, 35 (22), 4560–4578. https://doi.org/10.1080/14786419.2020.1731741
dc.relation.referencesCikoš, A.-M.; Jurin, M.; Čož-Rakovac, R.; Gašo-Sokač, D.; Jokić, S.; Jerković, I. Update on Sesquiterpenes from Red Macroalgae of the Laurencia Genus and Their Biological Activities (2015–2020). Algal Res. 2021, 56 (February), 102330. https://doi.org/10.1016/j.algal.2021.102330
dc.relation.referencesChakraborty, K.; Joseph, D.; Joy, M.; Raola, V. K. Characterization of Substituted Aryl Meroterpenoids from Red Seaweed Hypnea Musciformis as Potential Antioxidants. Food Chem. 2016, 212, 778–788. https://doi.org/10.1016/j.foodchem.2016.06.039
dc.relation.referencesRubiano-Buitrago, P. A. Estudio de Diterpenos Marinos de Algas Del Género Dictyota Del Caribe Colombiano. Tesis de Maestría., Universidad Nacional de Colombia, 2017. http://www.bdigital.unal.edu.co/59276/.
dc.relation.referencesNunes Pinheiro, A. D.; Pereira Lopes-Filho, E. A.; De-Paula, J. C.; Pereira Netto, A. D.; Teixeira, V. L. Diterpenes from the Brown Alga Dictyota Mertensii. Biochem. Syst. Ecol. 2019, 86 (May), 103926. https://doi.org/10.1016/j.bse.2019.103926.
dc.relation.referencesNunes Pinheiro, A. D.; Pereira Lopes-Filho, E. A.; De-Paula, J. C.; Pereira Netto, A. D.; Teixeira, V. L. Diterpenes from the Brown Alga Dictyota Mertensii. Biochem. Syst. Ecol. 2019, 86 (May), 103926. https://doi.org/10.1016/j.bse.2019.103926.
dc.relation.referencesAlarado, A. B.; Gerwick, W. H. Dictyol H, a New Tricyclic Diterpenoid from the Brown Seaweed Dictyota Dentata. J. Nat. Prod. 1985, 48 (1), 132–134. https://doi.org/10.1021/np50037a026.
dc.relation.referencesLomartire, S.; Cotas, J.; Pacheco, D.; Marques, J. C.; Pereira, L.; Gonçalves, A. M. M. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar. Drugs 2021, 19 (5), 1–20.
dc.relation.referencesLomartire, S.; Cotas, J.; Pacheco, D.; Marques, J. C.; Pereira, L.; Gonçalves, A. M. M. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar. Drugs 2021, 19 (5), 1–20.
dc.relation.referencesMikami, K.; Hosokawa, M. Biosynthetic Pathway and Health Benefits of Fucoxanthin, an Algae-Specific Xanthophyll in Brown Seaweeds. Int. J. Mol. Sci. 2013, 14 (7), 13763–13781. https://doi.org/10.3390/ijms140713763.
dc.relation.referencesMiller, E. P.; Wu, Y.; Carrano, C. J. Boron Uptake, Localization, and Speciation in Marine Brown Algae. Metallomics 2016, 8 (2), 161–169. https://doi.org/10.1039/C5MT00238A
dc.relation.referencesUsoltseva, R. V.; Anastyuk, S. D.; Shevchenko, N. M.; Surits, V. V.; Silchenko, A. S.; Isakov, V. V.; Zvyagintseva, T. N.; Thinh, P. D.; Ermakova, S. P. Polysaccharides from Brown Algae Sargassum Duplicatum: The Structure and Anticancer Activity in Vitro. Carbohydr. Polym. 2017, 175 (July), 547–556. https://doi.org/10.1016/j.carbpol.2017.08.044
dc.relation.referencesBadrinathan, S.; Shiju, T. M.; Suneeva Sharon Christa, A.; Arya, R.; Pragasam, V. Purification and Structural Characterization of Sulfated Polysaccharide from Sargassum Myriocystum and Its Efficacy in Scavenging Free Radicals. Indian J. Pharm. Sci. 2012, 74 (6), 549–555. https://doi.org/10.4103/0250-474X.110600.
dc.relation.referencesSheu, J.-H.; Wang, G.-H.; Sung, P.-J.; Duh, C.-Y. New Cytotoxic Oxygenated Fucosterols from the Brown Alga Turbinaria Conoides. J. Nat. Prod. 1999, 62 (2), 224–227. https://doi.org/10.1021/np980233s
dc.relation.referencesPontrelli, S.; Sauer, U. Salt-Tolerant Metabolomics for Exometabolomic Measurements of Marine Bacterial Isolates. Anal. Chem. 2021, 93 (19), 7164–7171. https://doi.org/10.1021/acs.analchem.0c04795
dc.relation.referencesPerinu, C.; Arstad, B.; Bouzga, A. M.; Svendsen, J. A.; Jens, K. J. NMR-Based Carbamate Decomposition Constants of Linear Primary Alkanolamines for CO2 Capture. Ind. Eng. Chem. Res. 2014, 53 (38), 14571–14578. https://doi.org/10.1021/ie5020603
dc.relation.referencesRozo, G.; Rozo, C. Procedimiento Para Extraer y Purificar Kappa Carragenina Obtenida a Partir de Hypnea Musciformis. Patente de Invención., 2008. http://sipi.sic.gov.co/sipi/Extra/IP/Mutual/Browse.aspx?sid=637816726784178661
dc.relation.referencesKim, S. K.; Ravichandran, Y. D.; Khan, S. B.; Kim, Y. T. Prospective of the Cosmeceuticals Derived from Marine Organisms. Biotechnol. Bioprocess Eng. 2008, 13 (5), 511–523. https://doi.org/10.1007/s12257-008-0113-5
dc.relation.referencesCosta, R.; Santos, L. Delivery Systems for Cosmetics - From Manufacturing to the Skin of Natural Antioxidants. Powder Technol. 2017, 322, 402–416. https://doi.org/10.1016/j.powtec.2017.07.086
dc.relation.referencesKim, J. A.; Ahn, B. N.; Kong, C. S.; Kim, S. K. The Chromene Sargachromanol e Inhibits Ultraviolet A-Induced Ageing of Skin in Human Dermal Fibroblasts. Br. J. Dermatol. 2013, 168 (5), 968–976. https://doi.org/10.1111/bjd.12187
dc.relation.referencesTeas, J.; Irhimeh, M. R. Melanoma and Brown Seaweed: An Integrative Hypothesis. J. Appl. Phycol. 2017, 29 (2), 941–948. https://doi.org/10.1007/s10811-016-0979-0
dc.relation.referencesGaudêncio, S. P.; Pereira, F. Dereplication: Racing to Speed up the Natural Products Discovery Process. Nat. Prod. Rep. 2015, 32 (6), 779–810. https://doi.org/10.1039/c4np00134f.
dc.relation.referencesWishart, D. S. NMR Metabolomics: A Look Ahead. J. Magn. Reson. 2019, 306, 155–161. https://doi.org/10.1016/j.jmr.2019.07.013
dc.relation.referencesDavies, V.; Wandy, J.; Weidt, S.; van der Hooft, J. J. J.; Miller, A.; Daly, R.; Rogers, S. Rapid Development of Improved Data-Dependent Acquisition Strategies. Anal. Chem. 2021, 93 (14), 5676–5683. https://doi.org/10.1021/acs.analchem.0c03895
dc.relation.referencesNothias, L. F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M.; Aicheler, F.; Aksenov, A. A.; Alka, O.; Allard, P. M.; Barsch, A.; Cachet, X.; Caraballo-Rodriguez, A. M.; Da Silva, R. R.; Dang, T.; Garg, N.; Gauglitz, J. M.; Gurevich, A.; Isaac, G.; Jarmusch, A. K.; Kameník, Z.; Kang, K. Bin; Kessler, N.; Koester, I.; Korf, A.; Le Gouellec, A.; Ludwig, M.; Martin H, C.; McCall, L. I.; McSayles, J.; Meyer, S. W.; Mohimani, H.; Morsy, M.; Moyne, O.; Neumann, S.; Neuweger, H.; Nguyen, N. H.; NothiasEsposito, M.; Paolini, J.; Phelan, V. V.; Pluskal, T.; Quinn, R. A.; Rogers, S.; Shrestha, B.; Tripathi, A.; van der Hooft, J. J. J.; Vargas, F.; Weldon, K. C.; Witting, M.; Yang, H.; Zhang, Z.; Zubeil, F.; Kohlbacher, O.; Böcker, S.; Alexandrov, T.; Bandeira, N.; Wang, M.; Dorrestein, P. C. Feature-Based Molecular Networking in the GNPS Analysis Environment. Nat. Methods 2020, 17 (9), 905–908. https://doi.org/10.1038/s41592-020-0933-6
dc.relation.referencesSchmid, R.; Petras, D.; Nothias, L. F.; Wang, M.; Aron, A. T.; Jagels, A.; Tsugawa, H.; Rainer, J.; Garcia-Aloy, M.; Dührkop, K.; Korf, A.; Pluskal, T.; Kameník, Z.; Jarmusch, A. K.; Caraballo-Rodríguez, A. M.; Weldon, K. C.; Nothias-Esposito, M.; Aksenov, A. A.; Bauermeister, A.; Albarracin Orio, A.; Grundmann, C. O.; Vargas, F.; Koester, I.; Gauglitz, J. M.; Gentry, E. C.; Hövelmann, Y.; Kalinina, S. A.; Pendergraft, M. A.; Panitchpakdi, M.; Tehan, R.; Le Gouellec, A.; Aleti, G.; Mannochio Russo, H.; Arndt, B.; Hübner, F.; Hayen, H.; Zhi, H.; Raffatellu, M.; Prather, K. A.; Aluwihare, L. I.; Böcker, S.; McPhail, K. L.; Humpf, H. U.; Karst, U.; Dorrestein, P. C. Ion Identity Molecular Networking for Mass Spectrometry-Based Metabolomics in the GNPS Environment. Nat. Commun. 2021, 12 (1). https://doi.org/10.1038/s41467-021-23953-9
dc.relation.referencesWang, M.; Carver, J. J.; Phelan, V. V; Sanchez, L. M.; Garg, N.; Peng, Y.; Nguyen, D. D.; Watrous, J.; Kapono, C. A.; Luzzatto-Knaan, T.; Porto, C.; Bouslimani, A.; Melnik, A. V; Meehan, M. J.; Liu, W.-T.; Crüsemann, M.; Boudreau, P. D.; Esquenazi, E.; Sandoval-Calderón, M.; Kersten, R. D.; Pace, L. A.; Quinn, R. A.; Duncan, K. R.; Hsu, C.-C.; Floros, D. J.; Gavilan, R. G.; Kleigrewe, K.; Northen, T.; Dutton, R. J.; Parrot, D.; Carlson, E. E.; Aigle, B.; Michelsen, C. F.; Jelsbak, L.; Sohlenkamp, C.; Pevzner, P.; Edlund, A.; McLean, J.; Piel, J.; Murphy, B. T.; Gerwick, L.; Liaw, C.-C.; Yang, Y.-L.; Humpf, H.-U.; Maansson, M.; Keyzers, R. A.; Sims, A. C.; Johnson, A. R.; Sidebottom, A. M.; Sedio, B. E.; Klitgaard, A.; Larson, C. B.; Boya P, C. A.; Torres-Mendoza, D.; Gonzalez, D. J.; Silva, D. B.; Marques, L. M.; Demarque, D. P.; Pociute, E.; O’Neill, E. C.; Briand, E.; Helfrich, E. J. N.; Granatosky, E. A.; Glukhov, E.; Ryffel, F.; Houson, H.; Mohimani, H.; Kharbush, J. J.; Zeng, Y.; Vorholt, J. A.; Kurita, K. L.; Charusanti, P.; McPhail, K. L.; Nielsen, K. F.; Vuong, L.; Elfeki, M.; Traxler, M. F.; Engene, N.; Koyama, N.; Vining, O. B.; Baric, R.; Silva, R. R.; Mascuch, S. J.; Tomasi, S.; Jenkins, S.; Macherla, V.; Hoffman, T.; Agarwal, V.; Williams, P. G.; Dai, J.; Neupane, R.; Gurr, J.; Rodríguez, A. M. C.; Lamsa, A.; Zhang, C.; Dorrestein, K.; Duggan, B. M.; Almaliti, J.; Allard, P.-M.; Phapale, P.; Nothias, L.-F.; Alexandrov, T.; Litaudon, M.; Wolfender, J.-L.; Kyle, J. E.; Metz, T. O.; Peryea, T.; Nguyen, D.-T.; VanLeer, D.; Shinn, P.; Jadhav, A.; Müller, R.; Waters, K. M.; Shi, W.; Liu, X.; Zhang, L.; Knight, R.; Jensen, P. R.; Palsson, B. Ø.; Pogliano, K.; Linington, R. G.; Gutiérrez, M.; Lopes, N. P.; Gerwick, W. H.; Moore, B. S.; Dorrestein, P. C.; Bandeira, N. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34 (8), 828–837. https://doi.org/10.1038/nbt.3597.
dc.relation.referencesVan Der Hooft, J. J. J.; Wandy, J.; Barrett, M. P.; Burgess, K. E. V.; Rogers, S. Topic Modeling for Untargeted Substructure Exploration in Metabolomics. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (48), 13738–13743. https://doi.org/10.1073/pnas.1608041113
dc.relation.referencesDjoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.; Bolton, E.; Greiner, R.; Wishart, D. S. ClassyFire: Automated Chemical Classification with a Comprehensive, Computable Taxonomy. J. Cheminform. 2016, 8 (1), 1–20. https://doi.org/10.1186/s13321-016- 0174-y.
dc.relation.referencesda Silva, R. R.; Wang, M.; Nothias, L.-F.; van der Hooft, J. J. J.; CaraballoRodríguez, A. M.; Fox, E.; Balunas, M. J.; Klassen, J. L.; Lopes, N. P.; Dorrestein, P. C. Propagating Annotations of Molecular Networks Using in Silico Fragmentation. PLOS Comput. Biol. 2018, 14 (4), e1006089. https://doi.org/10.1371/journal.pcbi.1006089
dc.relation.referencesGurevich, A.; Mikheenko, A.; Shlemov, A.; Korobeynikov, A.; Mohimani, H.; Pevzner, P. A. Increased Diversity of Peptidic Natural Products Revealed by Modification-Tolerant Database Search of Mass Spectra. Nat. Microbiol. 2018, 3 (3), 319–327. https://doi.org/10.1038/s41564-017-0094-2.
dc.relation.referencesMohimani, H.; Gurevich, A.; Shlemov, A.; Mikheenko, A.; Korobeynikov, A.; Cao, L.; Shcherbin, E.; Nothias, L.-F.; Dorrestein, P. C.; Pevzner, P. A. Dereplication of Microbial Metabolites through Database Search of Mass Spectra. Nat. Commun. 2018, 9 (1), 4035. https://doi.org/10.1038/s41467-018-06082-8.
dc.relation.referencesErnst, M.; Kang, K. Bin; Caraballo-Rodríguez, A. M.; Nothias, L.-F.; Wandy, J.; Chen, C.; Wang, M.; Rogers, S.; Medema, M. H.; Dorrestein, P. C.; van der Hooft, J. J. J. MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools. Metabolites 2019, 9 (7), 144. https://doi.org/10.3390/metabo9070144.
dc.relation.referencesCao, L.; Guler, M.; Tagirdzhanov, A.; Lee, Y.-Y.; Gurevich, A.; Mohimani, H. MolDiscovery: Learning Mass Spectrometry Fragmentation of Small Molecules. Nat. Commun. 2021, 12 (1), 3718. https://doi.org/10.1038/s41467-021-23986-0.
dc.relation.referencesDührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A. A.; Melnik, A. V.; Meusel, M.; Dorrestein, P. C.; Rousu, J.; Böcker, S. SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information. Nat. Methods 2019, 16 (4), 299–302. https://doi.org/10.1038/s41592-019-0344-8
dc.relation.referencesSashidhara, K. V; Rosaiah, J. N. Various Dereplication Strategies Using LC-MS for Rapid Natural Product Lead Identification and Drug Discovery. Nat. Prod. Commun. 2007, 2 (2), 1934578X0700200. https://doi.org/10.1177/1934578X0700200218.
dc.relation.referencesGross, J. H. Mass Spectrometry; Springer International Publishing: Cham, 2017. https://doi.org/10.1007/978-3-319-54398-7.
dc.relation.referencesFord, L.; Theodoridou, K.; Sheldrake, G. N.; Walsh, P. J. A Critical Review of Analytical Methods Used for the Chemical Characterisation and Quantification of Phlorotannin Compounds in Brown Seaweeds. Phytochem. Anal. 2019, 30 (6),
dc.relation.referencesHubert, J.; Nuzillard, J. M.; Renault, J. H. Dereplication Strategies in Natural Product Research: How Many Tools and Methodologies behind the Same Concept? Phytochem. Rev. 2017, 16 (1), 55–95. https://doi.org/10.1007/s11101- 015-9448-7.
dc.relation.referencesSchripsema, J. Application of NMR in Plant Metabolomics: Techniques, Problems and Prospects. Phytochem. Anal. 2010, 21 (1), 14–21. https://doi.org/10.1002/pca.1185.
dc.relation.referencesLyu, C.; Chen, T.; Qiang, B.; Liu, N.; Wang, H.; Zhang, L.; Liu, Z. CMNPD: A Comprehensive Marine Natural Products Database towards Facilitating Drug Discovery from the Ocean. Nucleic Acids Res. 2021, 49 (D1), D509–D515. https://doi.org/10.1093/nar/gkaa763
dc.relation.referencesMilenković, S. M.; Zvezdanović, J. B.; Andelković, T. D.; Marković, D. Z. The Identification of Chlorophyll and Its Derivatives in the Pigment Mixtures: HPLCChromatography, Visible and Mass Spectroscopy Studies. Adv. Technol. 2012, 1 (1), 16–24
dc.relation.referencesErpel, F.; Mateos, R.; Pérez-Jiménez, J.; Pérez-Correa, J. R. Phlorotannins: From Isolation and Structural Characterization, to the Evaluation of Their Antidiabetic and Anticancer Potential. Food Res. Int. 2020, 137 (June), 109589. https://doi.org/10.1016/j.foodres.2020.109589
dc.relation.referencesSeger, C.; Sturm, S.; Stuppner, H. Mass Spectrometry and NMR Spectroscopy: Modern High-End Detectors for High Resolution Separation Techniques – State of the Art in Natural Product HPLC-MS, HPLC-NMR, and CE-MS Hyphenations. Nat. Prod. Rep. 2013, 30 (7), 970. https://doi.org/10.1039/c3np70015a.
dc.relation.referencesGuido F. Pauli, Birgit U. Jaki, David C. Lankin, John A. Walter, I. W. B. Quantitative NMR of Bioactive Natural Products. In Bioactive Natural Products; CRC Press, 2007; pp 127–156. https://doi.org/10.1201/9781420006889-8
dc.relation.referencesKa-Wing Cheng, Feng Chen, M. W. Liquid Chromatography-Mass Spectrometry in Natural Product Research. In Bioactive Natural Products; CRC Press, 2007; pp 259–280. https://doi.org/10.1201/9781420006889-13
dc.relation.referencesKruve, A.; Kaupmees, K.; Liigand, J.; Leito, I. Negative Electrospray Ionization via Deprotonation: Predicting the Ionization Efficiency. Anal. Chem. 2014, 86 (10), 4822–4830. https://doi.org/10.1021/ac404066v.
dc.relation.referencesBlunt, J.; Munro, M.; Upjohn, M. The Role of Databases in Marine Natural Products Research. In Handbook of Marine Natural Products; Springer Netherlands: Dordrecht, 2012; pp 389–421. https://doi.org/10.1007/978-90-481-3834-0_6
dc.relation.referencesGuo, Z.; Ma, S.; Khan, S.; Zhu, H.; Zhang, B.; Zhang, S.; Jiao, R. Zhaoshumycins A and B, Two Unprecedented Antimycin-Type Depsipeptides Produced by the Marine-Derived Streptomyces Sp. ITBB-ZKa6. Mar. Drugs 2021, 19 (11), 624. https://doi.org/10.3390/md19110624
dc.relation.referencesWinter, A.; Jarvis, B. B. Halipeptins A and B: Two Novel Potent Anti-Inflammatory Cyclic Depsipeptides from the Vanuatu Marine Sponge Haliclona Species. Chemtracts 2003, 16 (11), 688–691
dc.relation.referencesAndrianasolo, E. H.; Haramaty, L.; McPhail, K. L.; White, E.; Vetriani, C.; Falkowski, P.; Lutz, R. Bathymodiolamides A and B, Ceramide Derivatives from a Deep-Sea Hydrothermal Vent Invertebrate Mussel, Bathymodiolus Thermophilus. J. Nat. Prod. 2011, 74 (4), 842–846. https://doi.org/10.1021/np100601w
dc.relation.referencesRangel, M.; Santana, C.; Pinheiro, A.; Anjos, L.; Barth, T.; Júnior, O.; Fontes, W.; Castro, M. Marine Depsipeptides as Promising Pharmacotherapeutic Agents. Curr. Protein Pept. Sci. 2016, 18 (1), 72–91. https://doi.org/10.2174/1389203717666160526122130
dc.relation.referencesFu, M.; Deng, B.; Lü, H.; Yao, W.; Su, S.; Wang, D. The Bioaccumulation and Biodegradation of Testosterone by Chlorella Vulgaris. Int. J. Environ. Res. Public Health 2019, 16 (7), 1253. https://doi.org/10.3390/ijerph16071253
dc.relation.referencesLemoine, F.; Maupin, I.; Lemée, L.; Lavoie, J.-M.; Lemberton, J.-L.; Pouilloux, Y.; Pinard, L. Alternative Fuel Production by Catalytic Hydroliquefaction of Solid Municipal Wastes, Primary Sludges and Microalgae. Bioresour. Technol. 2013, 142, 1–8. https://doi.org/10.1016/j.biortech.2013.04.123
dc.relation.referencesPontrelli, S.; Sauer, U. Salt-Tolerant Metabolomics for Exometabolomic Measurements of Marine Bacterial Isolates. Anal. Chem. 2021, 93 (19), 7164– 7171. https://doi.org/10.1021/acs.analchem.0c04795
dc.relation.referencesWilliams, R. S.; Brownlow, A.; Baillie, A.; Barber, J. L.; Barnett, J.; Davison, N. J.; Deaville, R.; ten Doeschate, M.; Penrose, R.; Perkins, M.; Williams, R.; Jepson, P. D.; Lyashevska, O.; Murphy, S. Evaluation of a Marine Mammal Status and Trends Contaminants Indicator for European Waters. Sci. Total Environ. 2023, 866, 161301. https://doi.org/10.1016/j.scitotenv.2022.161301
dc.relation.referencesMorton DW, A.-K. S.; Morton, D. W. Cosmeceuticals Derived from Bioactive Substances Found in Marine Algae. Oceanogr. Open Access 2013, 01 (02), 1–11. https://doi.org/10.4172/2332-2632.1000106
dc.relation.referencesWhitehead, K.; Hedges, J. I. Electrospray Ionization Tandem Mass Spectrometric and Electron Impact Mass Spectrometric Characterization of Mycosporine-like Amino Acids. Rapid Commun. Mass Spectrom. 2003, 17 (18), 2133–2138. https://doi.org/10.1002/rcm.1162
dc.relation.referencesKalasariya, H. S.; Pereira, L. Dermo-Cosmetic Benefits of Marine MacroalgaeDerived Phenolic Compounds. Appl. Sci. 2022, 12 (23). https://doi.org/10.3390/app122311954
dc.relation.referencesMorais, T.; Cotas, J.; Pacheco, D.; Pereira, L. Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients? Cosmetics 2021, 8 (1), 1–28. https://doi.org/10.3390/COSMETICS8010008
dc.relation.referencesMARTÍN, J. D.; DARIAS, J. Algal Sesquiterpenoids. In Marine Natural Products; Elsevier, 1978; pp 125–173. https://doi.org/10.1016/B978-0-12-624001-6.50008-4.
dc.relation.referencesNamikoshi, M.; Rinehart, K. Bioactive Compounds Produced by Cyanobacteria. J. Ind. Microbiol. Biotechnol. 1996, 17 (5–6), 373–384. https://doi.org/10.1007/BF01574768
dc.relation.referencesZhao, W.; Jiang, H.; Liu, X.-W.; Zhou, J.; Wu, B. Polyene Macrolactams from Marine and Terrestrial Sources: Structure, Production Strategies, Biosynthesis and Bioactivities. Mar. Drugs 2022, 20 (6), 360. https://doi.org/10.3390/md20060360
dc.relation.referencesKumari, P. Seaweed Lipidomics in the Era of ‘Omics’ Biology: A Contemporary Perspective. In Systems Biology of Marine Ecosystems; Springer International Publishing: Cham, 2017; pp 49–97. https://doi.org/10.1007/978-3-319-62094-7_4
dc.relation.referencesLi, Y.-X.; Wijesekara, I.; Li, Y.; Kim, S.-K. Phlorotannins as Bioactive Agents from Brown Algae. Process Biochem. 2011, 46 (12), 2219–2224. https://doi.org/10.1016/j.procbio.2011.09.015
dc.relation.referencesMaciel, O. M. C.; Tavares, R. S. N.; Caluz, D. R. E.; Gaspar, L. R.; Debonsi, H. M. Photoprotective Potential of Metabolites Isolated from Algae-Associated Fungi Annulohypoxylon Stygium. J. Photochem. Photobiol. B Biol. 2018, 178 (November 2017), 316–322. https://doi.org/10.1016/j.jphotobiol.2017.11.018
dc.relation.referencesLomartire, S.; Cotas, J.; Pacheco, D.; Marques, J. C.; Pereira, L.; Gonçalves, A. M. M. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar. Drugs 2021, 19 (5), 1–20. https://doi.org/10.3390/md19050245
dc.relation.referencesKim, J. A.; Ahn, B. N.; Kong, C. S.; Kim, S. K. The Chromene Sargachromanol e Inhibits Ultraviolet A-Induced Ageing of Skin in Human Dermal Fibroblasts. Br. J. Dermatol. 2013, 168 (5), 968–976. https://doi.org/10.1111/bjd.12187.
dc.relation.referencesKadam, S. U.; Álvarez, C.; Tiwari, B. K.; O’Donnell, C. P. Extraction of Biomolecules from Seaweeds; Elsevier Inc., 2015. https://doi.org/10.1016/B978-0- 12-418697-2.00009-X
dc.relation.referencesMateos, R.; Pérez-Correa, J. R.; Domínguez, H. Bioactive Properties of Marine Phenolics. Marine Drugs. 2020. https://doi.org/10.3390/md18100501.
dc.relation.referencesZheng, H.; Zhao, Y.; Guo, L. A Bioactive Substance Derived from Brown Seaweeds: Phlorotannins. Mar. Drugs 2022, 20 (12). https://doi.org/10.3390/md20120742.
dc.relation.referencesGam, D.-H.; Park, J.; Hong, J.; Jeon, S.; Kim, J.-H.; Kim, J. Effects of Sargassum Thunbergii Extract on Skin Whitening and Anti-Wrinkling through Inhibition of TRP1 and MMPs. Molecules 2021, 26 (23), 7381. https://doi.org/10.3390/molecules26237381.
dc.relation.referencesShibata, T.; Fujimoto, K.; Nagayama, K.; Yamaguchi, K.; Nakamura, T. Inhibitory Activity of Brown Algal Phlorotannins against Hyaluronidase. Int. J. Food Sci. Technol. 2002, 37 (6), 703–709. https://doi.org/10.1046/j.1365-2621.2002.00603.x.
dc.relation.referencesKalasariya, H. S.; Yadav, V. K.; Yadav, K. K.; Tirth, V.; Algahtani, A.; Islam, S.; Gupta, N.; Jeon, B. Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics. Molecules 2021, 26 (17), 5313. https://doi.org/10.3390/molecules26175313.
dc.relation.referencesPlouguerne, E.; da Gama, B. A. P.; Pereira, R. C.; Barreto-Bergter, E. Glycolipids from Seaweeds and Their Potential Biotechnological Applications. Front. Cell. Infect. Microbiol. 2014, 4 (NOV), 1–5. https://doi.org/10.3389/fcimb.2014.00174.
dc.relation.referencesCouteau, C.; Coiffard, L. Seaweed Application in Cosmetics; 2016. https://doi.org/10.1016/B978-0-12-802772-1.00014-2.
dc.relation.referencesKalasariya, H. S.; Patel, N. B.; Yadav, A.; Perveen, K.; Yadav, V. K.; Munshi, F. M.; Yadav, K. K.; Alam, S.; Jung, Y. K.; Jeon, B. H. Characterization of Fatty Acids, Polysaccharides, Amino Acids, and Minerals in Marine Macroalga Chaetomorpha Crassa and Evaluation of Their Potentials in Skin Cosmetics. Molecules 2021, 26 (24). https://doi.org/10.3390/molecules26247515
dc.relation.referencesKim, H. K. J. H. M.-J. J.-M. K. S. J. S. Y.-S. The Skin-Whitening Effects of Padina Gymnospora and Its Active Compound, Fucosterol. J. Life Sci. 2020, 30 (7), 598– 605
dc.relation.referencesTamanna Ferdous, U.; Norhana Balia Yusof, Z. Algal Terpenoids: A Potential Source of Antioxidants for Cancer Therapy. In Terpenes and Terpenoids - Recent Advances; 2021. https://doi.org/10.5772/intechopen.94122
dc.relation.referencesTaglialatela-Scafati, O.; Craig, K. S.; Rebérioux, D.; Roberge, M.; Andersen, R. J. Briarane, Erythrane, and Aquariane Diterpenoids from the Caribbean Gorgonian Erythropodium Caribaeorum. European J. Org. Chem. 2003, No. 18, 3515–3523. https://doi.org/10.1002/ejoc.200300214.
dc.relation.referencesMendoza-Gonzalez, A. C.; Mateo-Cid, L. E. El Género Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) En Las Costas de México The Genus Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) in the Shores of Mexico. Hidrobiologica 2005, 15 (1), 43–63
dc.relation.referencesJanarthanan, M.; Senthil Kumar, M. The Properties of Bioactive Substances Obtained from Seaweeds and Their Applications in Textile Industries; 2018; Vol. 48. https://doi.org/10.1177/1528083717692596
dc.relation.referencesHahn, J. L.; Van Alstyne, K. L.; Gaydos, J. K.; Wallis, L. K.; West, J. E.; Hollenhorst, S. J.; Ylitalo, G. M.; Poppenga, R. H.; Bolton, J. L.; McBride, D. E.; Sofield, R. M. Chemical Contaminant Levels in Edible Seaweeds of the Salish Sea and Implications for Their Consumption; 2022; Vol. 17. https://doi.org/10.1371/journal.pone.0269269
dc.relation.referencesDong, H.; Dong, S.; Hansen, P. E.; Stagos, D.; Lin, X.; Liu, M. Progress of Bromophenols in Marine Algae from 2011 to 2020: Structure, Bioactivities, and Applications. Mar. Drugs 2020, 18 (8), 32–34. https://doi.org/10.3390/MD18080411
dc.relation.referencesLópez-Hortas, L.; Flórez-Fernández, N.; Torres, M. D.; Ferreira-Anta, T.; Casas, M. P.; Balboa, E. M.; Falqué, E.; Domínguez, H. Applying Seaweed Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics. Mar. Drugs 2021, 19 (10), 552. https://doi.org/10.3390/md19100552
dc.relation.referencesPangestuti, R.; Shin, K. H.; Kim, S. K. Anti-Photoaging and Potential Skin Health Benefits of Seaweeds. Mar. Drugs 2021, 19 (3). https://doi.org/10.3390/MD19030172
dc.relation.referencesBedoux, G.; Hardouin, K.; Burlot, A. S.; Bourgougnon, N. Bioactive Components from Seaweeds: Cosmetic Applications and Future Development; Elsevier, 2014; Vol. 71. https://doi.org/10.1016/B978-0-12-408062-1.00012-3
dc.relation.referencesGrillo, G.; Tabasso, S.; Solarino, R.; Cravotto, G.; Toson, C.; Ghedini, E.; Menegazzo, F.; Signoretto, M. From Seaweeds to Cosmeceutics: A Multidisciplinar Approach. Sustain. 2021, 13 (23), 1–13. https://doi.org/10.3390/su132313443
dc.relation.referencesJimenez-Carvelo, A. M.; Cuadros-Rodríguez, L. Data Mining/Machine Learning Methods in Foodomics. Curr. Opin. Food Sci. 2021, 37, 76–82. https://doi.org/10.1016/j.cofs.2020.09.008
dc.relation.referencesKuddus, M. Chapter 1 - Introduction to Food Enzymes; Kuddus, M. B. T.-E. in F. B., Ed.; Academic Press, 2019; pp 1–18. https://doi.org/https://doi.org/10.1016/B978-0- 12-813280-7.00001-3
dc.relation.referencesBisswanger, H. Enzyme Assays. Perspect. Sci. 2014, 1 (1–6), 41–55. https://doi.org/10.1016/j.pisc.2014.02.005
dc.relation.referencesMesserschmidt, A. Copper Metalloenzymes. In Comprehensive Natural Products II; Liu, H.-W. (Ben), Mander, L., Eds.; Elsevier: Oxford, 2010; pp 489–545. https://doi.org/10.1016/B978-008045382-8.00180-5
dc.relation.referencesSkoczyńska, A.; Budzisz, E.; Trznadel-grodzka, E.; Rotsztejn, H. Melanin and Lipofuscin as Hallmarks of Skin Aging. 2017, 97–103.
dc.relation.referencesCouteau, C.; Coiffard, L. Overview of Skin Whitening Agents: Drugs and Cosmetic Products. Cosmetics 2016, 3 (3), 27. https://doi.org/10.3390/cosmetics3030027.
dc.relation.referencesChang, T.-S. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci. 2009, 10 (6), 2440–2475. https://doi.org/10.3390/ijms10062440
dc.relation.referencesBurger, P.; Landreau, A.; Azoulay, S.; Michel, T.; Fernandez, X. Skin Whitening Cosmetics: Feedback and Challenges in the Development of Natural Skin Lighteners. Cosmetics 2016, 3 (4), 36. https://doi.org/10.3390/cosmetics3040036.
dc.relation.referencesMarmion, C. J.; Parker, J. P.; Nolan, K. B. Hydroxamic Acids: An Important Class of Metalloenzyme Inhibitors. In Comprehensive Inorganic Chemistry II; Elsevier, 2013; Vol. 3, pp 683–708. https://doi.org/10.1016/B978-0-08-097774-4.00328-4.
dc.relation.referencesThomas, N. V.; Kim, S.-K. Fucoidans from Marine Algae as Potential Matrix Metalloproteinase Inhibitors. In Advances in Food and Nutrition Research; Elsevier Inc., 2014; Vol. 72, pp 177–193. https://doi.org/10.1016/B978-0-12-800269-8.00010- 5.
dc.relation.referencesGhersetich, I.; Troiano, M.; De Giorgi, V.; Lotti, T. Receptors in Skin Ageing and Antiageing Agents. Dermatol. Clin. 2007, 25 (4), 655–662. https://doi.org/10.1016/j.det.2007.06.018
dc.relation.referencesGirish, K.; Kemparaju, K.; Nagaraju, S.; Vishwanath, B. Hyaluronidase Inhibitors: A Biological and Therapeutic Perspective. Curr. Med. Chem. 2009, 16 (18), 2261– 2288. https://doi.org/10.2174/092986709788453078
dc.relation.referencesHetta, M. Hyaluronidase Inhibitors as Skin Rejuvenating Agents from Natural Source. Int. J. Phytocosmetics Nat. Ingredients 2020, 7, e4. https://doi.org/10.15171/ijpni.2020.04
dc.relation.referencesBor, E.; Koca Caliskan, U.; Anlas, C.; Durbilmez, G. D.; Bakirel, T.; Ozdemir, N. Synthesis of Persea Americana Extract Based Hybrid Nanoflowers as a New Strategy to Enhance Hyaluronidase and Gelatinase Inhibitory Activity and the Evaluation of Their Toxicity Potential. Inorg. Nano-Metal Chem. 2022, 0 (0), 1–13. https://doi.org/10.1080/24701556.2022.2072342
dc.relation.referencesBravo, K.; Alzate, F.; Osorio, E. Fruits of Selected Wild and Cultivated Andean Plants as Sources of Potential Compounds with Antioxidant and Anti-Aging Activity. Ind. Crop. Prod. 2016, 85, 341–352. https://doi.org/10.1016/j.indcrop.2015.12.074
dc.relation.referencesBravo, K.; Quintero, C.; Agudelo, C.; García, S.; Bríñez, A.; Osorio, E. CosIng Database Analysis and Experimental Studies to Promote Latin American Plant Biodiversity for Cosmetic Use. Ind. Crops Prod. 2020, 144 (May), 112007. https://doi.org/10.1016/j.indcrop.2019.112007
dc.relation.referencesPlazas, E. A.; Avila, M. C.; Delgado, W. A.; Patino, O. J.; Cuca, L. E. In Vitro Antioxidant and Anticholinesterase Activities of Colombian Plants as Potential Neuroprotective Agents. Res. J. Med. Plants 2018, 12 (1), 9–18. https://doi.org/10.3923/rjmp.2018.9.18
dc.relation.referencesSun, L.; Guo, Y.; Zhang, Y.; Zhuang, Y. Antioxidant and Anti-Tyrosinase Activities of Phenolic Extracts from Rape Bee Pollen and Inhibitory Melanogenesis by CAMP/MITF/TYR Pathway in B16 Mouse Melanoma Cells. Front. Pharmacol. 2017, 8 (MAR), 1–9. https://doi.org/10.3389/fphar.2017.00104
dc.relation.referencesAnuar, N.; Sultan, S.; Ashraf, K. An Overview of Antimicrobial and Antioxidant Bioautography Method Analysis : C Osmos Caudatus and Orthosiphon Stamineus. 2022, 5 (March), 1–12
dc.relation.referencesManandhar, B.; Wagle, A.; Seong, S. H.; Paudel, P.; Kim, H. R.; Jung, H. A.; Choi, J. S. Phlorotannins with Potential Anti-Tyrosinase and Antioxidant Activity Isolated from the Marine Seaweed Ecklonia Stolonifera. Antioxidants 2019, 8 (8). https://doi.org/10.3390/antiox8080240
dc.relation.referencesKim, M. M.; Ta, Q. Van; Mendis, E.; Rajapakse, N.; Jung, W. K.; Byun, H. G.; Jeon, Y. J.; Kim, S. K. Phlorotannins in Ecklonia Cava Extract Inhibit Matrix Metalloproteinase Activity. Life Sci. 2006, 79 (15), 1436–1443. https://doi.org/10.1016/j.lfs.2006.04.022
dc.relation.referencesMateos, R.; Pérez-Correa, J. R.; Domínguez, H. Bioactive Properties of Marine Phenolics. Marine Drugs. 2020. https://doi.org/10.3390/md18100501.
dc.relation.referencesBhatia, S.; Garg, A.; Sharma, K.; Kumar, S.; Sharma, A.; Purohit, A. P. Mycosporine and Mycosporine-like Amino Acids: A Paramount Tool against Ultra Violet Irradiation. Pharmacogn. Rev. 2011, 5 (10), 138–146. https://doi.org/10.4103/0973-7847.91107
dc.relation.referencesLomartire, S.; Cotas, J.; Pacheco, D.; Marques, J. C.; Pereira, L.; Gonçalves, A. M. M. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar. Drugs 2021, 19 (5), 1–20. https://doi.org/10.3390/md19050245
dc.relation.referencesOspina, M.; Castro-Vargas, H. I.; Parada-Alfonso, F. Antioxidant Capacity of Colombian Seaweeds: 1. Extracts Obtained from Gracilaria Mammillaris by Means of Supercritical Fluid Extraction. J. Supercrit. Fluids 2017, 128, 314–322. https://doi.org/10.1016/j.supflu.2017.02.023
dc.relation.referencesBudhiyanti, S. A.; Raharjo, S.; Marseno, D. W.; Lelana, I. Y. B. Antioxidant Activity of Brown Algae Sargassum Species Extract from the Coastline of Java Island. Am. J. Agric. Biol. Sci. 2012, 7 (3), 337–346. https://doi.org/10.3844/ajabssp.2012.337.346.
dc.relation.referencesBomfeh, K. Report of the Expert Meeting on Food Safety for Seaweed – Current Status and Future Perspectives; Food and Agriculture Organization of the United Nations: Rome, 2021. https://doi.org/10.4060/cc0846en.
dc.relation.referencesWarneke, A. M.; Long, J. D. Copper Contamination Impairs Herbivore Initiation of Seaweed Inducible Defenses and Decreases Their Effectiveness. PLoS One 2015, 10 (8), 1–14. https://doi.org/10.1371/journal.pone.0135395.
dc.relation.referencesLozano Muñoz, I.; Díaz, N. F. Minerals in Edible Seaweed: Health Benefits and Food Safety Issues. Crit. Rev. Food Sci. Nutr. 2022, 62 (6), 1592–1607. https://doi.org/10.1080/10408398.2020.1844637
dc.relation.referencesDate, R.; Date, P. M.; Report, T.; January, P. C. Safety Assessment of Brown AlgaeDerived Ingredients as Used in Cosmetics.; Washington (DC), 2019
dc.relation.referencesSanjeewa, K. K. A.; Kim, E. A.; Son, K. T.; Jeon, Y. J. Bioactive Properties and Potentials Cosmeceutical Applications of Phlorotannins Isolated from Brown Seaweeds: A Review. J. Photochem. Photobiol. B Biol. 2016, 162, 100–105. https://doi.org/10.1016/j.jphotobiol.2016.06.027.
dc.relation.referencesKalasariya, H. S.; Yadav, V. K.; Yadav, K. K.; Tirth, V.; Algahtani, A.; Islam, S.; Gupta, N.; Jeon, B. Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics. Molecules 2021, 26 (17), 5313. https://doi.org/10.3390/molecules26175313
dc.relation.referencesArunkumar, K.; Raj, R.; Raja, R.; Carvalho, I. S. Brown Seaweeds as a Source of Anti-Hyaluronidase Compounds. South African J. Bot. 2021, 139, 470–477. https://doi.org/10.1016/j.sajb.2021.03.036
dc.relation.referencesLaguna, D. Análisis de Extractos Promisiorios de Productos Naturales Marinos Por Redes Moleculares., Universidad Nacional de Colombia, 2021
dc.relation.referencesPiza, A. Búsqueda de Compuestos Activos Provenientes de Algas Con Potencial Aplicación En Cosmética y Accidente Ofídico, Universidad Nacional de Colombia, 2022.
dc.relation.referencesKim, J. K.; Kang, S. M. Antioxidant and Whitening Effect of Dictyopteris Spp. Extract. J. Korean Soc. Cosmetol. 2021, 27 (3), 614–623. https://doi.org/10.52660/jksc.2021.27.3.614
dc.relation.referencesMendoza-Gonzalez, A. C.; Mateo-Cid, L. E. El Género Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) En Las Costas de México The Genus Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) in the Shores of Mexico. Hidrobiologica 2005, 15 (1), 43–63
dc.relation.referencesArguelles, E. D. L. R.; Sapin, A. B. Bioprospecting of Turbinaria Ornata (Fucales, Phaeophyceae) for Cosmetic Application: Antioxidant, Tyrosinase Inhibition and Antibacterial Activities. J. Int. Soc. Southeast Asian Agric. Sci. 2020, 26 (2), 30–41
dc.relation.referencesRushdi, M. I.; Abdel-Rahman, I. A. M.; Saber, H.; Attia, E. Z.; Abdelraheem, W. M.; Madkour, H. A.; Hassan, H. M.; Elmaidomy, A. H.; Abdelmohsen, U. R. Pharmacological and Natural Products Diversity of the Brown Algae Genus: Sargassum. RSC Adv. 2020, 10 (42), 24951–24972. https://doi.org/10.1039/d0ra03576a
dc.relation.referencesGeneralić Mekinić, I.; Šimat, V.; Botić, V.; Crnjac, A.; Smoljo, M.; Soldo, B.; Ljubenkov, I.; Čagalj, M.; Skroza, D. Bioactive Phenolic Metabolites from Adriatic Brown Algae Dictyota Dichotoma and Padina Pavonica (Dictyotaceae). Foods 2021, 10 (6), 1187. https://doi.org/10.3390/foods10061187
dc.relation.referencesKo, R. K.; Kang, M.-C.; Kim, S. S.; Oh, T. H.; Kim, G.-O.; Hyun, C.-G.; Hyun, J. W.; Lee, N. H. Anti-Melanogenesis Constituents from the Seaweed Dictyota Coriacea. Nat. Prod. Commun. 2013, 8 (4), 1934578X1300800. https://doi.org/10.1177/1934578X1300800401
dc.relation.referencesFarvin, K. H. S.; Surendraraj, A.; Al-Ghunaim, A.; Al-Yamani, F. Chemical Profile and Antioxidant Activities of 26 Selected Species of Seaweeds from Kuwait Coast. J. Appl. Phycol. 2019, 31 (4), 2653–2668. https://doi.org/10.1007/s10811-019-1739-8.
dc.relation.referencesRincón Díaz M N, G. B. Diversidad de Macroalgas Marinas Del Caribe Colombiano. Inst. Investig. Mar. y Costeras - Invemar. Dataset/Checklist. 2020, 2.8. https://doi.org/10.15472/alecqe.
dc.relation.referencesOrfanoudaki, M.; Hartmann, A.; Miladinovic, H.; Nguyen Ngoc, H.; Karsten, U.; Ganzera, M. Bostrychines A – F , Six Novel Mycosporine-Like Amino-Acids and a Novel Betaine from The. Mar. Drugs 2019, 17 (6), 356
dc.relation.referencesOrfanoudaki, M.; Hartmann, A.; Miladinovic, H.; Nguyen Ngoc, H.; Karsten, U.; Ganzera, M. Bostrychines A – F , Six Novel Mycosporine-Like Amino-Acids and a Novel Betaine from The. Mar. Drugs 2019, 17 (6), 356
dc.relation.referencesColombo, I.; Sangiovanni, E.; Maggio, R.; Mattozzi, C.; Zava, S.; Corbett, Y.; Fumagalli, M.; Carlino, C.; Corsetto, P. A.; Scaccabarozzi, D.; Calvieri, S.; Gismondi, A.; Taramelli, D.; Dell’Agli, M. HaCaT Cells as a Reliable in Vitro Differentiation Model to Dissect the Inflammatory/Repair Response of Human Keratinocytes. Mediators Inflamm. 2017, 2017. https://doi.org/10.1155/2017/7435621
dc.relation.referencesVinken, M.; Rogiers, V. Protocols in In Vitro Hepatocyte Research; Vinken, M., Rogiers, V., Eds.; Methods in Molecular Biology; Springer New York: New York, NY, 2015; Vol. 1250. https://doi.org/10.1007/978-1-4939-2074-7
dc.relation.referencesWalter, L. O.; Maioral, M. F.; Silva, L. O.; Speer, D. B.; Campbell, S. C.; Gallimore, W.; Falkenberg, M. B.; Santos‐Silva, M. C. Involvement of the NF-ΚB and PI3K/Akt/MTOR Pathways in Cell Death Triggered by Stypoldione, an o-Quinone Isolated from the Brown Algae Stypopodium Zonale. Environ. Toxicol. 2022, 37 (6), 1297–1309. https://doi.org/10.1002/tox.23484
dc.relation.referencesDe Lara-Isassi, G.; Álvarez-Hernández, S.; Collado-Vides, L. Ichtyotoxic Activity of Extracts from Mexican Marine Macroalgae. J. Appl. Phycol. 2000, 12 (1), 45–52. https://doi.org/10.1023/A:1008103609841.
dc.relation.referencesWalter, L. O.; Maioral, M. F.; Silva, L. O.; Speer, D. B.; Campbell, S. C.; Gallimore, W.; Falkenberg, M. B.; Santos‐Silva, M. C. Involvement of the NF-ΚB and PI3K/Akt/MTOR Pathways in Cell Death Triggered by Stypoldione, an o-Quinone Isolated from the Brown Algae Stypopodium Zonale. Environ. Toxicol. 2022, 37 (6), 1297–1309. https://doi.org/10.1002/tox.23484.
dc.relation.referencesGerwick, W. H.; Fenical, W. Ichthyotoxic and Cytotoxic Metabolites of the Tropical Brown Alga Stypopodium Zonale (Lamouroux) Papenfuss. J. Org. Chem. 1981, 46 (1), 22–27. https://doi.org/10.1021/jo00314a005
dc.relation.referencesWilliams, R. S.; Brownlow, A.; Baillie, A.; Barber, J. L.; Barnett, J.; Davison, N. J.; Deaville, R.; ten Doeschate, M.; Penrose, R.; Perkins, M.; Williams, R.; Jepson, P. D.; Lyashevska, O.; Murphy, S. Evaluation of a Marine Mammal Status and Trends Contaminants Indicator for European Waters. Sci. Total Environ. 2023, 866, 161301. https://doi.org/10.1016/j.scitotenv.2022.161301.
dc.relation.referencesMendoza-Gonzalez, A. C.; Mateo-Cid, L. E. El Género Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) En Las Costas de México The Genus Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) in the Shores of Mexico. Hidrobiologica 2005, 15 (1), 43–63.
dc.relation.referencesLyu, C.; Chen, T.; Qiang, B.; Liu, N.; Wang, H.; Zhang, L.; Liu, Z. CMNPD: A Comprehensive Marine Natural Products Database towards Facilitating Drug Discovery from the Ocean. Nucleic Acids Res. 2021, 49 (D1), D509–D515. https://doi.org/10.1093/nar/gkaa763.
dc.relation.referencesZatelli, G. A.; Philippus, A. C.; Falkenberg, M. An Overview of Odoriferous Marine Seaweeds of the Dictyopteris Genus: Insights into Their Chemical Diversity, Biological Potential and Ecological Roles. Rev. Bras. Farmacogn. 2018, 28 (2), 243– 260. https://doi.org/10.1016/j.bjp.2018.01.005.
dc.relation.referencesInstituto de Investigaciones Marinas y Costeras “José Benito Vives de Andreis.” Biodiversidad Del Mar de Los Siete Colores
dc.relation.referencesZuschin, M.; Hohenegger, J.; Steininger, F. Book Review of Littler DM. Littler MM (2000) Caribbean Reef Plants An Identification Guide to the Reef Plants of the Caribbean, Bahamas, Florida and Gulf of Mexico. Coral Reefs 2001, 20 (2), 106– 106. https://doi.org/10.1007/s003380100147.
dc.relation.referencesXia, J.; Psychogios, N.; Young, N.; Wishart, D. S. MetaboAnalyst: A Web Server for Metabolomic Data Analysis and Interpretation. Nucleic Acids Res. 2009, 37 (SUPPL. 2). https://doi.org/10.1093/nar/gkp356.
dc.relation.referencesMiyashita, K.; Mikami, N.; Hosokawa, M. Chemical and Nutritional Characteristics of Brown Seaweed Lipids: A Review. J. Funct. Foods 2013, 5 (4), 1507–1517. https://doi.org/10.1016/j.jff.2013.09.019.
dc.relation.referencesRangel, M.; Santana, C.; Pinheiro, A.; Anjos, L.; Barth, T.; Júnior, O.; Fontes, W.; Castro, M. Marine Depsipeptides as Promising Pharmacotherapeutic Agents. Curr. Protein Pept. Sci. 2016, 18 (1), 72–91. https://doi.org/10.2174/1389203717666160526122130
dc.relation.referencesZhang, H.; Zou, J.; Yan, X.; Chen, J.; Cao, X.; Wu, J.; Liu, Y.; Wang, T. MarineDerived Macrolides 1990–2020: An Overview of Chemical and Biological Diversity. Mar. Drugs 2021, 19 (4). https://doi.org/10.3390/MD19040180
dc.relation.referencesFord, L.; Theodoridou, K.; Sheldrake, G. N.; Walsh, P. J. A Critical Review of Analytical Methods Used for the Chemical Characterisation and Quantification of Phlorotannin Compounds in Brown Seaweeds. Phytochem. Anal. 2019, 30 (6), 587– 599. https://doi.org/10.1002/pca.2851.
dc.relation.referencesPontrelli, S.; Sauer, U. Salt-Tolerant Metabolomics for Exometabolomic Measurements of Marine Bacterial Isolates. Anal. Chem. 2021, 93 (19), 7164–7171. https://doi.org/10.1021/acs.analchem.0c04795.
dc.relation.referencesNamikoshi, M.; Rinehart, K. Bioactive Compounds Produced by Cyanobacteria. J. Ind. Microbiol. Biotechnol. 1996, 17 (5–6), 373–384. https://doi.org/10.1007/BF01574768
dc.relation.referencesStengel, D. B.; Connan, S.; Popper, Z. A. Algal Chemodiversity and Bioactivity: Sources of Natural Variability and Implications for Commercial Application. Biotechnol. Adv. 2011, 29 (5), 483–501. https://doi.org/10.1016/j.biotechadv.2011.05.016.
dc.relation.referencesGisbert, M.; Sineiro, J.; Moreira, R. Influence of Oxidation and Dialysis of Phlorotannins on Bioactivity and Composition of Ultrasound-Assisted Extracts from Ascophyllum Nodosum. Mar. Drugs 2022, 20 (11), 706. https://doi.org/10.3390/md20110706
dc.relation.referencesW.; Saati, E. A. The Solvent Effectiveness on Extraction Process of Seaweed Pigment. MAKARA Technol. Ser. 2011, 15 (1), 5–8. https://doi.org/10.7454/mst.v15i1.850
dc.relation.referencesSun, L.; Guo, Y.; Zhang, Y.; Zhuang, Y. Antioxidant and Anti-Tyrosinase Activities of Phenolic Extracts from Rape Bee Pollen and Inhibitory Melanogenesis by CAMP/MITF/TYR Pathway in B16 Mouse Melanoma Cells. Front. Pharmacol. 2017, 8 (MAR), 1–9. https://doi.org/10.3389/fphar.2017.00104.
dc.relation.referencesAguilera-Sáez, L. M.; Abreu, A. C.; Camacho-Rodríguez, J.; González-López, C. V.; del Carmen Cerón-García, M.; Fernández, I. NMR Metabolomics as an Effective Tool To Unravel the Effect of Light Intensity and Temperature on the Composition of the Marine Microalgae Isochrysis Galbana. J. Agric. Food Chem. 2019, 67 (14), 3879–3889. https://doi.org/10.1021/acs.jafc.8b06840
dc.relation.referencesCérantola, S.; Breton, F.; Gall, E. A.; Deslandes, E. Co-Occurrence and Antioxidant Activities of Fucol and Fucophlorethol Classes of Polymeric Phenols in Fucus Spiralis. Bot. Mar. 2006, 49 (4), 347–351. https://doi.org/10.1515/BOT.2006.042.
dc.relation.referencesKazimierczuk, K.; Orekhov, V. Y. Accelerated NMR Spectroscopy by Using Compressed Sensing. Angew. Chemie - Int. Ed. 2011, 50 (24), 5556–5559. https://doi.org/10.1002/anie.201100370
dc.relation.referencesZhou, X.; Yi, M.; Ding, L.; He, S.; Yan, X. Isolation and Purification of a Neuroprotective Phlorotannin from the Marine Algae Ecklonia Maxima by Size Exclusion and High-Speed Counter-Current Chromatography. Mar. Drugs 2019, 17 (4), 212. https://doi.org/10.3390/md17040212.
dc.relation.referencesErpel, F.; Mateos, R.; Pérez-Jiménez, J.; Pérez-Correa, J. R. Phlorotannins: From Isolation and Structural Characterization, to the Evaluation of Their Antidiabetic and Anticancer Potential. Food Res. Int. 2020, 137 (June), 109589. https://doi.org/10.1016/j.foodres.2020.109589
dc.relation.referencesIsaza Martínez, J. H.; Torres Castañeda, H. G. Preparation and Chromatographic Analysis of Phlorotannins. J. Chromatogr. Sci. 2013, 51 (8), 825–838. https://doi.org/10.1093/chromsci/bmt045.
dc.relation.referencesKalasariya, H. S.; Pereira, L. Dermo-Cosmetic Benefits of Marine MacroalgaeDerived Phenolic Compounds. Appl. Sci. 2022, 12 (23). https://doi.org/10.3390/app122311954.
dc.relation.referencesGowda, S. G. B.; Yifan, C.; Gowda, D.; Tsuboi, Y.; Chiba, H.; Hui, S.-P. Analysis of Antioxidant Lipids in Five Species of Dietary Seaweeds by Liquid Chromatography/Mass Spectrometry. Antioxidants 2022, 11 (8), 1538. https://doi.org/10.3390/antiox11081538
dc.relation.referencesZheng, H.; Zhao, Y.; Guo, L. A Bioactive Substance Derived from Brown Seaweeds: Phlorotannins. Mar. Drugs 2022, 20 (12). https://doi.org/10.3390/md20120742
dc.relation.referencesFernando, I. P. S.; Lee, W. W.; Ahn, G. Marine Algal Flavonoids and Phlorotannins; an Intriguing Frontier of Biofunctional Secondary Metabolites. Crit. Rev. Biotechnol. 2022, 42 (1), 23–45. https://doi.org/10.1080/07388551.2021.1922351
dc.relation.referencesRushdi, M. I.; Abdel-Rahman, I. A. M.; Attia, E. Z.; Saber, H.; Saber, A. A.; Bringmann, G.; Abdelmohsen, U. R. The Biodiversity of the Genus Dictyota: Phytochemical and Pharmacological Natural Products Prospectives. Molecules 2022, 27 (3), 1–30. https://doi.org/10.3390/molecules27030672
dc.relation.referencesShibata, T.; Fujimoto, K.; Nagayama, K.; Yamaguchi, K.; Nakamura, T. Inhibitory Activity of Brown Algal Phlorotannins against Hyaluronidase. Int. J. Food Sci. Technol. 2002, 37 (6), 703–709. https://doi.org/10.1046/j.1365-2621.2002.00603.x.
dc.relation.referencesGam, D.-H.; Park, J.; Hong, J.; Jeon, S.; Kim, J.-H.; Kim, J. Effects of Sargassum Thunbergii Extract on Skin Whitening and Anti-Wrinkling through Inhibition of TRP-1 and MMPs. Molecules 2021, 26 (23), 7381. https://doi.org/10.3390/molecules26237381
dc.relation.referencesKalasariya, H. S.; Yadav, V. K.; Yadav, K. K.; Tirth, V.; Algahtani, A.; Islam, S.; Gupta, N.; Jeon, B. Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics. Molecules 2021, 26 (17), 5313. https://doi.org/10.3390/molecules26175313
dc.relation.referencesKim, H. K. J. H. M.-J. J.-M. K. S. J. S. Y.-S. The Skin-Whitening Effects of Padina Gymnospora and Its Active Compound, Fucosterol. J. Life Sci. 2020, 30 (7), 598– 605
dc.relation.referencesArunkumar, K.; Raj, R.; Raja, R.; Carvalho, I. S. Brown Seaweeds as a Source of Anti-Hyaluronidase Compounds. South African J. Bot. 2021, 139, 470–477. https://doi.org/10.1016/j.sajb.2021.03.036
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsAlgas marinas
dc.subject.decsSeaweed
dc.subject.lembIndustria de cosméticos
dc.subject.lembCosmetics industry
dc.subject.proposalProductos Naturales Marinos
dc.subject.proposalAlgas Pardas
dc.subject.proposalAlgas Rojas
dc.subject.proposaltirosinasa
dc.subject.proposalcolagenasa
dc.subject.proposalHialuronidasa
dc.subject.proposalPerfilado metabólico
dc.subject.proposalRedes moleculares
dc.title.translatedSearch for compounds with possible inhibitory activity of enzymes of cosmetic interest from seaweed from the Colombian Caribbean.
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dc.contributor.orcidLady Yohanna Sepulveda Sanchez [0009-0006-9716-7609]
dc.contributor.cvlacrh_0001620161


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit