Show simple item record

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorGálvez Bermúdez, Jubby Marcela
dc.contributor.advisorOspina Lagos, Sandra Yaneth
dc.contributor.authorRodríguez Alvarino, Paula Estefanía
dc.date.accessioned2023-10-03T20:18:08Z
dc.date.available2023-10-03T20:18:08Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84751
dc.descriptionilustraciones
dc.description.abstractDurante los últimos años, la secuenciación del exoma completo ha tenido una gran aceptación para la evaluación de trastornos genéticos. Gracias al acceso a la secuenciación de siguiente o nueva generación (NGS), a las herramientas bioinformáticas y a los expertos profesionales, estas pruebas moleculares representan una herramienta diagnóstica de primera línea para muchas enfermedades genéticas. El objetivo de este estudio fue determinar el rendimiento diagnóstico de la secuenciación de exoma en trio e individual en un grupo de pacientes colombianos con sospecha clínica de enfermedad genética monogénica, así como el rendimiento diagnóstico por grupos de fenotipos, entre junio de 2020 y mayo de 2021. Se realizó un estudio descriptivo transversal, retrospectivo, aprobado por el comité de ética en investigación. Se revisaron las historias clínicas para obtener los datos clínicos y fenotípicos, y se realizó secuenciación de exoma completo en trio. El llamado de variantes se realizó utilizando las mejores prácticas de GATK, con la posterior anotación y filtrado utilizando términos de Human Phenotype Ontology (HPO) y las variantes se clasificaron utilizando las directrices del Colegio Americano de Genética Médica y Genómica (ACMG, por sus siglas en inglés) de 2015. Se realizaron análisis tanto de exoma individual como análisis de exoma en trio en cada caso. Los casos se consideraron positivos cuando se identificaron variantes patogénicas (P) o probablemente patogénicas (PP), con un mecanismo de herencia que explicaba el fenotipo del paciente. Además, los casos se estratificaron por grupos según el fenotipo clínico, para evaluar el rendimiento específico de la prueba. Se incluyeron un total de 100 casos. La edad media fue de 8.6 años, y siete casos eran hijos de padres consanguíneos. El rendimiento diagnóstico fue del 29% para el análisis de exomas únicos y del 32% para el análisis en trio. Entre los casos positivos, el 19% presentaba una enfermedad autosómica dominante, el 8% una enfermedad ligada al cromosoma X, el 4% una enfermedad autosómica recesiva y el 1% un trastorno de herencia digénica. Dos casos tenían hallazgos incidentales en los genes PMS2 y MSH6, y otros dos casos tenían condiciones monogénicas concomitantes. El fenotipo más prevalente fue el retraso del neurodesarrollo en el 47% de los individuos, con un rendimiento del 38.3%. El mayor rendimiento se encontró en la parálisis (71.3%), seguido de la hipoacusia (55.5%), la microcefalia (50%), la hipertensión pulmonar (50%) y las alteraciones hematológicas (50%). Los movimientos anormales tuvieron la tasa de diagnóstico más baja (10%). Este estudio mostró un rendimiento 3% mayor para el análisis del exoma en trío en comparación con el individual. Esto se explica principalmente por la identificación de variantes de novo y mutaciones heterocigotas compuestas confirmadas, que no pueden establecerse en los exomas únicos. El exoma trio mostró el mejor rendimiento en los fenotipos neurológicos, especialmente en individuos con parálisis. (Texto tomado de la fuente).
dc.description.abstractDuring last years, Whole Exome Sequencing (WES) has had great acceptance for the evaluation of genetic disorders. Due to the access to next-generation sequencing (NGS), bioinformatics tools, and professionals’ experts, these molecular tests represent a first- tier diagnostic tool for many genetic diseases. The aim was to compare the diagnostic yield of singleton and trio WES in a Colombian cohort with clinical suspicion of a genetic disease, as well as the yield per phenotype groups, between June 2020 to May 2021. A cross-sectional descriptive, retrospective study, approved by an ethics board, was carried out. Medical records were reviewed to obtain phenotypic data and trio WES was performed. Variant calling was done using GATK best practices, with subsequent annotation and filtering using Human Phenotype Ontology (HPO) terms and variants were classified using the American College of Medical Genetics and Genomics (ACMG) 2015 guidelines. Analysis as singleton exome and trio exome were performed for every case. Cases were considered positive when pathogenic (P) or likely pathogenic (PP) variants were identified, with a mechanism of inheritance explaining the patient’s phenotype. Additionally, cases were stratified by groups according to the main clinical phenotype, to evaluate the specific yield of the test. A total of 100 cases were included. The average age was of 8.6 years, and seven cases were born of consanguineous parents. The diagnostic yield was 29% for singleton and 32% for trio WES. Among positive cases, 19% had an autosomal dominant disease, 8% an X-linked, 4% autosomal recessive, and 1% a digenic inheritance disorder. Two cases had incidental findings in PMS2 and MSH6 genes, and two other cases had concomitant monogenic conditions. The most prevalent phenotype was neurodevelopmental delay in 47% individuals, with a yield of 38.3%. The highest yield was found for paralysis (71.3%), followed by hypoacusis (55.5%), microcephaly (50%), pulmonary hypertension (50%) and hematologic alterations (50%). Abnormal movements had the lowest diagnostic rate (10%). This study showed a 3% better yield for trio exome analysis in comparison to singleton. This is mainly explained by the identification of de novo variants and confirmed compound heterozygous mutations, which cannot be established in singleton exomes. WES showed the best performance in neurological phenotypes, especially paralysis.
dc.format.extentxviii, 110 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.titleRendimiento diagnóstico de la secuenciación de exomas completos en trio e individual en una cohorte de pacientes colombianos con sospecha de enfermedad genética de origen monogénico
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Genética Humana
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Genética Humana
dc.description.researchareaGenética clínica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedBireme
dc.relation.referencesDurmaz AA, Karaca E, Demkow U, Toruner G, Schoumans J, Cogulu O. Evolution of genetic techniques: Past, present, and beyond. Biomed Res Int. 2015.
dc.relation.referencesGiani AM, Gallo GR, Gianfranceschi L, Formenti G. Long walk to genomics: History and current approaches to genome sequencing and assembly. Comput Struct Biotechnol J [Internet]. 2020;18:9–19. Disponible en: https://doi.org/10.1016/j.csbj.2019.11.002
dc.relation.referencesHood L, Rowen L. The human genome project: Big science transforms biology and medicine. Genome Med. 2013;5(9):1.
dc.relation.referencesNurk S, Koren S, Rhie A, Rautiainen M, Bzikadze A V, Mikheenko A, et al. The complete sequence of a human genome. 2023.
dc.relation.referencesEntry Statistics - OMIM [Internet]. [citado el 10 de febrero de 2023]. Disponible en: https://www.omim.org/statistics/entry
dc.relation.referencesCzech M, Baran-Kooiker A, Atikeler K, Demirtshyan M, Gaitova K, Holownia-Voloskova M, et al. A Review of Rare Disease Policies and Orphan Drug Reimbursement Systems in 12 Eurasian Countries. Front Public Health. 2020;7(January):1–17.
dc.relation.referencesTan TY, Lunke S, Chong B, Phelan D, Fanjul-Fernandez M, Marum JE, et al. A head-to-head evaluation of the diagnostic efficacy and costs of trio versus singleton exome sequencing analysis. European Journal of Human Genetics [Internet]. 2019; Disponible en: http://dx.doi.org/10.1038/s41431-019-0471-9
dc.relation.referencesCórdoba M, Rodriguez-Quiroga SA, Vega PA, Salinas V, Perez-Maturo J, Amartino H, et al. Whole exome sequencing in neurogenetic odysseys: An effective, cost- and time-saving diagnostic approach. PLoS One. 2018;13(2):1–13.
dc.relation.referencesWright CF, FitzPatrick DR, Firth H v. Paediatric genomics: Diagnosing rare disease in children. Nat Rev Genet [Internet]. 2018;19(5):253–68. Disponible en: http://dx.doi.org/10.1038/nrg.2017.116
dc.relation.referencesPetersen B sabina, Fredrich B, Hoeppner MP, Ellinghaus D, Franke A. Opportunities and challenges of whole-genome and -exome sequencing. 2017;1–13.
dc.relation.referencesKim YE, Ki CS, Jang MA. Erratum: Challenges and Considerations in Sequence Variant Interpretation for Mendelian Disorders. Ann Lab Med. 2019;39(6):606.
dc.relation.referencesHarrison SM, Dolinsky JS, Knight Johnson AE, Pesaran T, Azzariti DR, Bale S, et al. Clinical laboratories collaborate to resolve differences in variant interpretations submitted to ClinVar. Genetics in Medicine. 2017;19(10):1096–104.
dc.relation.referencesDerayeh S, Kazemi A, Rabiei R, Hosseini A, Moghaddasi H. National information system for rare diseases with an approach to data architecture : A systematic review. 2018;7(3):156–63.
dc.relation.referencesNguengang S, Deborah W, Annie ML, Charlotte O, Charlotte R, Lanneau V, et al. Estimating cumulative point prevalence of rare diseases : analysis of the Orphanet database. European Journal of Human Genetics [Internet]. 2020;165–73. Disponible en: http://dx.doi.org/10.1038/s41431-019-0508-0
dc.relation.referencesBoycott KM, Hartley T, Biesecker LG, Gibbs RA, Innes AM, Riess O, et al. Commentary A Diagnosis for All Rare Genetic Diseases : The Horizon and the Next Frontiers. Cell. 2019;177(1):32–7.
dc.relation.referencesHoffman-Andrews L. The known unknown: The challenges of genetic variants of uncertain significance in clinical practice. J Law Biosci. 2017;4(3):648–57.
dc.relation.referencesMullis KB. The unusual origin of the polymerase chain reaction. Sci Am. 1990;262(4):56–65.
dc.relation.referencesGupta N, Verma VK. Next-Generation Sequencing and Its Application: Empowering in Public Health Beyond Reality. 2019;313–41.
dc.relation.referencesMardis ER. The impact of next-generation sequencing technology on genetics. Trends in Genetics. 2008;24(3):133–41.
dc.relation.referencesZhu FY, Chen MX, Ye NH, Qiao WM, Gao B, Law WK, et al. Comparative performance of the BGISEQ-500 and Illumina HiSeq4000 sequencing platforms for transcriptome analysis in plants. Plant Methods. 2018;14(1):1–14.
dc.relation.referencesGoodwin S, McPherson JD, McCombie WR. Coming of age: Ten years of next-generation sequencing technologies. Nat Rev Genet [Internet]. 2016;17(6):333–51. Disponible en: http://dx.doi.org/10.1038/nrg.2016.49
dc.relation.referencesWhat is the Human Genome Project? [Internet]. [citado el 15 de julio de 2020]. Disponible en: https://www.genome.gov/human-genome-project/What
dc.relation.referencesInternational HapMap Consortium. International HapMap Consortium. The International HapMap Project. Nature. 2003;426(6968):789–96.
dc.relation.referencesValdespino-Gómez VM, Margarita P. Organización estructural y funcional del genoma humano: variación en el número de copias predisponentes de enfermedades degenerativas. Gaceta Mexicana de Oncología. 2013;12(6):426–32.
dc.relation.referencesBelmont JW, Boudreau A, Leal SM, Hardenbol P, Pasternak S, Wheeler DA, et al. A haplotype map of the human genome. Nature. el 27 de octubre de 2005;437(7063):1299–320.
dc.relation.referencesHapMap [Internet]. [citado el 6 de febrero de 2023]. Disponible en: https://www.ncbi.nlm.nih.gov/probe/docs/projhapmap/
dc.relation.referencesVia M, Gignoux C, Burchard EG. The 1000 Genomes Project: New opportunities for research and social challenges. Vol. 2, Genome Medicine. 2010.
dc.relation.referencesZheng-Bradley X, Flicek P. Applications of the 1000 Genomes Project resources. Brief Funct Genomics. el 1 de mayo de 2017;16(3):163–70.
dc.relation.referencesDunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. el 6 de septiembre de 2012;489(7414):57–74.
dc.relation.referencesVamathevan J, Birney E. A Review of Recent Advances in Translational Bioinformatics: Bridges from Biology to Medicine. Yearb Med Inform. 2017;26(1):178–87.
dc.relation.referencesRoth SC. What is genomic medicine? Journal of the Medical Library Association. 2019;107(3):442–8.
dc.relation.referencesCorpas M, Kovalevskaya N V., McMurray A, Nielsen FGG. A FAIR guide for data providers to maximise sharing of human genomic data. PLoS Comput Biol. 2018;14(3):1–10.
dc.relation.referencesBLAST: Basic Local Alignment Search Tool [Internet]. [citado el 7 de febrero de 2023]. Disponible en: https://blast.ncbi.nlm.nih.gov/Blast.cgi
dc.relation.referencesEnsembl navegador del genoma 108 [Internet]. [citado el 7 de febrero de 2023]. Disponible en: https://www.ensembl.org/index.html
dc.relation.referencesAll Resources - Site Guide - NCBI [Internet]. [citado el 10 de febrero de 2023]. Disponible en: https://www.ncbi.nlm.nih.gov/guide/all/
dc.relation.referencesAbout UniProt | UniProt help | UniProt [Internet]. [citado el 10 de febrero de 2023]. Disponible en: https://www.uniprot.org/help/about
dc.relation.referencesAbout gnomAD | gnomAD [Internet]. [citado el 10 de febrero de 2023]. Disponible en: https://gnomad.broadinstitute.org/about
dc.relation.referencesNone [Internet]. [citado el 10 de febrero de 2023]. Disponible en: https://www.ncbi.nlm.nih.gov/snp/docs/RefSNP_about/
dc.relation.referencesWhat is ClinVar? [Internet]. [citado el 10 de febrero de 2023]. Disponible en: https://www.ncbi.nlm.nih.gov/clinvar/intro/
dc.relation.referencesAbout OMIM [Internet]. [citado el 5 de noviembre de 2020]. Disponible en: https://omim.org/about
dc.relation.referencesStenson PD, Mort M, Ball E v., Chapman M, Evans K, Azevedo L, et al. The Human Gene Mutation Database (HGMD®): optimizing its use in a clinical diagnostic or research setting. Hum Genet. el 1 de octubre de 2020;139(10):1197–207.
dc.relation.referencesClinical Genomic Database [Internet]. [citado el 10 de febrero de 2023]. Disponible en: https://research.nhgri.nih.gov/CGD/
dc.relation.referencesAbout - DECIPHER v11.17 [Internet]. [citado el 10 de febrero de 2023]. Disponible en: https://www.deciphergenomics.org/about/overview
dc.relation.referencesHuman Phenotype Ontology [Internet]. [citado el 10 de febrero de 2023]. Disponible en: https://hpo.jax.org/app/about
dc.relation.referencesKöhler S, Gargano M, Matentzoglu N, Carmody LC, Lewis-Smith D, Vasilevsky NA, et al. The human phenotype ontology in 2021. Nucleic Acids Res. el 8 de enero de 2021;49(D1):D1207–17.
dc.relation.referencesWHO | Screening the genes [Internet]. [citado el 15 de julio de 2020]. Disponible en: https://www.who.int/bulletin/volumes/90/8/12-030812/en/
dc.relation.referencesKhosla N, Valdez R. A compilation of national plans, policies and government actions for rare diseases in 23 countries. Intractable Rare Dis Res. 2018;7(4):213–22.
dc.relation.referencesJaimes CA, Espinoza DAE. Actores del Sistema General de Seguridad Social en salud. 2011;(4).
dc.relation.referencesMinisterio de Salud y Protección Social. Decreto 1954 de 2012. 2012;1–4.
dc.relation.referencesMateus HE, Pérez AM, Mesa ML, Escobar G, Gálvez JM, Montaño JI, et al. A first description of the Colombian national registry for rare diseases. BMC Res Notes. 2017;10(1):9–11.
dc.relation.referencesResolución 0023 de 2023/ Por medio de la cual se actualiza el listado de enfermedades huérfanas – raras. Ministerio de Salud y Protección social. 4 de Enero de 2023.
dc.relation.referencesEdwin F, Alvarado P. Informe de evento: Enfermedades Huérfanas-Raras Créditos Martha Lucía Ospina Martinez Directora General.Instituto Nacional de Salud. 2022.
dc.relation.referencesEnfermedades huérfanas-raras Casos notificados al Sivigila. [citado el 1 de febrero de 2023]; Disponible en: www.ins.gov.co
dc.relation.referencesWallace SE, Bean LJH. Educational Materials — Genetic Testing : Current Approaches This discussion addresses clinical tests available through CLIA-certified laboratories in the United States . Many inherited disorders and phenotypes are genetically heterogeneous – that is , pa. 2019;1–13.
dc.relation.referencesBerg AO, Berg JS, Brown CW, Burke W, Calonge BN, Chung WK, et al. An evidence framework for genetic testing. An Evidence Framework for Genetic Testing. 2017. 1–136 p.
dc.relation.referencesPiovesan A, Antonaros F, Vitale L, Strippoli P, Pelleri MC, Caracausi M. Human protein-coding genes and gene feature statistics in 2019. BMC Res Notes. el 4 de junio de 2019;12(1).
dc.relation.referencesGarcia I, Jones E, Ramos M, Innis-Whitehouse W, Gilkerson R. The little big genome: The organization of mitochondrial DNA. Frontiers in Bioscience - Landmark. 2017;22(4):710–21.
dc.relation.referencesLi Huanzheng, Slone Jesse, Fei Lin. Mitochondrial DNA Variants and Comon Diseases. Cells. 2019.
dc.relation.referencesHeather JM, Chain B. The sequence of sequencers: The history of sequencing DNA. Genomics. 2016;107(1):1–8.
dc.relation.referencesHess JF, Kohl TA, Kotrová M, Rönsch K, Paprotka T, Mohr V, et al. Library preparation for next generation sequencing: A review of automation strategies. Biotechnol Adv. 2020;41(March):107537.
dc.relation.referencesIllumina Inc. Illumina sequencing introduction. Illumina sequencing introduction. 2017;(October):1–8.
dc.relation.referencesExome Capture V5 Probe Set User Manual MGIEasy II Revision History [Internet]. Disponible en: https://en.mgi-tech.com/download/files.htmlIIIContents
dc.relation.referencesDNBSEQ-G400: Comprehensive and flexible genome sequencer-MGI [Internet]. [citado el 18 de julio de 2020]. Disponible en: https://en.mgitech.cn/products/instruments_info/2/
dc.relation.referencesHistory-BGI Group Official Website [Internet]. [citado el 18 de julio de 2020]. Disponible en: https://en.genomics.cn/en-history.html
dc.relation.referencesLelieveld SH, Veltman JA, Gilissen C. Novel bioinformatic developments for exome sequencing. Hum Genet. 2016;135(6):603–14.
dc.relation.referencesHe KY, Ge D, He MM. Big data analytics for genomic medicine. Int J Mol Sci. 2017;18(2):1–18.
dc.relation.referencesBartha Á, Győrffy B. Comprehensive outline of whole exome sequencing data analysis tools available in clinical oncology. Cancers (Basel). 2019;11(11):1–20.
dc.relation.referencesAdams DR, Eng CM. Next-generation sequencing to diagnose suspected genetic disorders. New England Journal of Medicine. 2018;379(14):1353–62.
dc.relation.referencesRichards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine. 2015;17(5):405–24.
dc.relation.referencesLandrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. el 1 de enero de 2018;46(D1):D1062–7.
dc.relation.referencesLandrum MJ, Kattman BL. ClinVar at five years: Delivering on the promise. Hum Mutat. el 1 de noviembre de 2018;39(11):1623–30.
dc.relation.referencesLandrum MJ, Chitipiralla S, Brown GR, Chen C, Gu B, Hart J, et al. ClinVar: Improvements to accessing data. Nucleic Acids Res. el 1 de enero de 2020;48(D1):D835–44.
dc.relation.referencesThe ClinVar record display [Internet]. [citado el 5 de noviembre de 2020]. Disponible en: https://www.ncbi.nlm.nih.gov/clinvar/docs/details/
dc.relation.referencesTavtigian S v., Harrison SM, Boucher KM, Biesecker LG. Fitting a naturally scaled point system to the ACMG/AMP variant classification guidelines. Hum Mutat. el 1 de octubre de 2020;41(10):1734–7.
dc.relation.referencesClinGen Sequence Variant Interpretation Work Group recommendations for ACMG/AMP guideline criteria code modifications Version 1.0 Working Group Page: https://clinicalgenome.org/working-groups/sequence-variant-interpretation/ svi_criteria_nomenclature_recommendation_v1. Disponible en: https://clinicalgenome.org/working-groups/sequence-variant-interpretation/
dc.relation.referencesAbou Tayoun AN, Pesaran T, DiStefano MT, Oza A, Rehm HL, Biesecker LG, et al. Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum Mutat. el 1 de noviembre de 2018;39(11):1517–24.
dc.relation.referencesGhosh R, Harrison SM, Rehm HL, Plon SE, Biesecker LG. Updated recommendation for the benign stand-alone ACMG/AMP criterion. Hum Mutat. el 1 de noviembre de 2018;39(11):1525–30.
dc.relation.referencesClinGen Sequence Variant Interpretation Recommendation for PM2 - Version 1.0 Working Group Disponible en: https://clinicalgenome.org/workinggroups/sequence-variant-interpretation/ pm2_-_svi_recommendation__approved_sept 2020.
dc.relation.referencesClinGen Sequence Variant Interpretation Recommendation for in trans Criterion (PM3)-Version 1.0 Working Group Page: https://clinicalgenome.org/working-groups/sequence-variant-interpretation/ SVI Recommendation for in trans Criterion (PM3)-Version 1.0 [Internet]. 2019. Disponible en: https://clinicalgenome.org/working-groups/sequence-variant-interpretation/
dc.relation.referencesClinGen Sequence Variant Interpretation Recommendation for de novo Criteria (PS2/PM6)-Version 1.1 Working Group Page: https://clinicalgenome.org/working-groups/sequence-variant-interpretation [Internet]. 2018. Disponible en: https://clinicalgenome.org/working-groups/sequence-variant-interpretation/
dc.relation.referencesBrnich SE, Abou Tayoun AN, Couch FJ, Cutting GR, Greenblatt MS, Heinen CD, et al. Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Vol. 12, Genome Medicine. BioMed Central Ltd; 2019.
dc.relation.referencesBiesecker LG, Harrison SM. The ACMG/AMP reputable source criteria for the interpretation of sequence variants. Vol. 20, Genetics in Medicine. Nature Publishing Group; 2018. p. 1687–8.
dc.relation.referencesSlavin TP, Manjarrez S, Pritchard CC, Gray S, Weitzel JN. The effects of genomic germline variant reclassification on clinical cancer care [Internet]. Vol. 10, Oncotarget. 2019. Disponible en: www.oncotarget.com
dc.relation.referencesEllard S, Baple EL, Callaway A, Berry I, Forrester N, Turnbull C, et al. ACGS Best Practice Guidelines for Variant Classification in Rare Disease 2020 Recommendations ratified by ACGS Quality Subcommittee on 4 th. 2020; Disponible en: https://doi.org/10.1101/531210
dc.relation.referencesMersch J, Brown N, Pirzadeh-Miller S, Mundt E, Cox HC, Brown K, et al. Prevalence of variant reclassification following hereditary cancer genetic testing. JAMA - Journal of the American Medical Association. el 25 de septiembre de 2018;320(12):1266–74.
dc.relation.referencesDong X, Liu B, Yang L, Wang H, Wu B, Liu R, et al. Clinical exome sequencing as the first-tier test for diagnosing developmental disorders covering both CNV and SNV: A Chinese cohort. J Med Genet. 2020;1–9.
dc.relation.referencesLelieveld SH, Spielmann M, Mundlos S, Veltman JA, Gilissen C. Comparison of Exome and Genome Sequencing Technologies for the Complete Capture of Protein-Coding Regions. Hum Mutat. 2015;36(8):815–22.
dc.relation.referencesDillon OJ, Lunke S, Stark Z, Yeung A, Thorne N, Gaff C, et al. Exome sequencing has higher diagnostic yield compared to simulated disease-specific panels in children with suspected monogenic disorders. European Journal of Human Genetics. 2018;26(5):644–51.
dc.relation.referencesPengelly RJ, Ward D, Hunt D, Mattocks C, Ennis S. Comparison of Mendeliome exome capture kits for use in clinical diagnostics. Sci Rep. 2020;10(1):1–7.
dc.relation.referencesBertier G, Hétu M, Joly Y. Unsolved challenges of clinical whole-exome sequencing: A systematic literature review of end-users’ views Donna Dickenson, Sandra Soo-Jin Lee, and Michael Morrison. BMC Med Genomics. 2016;9(1):1–12.
dc.relation.referencesSchwarze K, Buchanan J, Taylor JC, Wordsworth S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genetics in Medicine. 2018;20(10):1122–30.
dc.relation.referencesYang Y, Muzny DM, Xia F, Niu Z, Person R, Ding Y, et al. Molecular findings among patients referred for clinical whole-exome sequencing: Editorial comment. Obstet Gynecol Surv. 2015;70(3):164–7.
dc.relation.referencesSawyer SL, Hartley T, Dyment DA, Beaulieu CL, Schwartzentruber J, Smith A, et al. Utility of whole-exome sequencing for those near the end of the diagnostic odyssey: Time to address gaps in care. Clin Genet. 2016;89(3):275–84.
dc.relation.referencesReuter MS, Chaturvedi RR, Liston E, Manshaei R, Aul RB, Bowdin S, et al. The Cardiac Genome Clinic: implementing genome sequencing in pediatric heart disease. Genetics in Medicine [Internet]. 2020;22(6):1015–24. Disponible en: http://dx.doi.org/10.1038/s41436-020-0757-x
dc.relation.referencesSeidelmann SB, Smith E, Subrahmanyan L, Dykas D, Ziki MDA, Azari B, et al. Application of Whole Exome Sequencing in the Clinical Diagnosis and Management of Inherited Cardiovascular Diseases in Adults. Circ Cardiovasc Genet. 2017;10(1).
dc.relation.referencesSaes JL, Simons A, de Munnik SA, Nijziel MR, Blijlevens NMA, Jongmans MC, et al. Whole exome sequencing in the diagnostic workup of patients with a bleeding diathesis. Haemophilia. 2019;25(1):127–35.
dc.relation.referencesRomasko EJ, Devkota B, Biswas S, Jayaraman V, Jairam S, Scarano MI, et al. HHS Public Access. 2019;93(1):8–16.
dc.relation.referencesGroopman EE, Marasa M, Cameron-Christie S, Petrovski S, Aggarwal VS, Milo-Rasouly H, et al. Diagnostic Utility of exome sequencing for kidney disease. New England Journal of Medicine. 2019;380(2):142–51.
dc.relation.referencesWarejko JK, Tan W, Daga A, Schapiro D, Lawson JA, Shril S, et al. Whole exome sequencing of patients with steroid-resistant nephrotic syndrome. Clinical Journal of the American Society of Nephrology. 2018;13(1):53–62.
dc.relation.referencesPolla DL, Cardoso MTO, Silva MCB, Cardoso ICC, Medina CTN, Araujo R, et al. Use of targeted exome sequencing for molecular diagnosis of skeletal disorders. PLoS One. 2015;10(9):1–17.
dc.relation.referencesKingsmore SF, Cakici JA, Clark MM, Gaughran M, Feddock M, Batalov S, et al. A Randomized, Controlled Trial of the Analytic and Diagnostic Performance of Singleton and Trio, Rapid Genome and Exome Sequencing in Ill Infants. Am J Hum Genet. 2019;105(4):719–33.
dc.relation.referencesVora NL, Gilmore K, Brandt A, Gustafson C, Strande N, Ramkissoon L, et al. An approach to integrating exome sequencing for fetal structural anomalies into clinical practice. Genetics in Medicine [Internet]. 2020;22(5):954–61. Disponible en: http://dx.doi.org/10.1038/s41436-020-0750-4
dc.relation.referencesMGIEasy Exome Capture V5 Probe Set-Library Prep-MGI [Internet]. [citado el 11 de noviembre de 2020]. Disponible en: https://en.mgi-tech.com/Products/reagents_info/id/10
dc.relation.referencesMiller DT, Lee K, Abul-Husn NS, Amendola LM, Brothers K, Chung WK, et al. ACMG SF v3.1 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the American College of Medical Genetics and Genomics (ACMG). Vol. 24, Genetics in Medicine. Elsevier B.V.; 2022. p. 1407–14.
dc.relation.referencesIBM Corp. Publicado en 2019. IBM SPSS Statistics para Windows, versión 26.0. Armonk, Nueva York: IBM Corp.
dc.relation.referencesUCSC Genome Browser Gateway [Internet]. [citado el 16 de febrero de 2023]. Disponible en: https://genome.ucsc.edu/cgi-bin/hgGateway
dc.relation.referencesUniProt [Internet]. [citado el 16 de febrero de 2023]. Disponible en: https://www.uniprot.org/
dc.relation.referencesgnomAD [Internet]. [citado el 16 de febrero de 2023]. Disponible en: https://gnomad.broadinstitute.org/
dc.relation.referencesGeneCards - Human Genes | Gene Database | Gene Search [Internet]. [citado el 16 de febrero de 2023]. Disponible en: https://www.genecards.org/
dc.relation.referencesHome - OMIM [Internet]. [citado el 16 de febrero de 2023]. Disponible en: https://www.omim.org/
dc.relation.referencesMalaCards - human disease database [Internet]. [citado el 16 de febrero de 2023]. Disponible en: https://www.malacards.org/
dc.relation.referencesPolyPhen-2: prediction of functional effects of human nsSNPs [Internet]. [citado el 16 de febrero de 2023]. Disponible en: http://genetics.bwh.harvard.edu/pph2/
dc.relation.referencesMutationTaster [Internet]. [citado el 16 de febrero de 2023]. Disponible en: https://www.mutationtaster.org/
dc.relation.referencesFLNA curation results [Internet]. [citado el 16 de febrero de 2023]. Disponible en: https://search.clinicalgenome.org/kb/genes/HGNC:3754
dc.relation.referencesHoefele J, Wolf MTF, O’Toole JF, Otto EA, Schultheiss U, Dêschenes G, et al. Evidence of oligogenic inheritance in nephronophthisis. Journal of the American Society of Nephrology. octubre de 2007;18(10):2789–95.
dc.relation.referencesPQBP1 curation results [Internet]. [citado el 16 de febrero de 2023]. Disponible en: https://search.clinicalgenome.org/kb/genes/HGNC:9330
dc.relation.referencesResolución 5857 de 2018/ Por medio de la cual se actualiza integralmente el Plan de Beneficios en Salud con cargo a la Unidad de Pago por Capitacion (UPC). Ministerio de Salud y Protección social. 26 de Diciembre de 2018. Republica de Colombia.
dc.relation.referencesAlfares A, Alsubaie L, Aloraini T, Alaskar A, Althagafi A, Alahmad A, et al. What is the right sequencing approach? Solo VS extended family analysis in consanguineous populations. BMC Med Genomics. el 17 de julio de 2020;13(1).
dc.relation.referencesTan TY, Lunke S, Chong B, Phelan D, Fanjul-Fernandez M, Marum JE, et al. A head-to-head evaluation of the diagnostic efficacy and costs of trio versus singleton exome sequencing analysis. European Journal of Human Genetics. 2019
dc.relation.referencesHiz Kurul S, Oktay Y, Töpf A, Szabó NZ, Güngör S, Yaramis A, et al. High diagnostic rate of trio exome sequencing in consanguineous families with neurogenetic diseases. Brain. el 1 de abril de 2022;145(4):1507–18.
dc.relation.referencesLiascovich R, Nica Rittler M, Castilla EE, Maternoinfantil R, Sardá B, Aires A. Consanguinity in South America: Demographic Aspects. Vol. 51, Hum Hered. 2001.
dc.relation.referencesRetterer K, Juusola J, Cho MT, Vitazka P, Millan F, Gibellini F, et al. Clinical application of whole-exome sequencing across clinical indications. Genetics in Medicine. el 1 de julio de 2016;18(7):696–704.
dc.relation.referencesKim SH, Kim B, Lee JS, Kim HD, Choi JR, Lee ST, et al. Proband-Only Clinical Exome Sequencing for Neurodevelopmental Disabilities. Pediatr Neurol. el 1 de octubre de 2019;99:47–54.
dc.relation.referencesStark Z, Tan TY, Chong B, Brett GR, Yap P, Walsh M, et al. A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders. Genetics in Medicine. el 1 de noviembre de 2016;18(11):1090–6.
dc.relation.referencesSeo GH, Kim T, Choi IH, Park J young, Lee J, Kim S, et al. Diagnostic yield and clinical utility of whole exome sequencing using an automated variant prioritization system, EVIDENCE. Clin Genet. el 1 de diciembre de 2020;98(6):562–70.
dc.relation.referencesSmedley D, Smith K, Martin A, et al. 100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care — Preliminary Report. New England Journal of Medicine Noviembre de 2021.
dc.relation.referencesGao C, Wang X, Mei S, Li D, Duan J, Zhang P, et al. Diagnostic yields of trio-wes accompanied by CnVSeq for rare neurodevelopmental disorders. Front Genet. 2019;10(MAY).
dc.relation.referencesFernando Ochoa Zuluaga Universidad del Rosario L. Informe de pasantia y trabajo de grado de la maestría en salud pública: análisis sobre la cantidad de especialistas en el sistema de salud colombiano y la incidencia de los cupos de residencia medica sobre estos. 2018.
dc.relation.referencesOlfson E, Cottrell CE, Davidson NO, Gurnett CA, Heusel JW, Stitziel NO, et al. Identification of medically actionable secondary findings in the 1000 genomes. PLoS One. el 2 de septiembre de 2015;10(9).
dc.relation.referencesDeltas C. Digenic inheritance and genetic modifiers. Vol. 93, Clinical Genetics. Blackwell Publishing Ltd; 2018. p. 429–38.
dc.relation.referencesSadowska M, Sarecka-Hujar B, Kopyta I. Cerebral palsy: Current opinions on definition, epidemiology, risk factors, classification and treatment options. Vol. 16, Neuropsychiatric Disease and Treatment. Dove Medical Press Ltd; 2020. p. 1505–18.
dc.relation.referencesMoreno-De-Luca A, Millan F, Pesacreta DR, Elloumi HZ, Oetjens MT, Teigen C, et al. Molecular Diagnostic Yield of Exome Sequencing in Patients with Cerebral Palsy. JAMA - Journal of the American Medical Association. el 2 de febrero de 2021;325(5):467–75.
dc.relation.referencesMiller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus Statement: Chromosomal Microarray Is a First-Tier Clinical Diagnostic Test for Individuals with Developmental Disabilities or Congenital Anomalies. Am J Hum Genet. el 14 de mayo de 2010;86(5):749–64.
dc.relation.referencesVrijenhoek T, Middelburg EM, Monroe GR, van Gassen KLI, Geenen JW, Hövels AM, et al. Whole-exome sequencing in intellectual disability; cost before and after a diagnosis. European Journal of Human Genetics. el 1 de noviembre de 2018;26(11):1566–71.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsSecuenciación Completa del Genoma
dc.subject.decsWhole Genome Sequencing
dc.subject.decsPredisposición Genética a la Enfermedad
dc.subject.decsGenetic Predisposition to Disease
dc.subject.decsEnfermedades Genéticas Congénitas
dc.subject.decsGenetic Diseases, Inborn
dc.subject.proposalSecuenciación del exoma completo
dc.subject.proposalDiagnóstico
dc.subject.proposalNGS
dc.subject.proposalDiagnostics
dc.subject.proposalNGS
dc.subject.proposalPruebas genéticas
dc.subject.proposalGenética
dc.subject.proposalFenotipo
dc.subject.proposalExome sequencing
dc.subject.proposalGenetic testing
dc.subject.proposalGenomics
dc.subject.proposalPhenotype
dc.title.translatedDiagnostic yield of trio and individual Whole Exome Sequencing in a group of Colombian patients with a suspected monogenic disease
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit