dc.rights.license | Atribución-NoComercial 4.0 Internacional |
dc.contributor.advisor | Perilla Perilla, Jairo Ernesto |
dc.contributor.advisor | Godoy Silva, Rubén Darío |
dc.contributor.author | Flórez Prieto, Miguel Ángel |
dc.date.accessioned | 2023-10-10T21:55:57Z |
dc.date.available | 2023-10-10T21:55:57Z |
dc.date.issued | 2023-08-10 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84793 |
dc.description.abstract | El objetivo principal de este trabajo fue evaluar el efecto del tamaño de poro en las propiedades mecánicas de andamios fabricados empleando Ɛ-policaprolactona mediante el uso de tecnología aditiva, con el fin de verificar un posible uso en ingeniería de tejidos, específicamente en tejido óseo. El diseño metodológico involucró tres fases: la primera consistió en el desarrollo del diseño del andamio a utilizar, además de evaluar las condiciones de impresión que pueden afectar la resolución y forma de los andamios, para finalmente imprimir las muestras a evaluar. La segunda fase consistió en realizar pruebas de caracterización del polímero, como calorimetría diferencial de barrido y análisis termogravimétrico. Además, se llevaron a cabo pruebas mecánicas de tensión-deformación, compresión y flexión. Finalmente, en la tercera etapa se evaluó la biocompatibilidad del polímero para determinar si en un futuro puede ser aplicable para la regeneración ósea.
Como resultado, luego de evaluar el efecto de la temperatura en la construcción de andamios de 500 µm, 750 µm y 1000 µm, se logró detectar que los cambios son poco significativos en las propiedades mecánicas al variar las condiciones de impresión en temperaturas de 175°C, 185°C, 195°C y 205°C, y en el lecho de: 50°C, 55°C, 60°C, 65°C y 70°C. Sin embargo, al variar el espaciamiento del filamento, las propiedades mecánicas de tensión y flexión aumentaron conforme disminuyó el espaciamiento. En el caso de las propiedades de compresión, los resultados no mostraron una variación considerable. La toxicidad del polímero es baja, lo que permite su uso en ingeniería de tejidos. (Texto tomado de la fuente) |
dc.description.abstract | The overarching objective of this study was to assess the impact of pore size on the mechanical attributes of scaffolds produced using Ɛ-polycaprolactone via additive manufacturing, with the aim of validating its potential applicability in tissue engineering, particularly for bone tissue. The methodological design encompassed three phases: the first phase involved developing the scaffold design for deployment, along with evaluating the print conditions that could influence scaffold resolution and form, culminating in the printing of the samples for evaluation. The second phase entailed executing polymer characterization tests, including differential scanning calorimetry and thermogravimetric analysis. In addition to these, mechanical stress-strain, compression, and bending tests were performed. Lastly, during the third stage, the polymer's biocompatibility was examined to ascertain its prospective utility in future bone regeneration efforts.
The outcomes indicated that, upon assessing the temperature's influence on the construction of scaffolds with pore sizes of 500 µm, 750 µm, and 1000 µm, the observed changes in mechanical properties exhibited minimal significance when the print conditions were altered at temperatures of 175°C, 185°C, 195°C, and 205°C, as well as the bed temperature variations of 50°C, 55°C, 60°C, 65°C, and 70°C. However, in instances of modifying filament spacing, mechanical tensile and bending properties were found to escalate inversely with spacing reduction. As for compression properties, the results displayed nominal variance. The polymer's toxicity was found to be low, thus facilitating its utilization in tissue engineering applications. |
dc.description.abstract | ilustraciones, diagramas, fotografías |
dc.format.extent | xxi, 168 páginas |
dc.format.mimetype | application/pdf |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ |
dc.subject.ddc | 570 - Biología::572 - Bioquímica |
dc.subject.ddc | 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales |
dc.subject.ddc | 670 - Manufactura::679 -Otros productos de materiales específicos |
dc.title | Obtención de un andamio con potencial uso en ingeniería de tejidos empleando policaprolactona en una impresora 3D. |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química |
dc.contributor.researchgroup | Grupo de Investigación en Procesos Químicos y Bioquímicos |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Química |
dc.description.methods | La investigación se basa en un desarrollo experimental que se da en diferentes etapas, la primera fue el diseño del andamio para poder verificar las condiciones de impresión optimas que permitieran una resolución adecuada, segundo un analisis de variacion de condiciones de impresión para determinar el efecto en la resolución, todo ello apoyado con programas de analisis de imagen, tercero, elaboración de pruebas mecánicas: tensión, compresión y flexión a los andamios. Cuarto modificación de tamaño de poro con el fin de evaluar las propiedades mecánicas y determinar su efecto. y Finalmente de evaluó la citotoxicidad del material. |
dc.description.researcharea | Ingeniería de tejidos. |
dc.description.researcharea | Bioprocesos |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ingeniería |
dc.publisher.place | Bogotá, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Abdelhamid, M. M., Eid, G., Othman, M. H. M., Ibrahim, H., Elsers, D., Elyounsy, M., Kwon, S. Y., Kim, M., Kim, D., Kim, J.-W., Ryu, J., El-Radi, M. A., & Fetih, T. N. (2023). The Evaluation of Cartilage Regeneration Efficacy of Three-Dimensionally Biofabricated Human-Derived Biomaterials on Knee Osteoarthritis: A Single-Arm, Open Label Study in Egypt. Journal of Personalized Medicine, 13(5), 748. https://doi.org/10.3390/jpm13050748 |
dc.relation.references | Abdul Haq, R. H., Saidin, W., & Mat, U. W. (2013). Improvement of Mechanical Properties of Polycaprolactone (PCL) by Addition of Nano-Montmorillonite (MMT) and Hydroxyapatite (HA). Applied Mechanics and Materials, 315, 815–819. https://doi.org/10.4028/www.scientific.net/AMM.315.815 |
dc.relation.references | Amador-González, E., Sotomayor-del Moral, J. A., Pascual-Francisco, J. B., & Farfán-Cabrera, L. I. (2021). Medición y obtención de modelo de fluencia lenta en elastómeros. Pädi Boletín Científico de Ciencias Básicas e Ingenierías Del ICBI, 9(17), 108–113. https://doi.org/10.29057/icbi.v9i17.7136 |
dc.relation.references | ASTM International. (2012). Standard Terminology for Additive Manufacturing Technologies. |
dc.relation.references | ASTM International. (2016). ASTM D-695-15: Standard Test Method for Compressive Properties of Rigid Plastics. |
dc.relation.references | ASTM International. (2017). ASTM D790-17: Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. |
dc.relation.references | ASTM International. (2018). ASTM D882-18 Standard Test Method for Tensile Properties of Thin Plastic Sheeting. |
dc.relation.references | ASTM International. (2021). ASTM D3418-99: Standard Test Method for Transition Temperatures of Polymers By Differential Scanning Calorimetry. |
dc.relation.references | ASTM International. (2022). ASTM D-638: Standard Test Method for Tensile Properties of Plastics. |
dc.relation.references | Azimi, B., Nourpanah, P., Rabiee, M., & Arbab, S. (2018). Poly (∊-caprolactone) Fiber: An Overview. Journal of Engineered Fibers and Fabrics, 9(3), 155892501400900. https://doi.org/10.1177/155892501400900309 |
dc.relation.references | Baez, J. (2006). Poli (e-caprolactona), un polímero degradable síntesis por triisopropóxido de aluminio Al(OiPr)3 como iniciador. Educación Química (UNAM), 17(4), 458–463. |
dc.relation.references | Bao, T. Q., Franco, R. A., & Lee, B. T. (2012). Preparation and characterization of a novel 3D scaffold from poly(e{open}-caprolactone)/biphasic calcium phosphate hybrid composite microspheres adhesion. Biochemical Engineering Journal, 64, 76–83. https://doi.org/10.1016/j.bej.2012.02.005 |
dc.relation.references | Barazanchi, A., Li, K. C., Al-Amleh, B., Lyons, K., & Waddell, J. N. (2017). Additive Technology: Update on Current Materials and Applications in Dentistry. Journal of Prosthodontics, 26(2), 156–163. https://doi.org/10.1111/jopr.12510 |
dc.relation.references | Cardoso, G. B., Machado-Silva, A. B., Sabino, M., Santos Jr, A. R., & Zavaglia, C. A. (2014). Novel hybrid membrane of chitosan/poly (ε-caprolactone) for tissue engineering. Biomatter, 4(1), e29508. https://doi.org/10.4161/biom.29508 |
dc.relation.references | Carvalho, J. R. G., Conde, G., Antonioli, M. L., Dias, P. P., Vasconcelos, R. O., Taboga, S. R., Canola, P. A., Chinelatto, M. A., Pereira, G. T., & Ferraz, G. C. (2020). Biocompatibility and biodegradation of poly(lactic acid) (PLA) and an immiscible PLA/poly(ε-caprolactone) (PCL) blend compatibilized by poly(ε-caprolactone-b-tetrahydrofuran) implanted in horses. Polymer Journal, 52(6), 629–643. https://doi.org/10.1038/s41428-020-0308-y |
dc.relation.references | Center for Devices and Radiological Health. (2016). Use of International Standard ISO 10993-1, “Biological evaluation of medical devices - Part 1: Evaluation and testing within a risk management process.” Guidance for Industry and Food and Drug Administration Staff, 26. |
dc.relation.references | Dash, T. K., & Konkimalla, V. B. (2012). Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. Journal of Controlled Release, 158(1), 15–33. https://doi.org/10.1016/j.jconrel.2011.09.064 |
dc.relation.references | Dhandayuthapani, B., Yoshida, Y., Maekawa, T., & Kumar, D. S. (2011). Polymeric scaffolds in tissue engineering application: A review. International Journal of Polymer Science, 2011(ii). https://doi.org/10.1155/2011/290602 |
dc.relation.references | Dong, L., Wang, S. J., Zhao, X. R., Zhu, Y. F., & Yu, J. K. (2017). 3D-printed poly (ϵ-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Scientific Reports, 7(1), 4–12. https://doi.org/10.1038/s41598-017-13838-7 |
dc.relation.references | Earnest, C. M. (1984). Modern thermogravimetry. Analytical Chemistry, 56(13), 1471A-1486A. https://doi.org/10.1021/ac00277a002 |
dc.relation.references | Engelberg, I., & Kohn, J. (1991). Physico-mechanical properties of degradable polymers used in medical applications: A comparative study. Biomaterials, 12(3), 292–304. https://doi.org/10.1016/0142-9612(91)90037-B |
dc.relation.references | Eshraghi, S., & Das, S. (2010). Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomaterialia, 6(7), 2467–2476. https://doi.org/10.1016/j.actbio.2010.02.002 |
dc.relation.references | Fahira, A. I., Amalia, R., Barliana, M. I., Gatera, V. A., & Abdulah, R. (2022). Polyethyleneimine (PEI) as a Polymer-Based Co-Delivery System for Breast Cancer Therapy. Breast Cancer: Targets and Therapy, Volume 14, 71–83. https://doi.org/10.2147/BCTT.S350403 |
dc.relation.references | Fernandez, A., Sosa, P., Debora, S., Desantadina, V., Fabeiro, M., Martinez, M. I., Piazza, N., Casavalle, P., Tonietti, M., Vacarezza, V., de Grandis, S., Granados, N., & Hernandez, J. (2011). Calcio y nutrición. |
dc.relation.references | Finkenstadt, V. L., Mohamed, A. A., Biresaw, G., & Willett, J. L. (2008). Mechanical properties of green composites with polycaprolactone and wheat gluten. Journal of Applied Polymer Science, 110(4), 2218–2226. https://doi.org/10.1002/app.28446 |
dc.relation.references | Gilmer, E. L., Miller, D., Chatham, C. A., Zawaski, C., Fallon, J. J., Pekkanen, A., Long, T. E., Williams, C. B., & Bortner, M. J. (2018). Model analysis of feedstock behavior in fused filament fabrication: Enabling rapid materials screening. Polymer, 152, 51–61. https://doi.org/10.1016/j.polymer.2017.11.068 |
dc.relation.references | Gregor, A., Filová, E., Novák, M., Kronek, J., Chlup, H., Buzgo, M., Blahnová, V., Lukášová, V., Bartoš, M., Nečas, A., & Hošek, J. (2017). Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. Journal of Biological Engineering, 11(1), 1–21. https://doi.org/10.1186/s13036-017-0074-3 |
dc.relation.references | Guarino, V., Gentile, G., Sorrentino, L., & Ambrosio, L. (2017). Polycaprolactone: Synthesis, Properties, and Applications. In Encyclopedia of Polymer Science and Technology. https://doi.org/10.1002/0471440264.pst658 |
dc.relation.references | Guerra, A., Cano, P., Rabionet, M., Puig, T., & Ciurana, J. (2018). 3D-Printed PCL/PLA Composite Stents: Towards a New Solution to Cardiovascular Problems. Materials, 11(9), 1679. https://doi.org/10.3390/ma11091679 |
dc.relation.references | Guerra, A. J., & Ciurana, J. (2018). 3D-printed bioabsordable polycaprolactone stent: The effect of process parameters on its physical features. Materials & Design, 137, 430–437. https://doi.org/10.1016/j.matdes.2017.10.045 |
dc.relation.references | Guerrero F, M., Maya C, C. X., & Vallejo L, M. (2016). Evaluación del efecto citotóxico de una resina dental a base de siloranos sobre fibroblastos L929. Revista de La Universidad Industrial de Santander. Salud, 48(1), 71–80. https://doi.org/10.18273/revsal.v48n1-2016008 |
dc.relation.references | Hajiali, F., Tajbakhsh, S., & Shojaei, A. (2018). Fabrication and Properties of Polycaprolactone Composites Containing Calcium Phosphate-Based Ceramics and Bioactive Glasses in Bone Tissue Engineering: A Review. Polymer Reviews, 58(1), 164–207. https://doi.org/10.1080/15583724.2017.1332640 |
dc.relation.references | Han, F., Wang, J., Ding, L., Hu, Y., Li, W., Yuan, Z., Guo, Q., Zhu, C., Yu, L., Wang, H., Zhao, Z., Jia, L., Li, J., Yu, Y., Zhang, W., Chu, G., Chen, S., & Li, B. (2020). Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00083 |
dc.relation.references | Iqbal Mohammed, M. (2017). Design and fabrication considerations for three dimensional scaffold structures. KnE Engineering, 2(2), 120. https://doi.org/10.18502/keg.v2i2.604 |
dc.relation.references | Jiao, Z., Luo, B., Xiang, S., Ma, H., Yu, Y., & Yang, W. (2019). 3D printing of HA / PCL composite tissue engineering scaffolds. Advanced Industrial and Engineering Polymer Research, 2(4), 196–202. https://doi.org/10.1016/j.aiepr.2019.09.003 |
dc.relation.references | Jin, G., Prabhakaran, M. P., Kai, D., Annamalai, S. K., Arunachalam, K. D., & Ramakrishna, S. (2013). Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials, 34(3), 724–734. https://doi.org/10.1016/j.biomaterials.2012.10.026 |
dc.relation.references | Karageorgiou, V., & Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26(27), 5474–5491. https://doi.org/10.1016/j.biomaterials.2005.02.002 |
dc.relation.references | Kerman, I., Toppare, L., Yilmaz, F., & Yagci, Y. (2005). Caprolactone Conducting Copolymers and their Electrochromic Properties. Journal of Macromolecular Science, Part A, 42(4), 509–520. https://doi.org/10.1081/MA-200054363 |
dc.relation.references | Koons, G. L., Diba, M., & Mikos, A. G. (2020). Materials design for bone-tissue engineering. Nature Reviews Materials, 5(8), 584–603. https://doi.org/10.1038/s41578-020-0204-2 |
dc.relation.references | Kováčová, M., Vykydalová, A., & Špitálský, Z. (2023). Polycaprolactone with Glass Beads for 3D Printing Filaments. Processes, 11(2), 395. https://doi.org/10.3390/pr11020395 |
dc.relation.references | Licciardello, M., Ciardelli, G., & Tonda-Turo, C. (2021). Biocompatible Electrospun Polycaprolactone-Polyaniline Scaffold Treated with Atmospheric Plasma to Improve Hydrophilicity. Bioengineering, 8(2), 24. https://doi.org/10.3390/bioengineering8020024 |
dc.relation.references | Lizarbe Iracheta, M. A. (2007). Sustitutivos de tejidos de los biomateriales a la ingeniería tisular. Revista de La Real Academia de Ciencias Exactas, Físicas y Naturales, 101(1), 227–252. |
dc.relation.references | Lozano-Sánchez, L., Bagudanch, I., Sustaita, A., Iturbe-Ek, J., Elizalde, L., Garcia-Romeu, M., & Elías-Zúñiga, A. (2018a). Single-Point Incremental Forming of Two Biocompatible Polymers: An Insight into Their Thermal and Structural Properties. Polymers, 10(4), 391. https://doi.org/10.3390/polym10040391 |
dc.relation.references | Lyu, J. S., Lee, J.-S., & Han, J. (2019). Development of a biodegradable polycaprolactone film incorporated with an antimicrobial agent via an extrusion process. Scientific Reports, 9(1), 20236. https://doi.org/10.1038/s41598-019-56757-5 |
dc.relation.references | Maddah, H. A. (2016). Polypropylene as a Promising Plastic: A Review. American Journal of Polymer Science, 6(1), 1–11. https://doi.org/10.5923/j.ajps.20160601.01 |
dc.relation.references | Mirhosseini, M. M., Haddadi-Asl, V., & Zargarian, S. Sh. (2016). Fabrication and characterization of hydrophilic poly(ε-caprolactone)/pluronic P123 electrospun fibers. Journal of Applied Polymer Science, 133(17), n/a-n/a. https://doi.org/10.1002/app.43345 |
dc.relation.references | Mochane, M. J., Motsoeneng, T. S., Sadiku, E. R., Mokhena, T. C., & Sefadi, J. S. (2019). Morphology and Properties of Electrospun PCL and Its Composites for Medical Applications: A Mini Review. Applied Sciences, 9(11), 2205. https://doi.org/10.3390/app9112205 |
dc.relation.references | Moeini, S., Mohammadi, M. R., & Simchi, A. (2017). In-situ solvothermal processing of polycaprolactone/hydroxyapatite nanocomposites with enhanced mechanical and biological performance for bone tissue engineering. Bioactive Materials, 2(3), 146–155. https://doi.org/10.1016/j.bioactmat.2017.04.004 |
dc.relation.references | Najafabadi, F. M., Karbasi, S., Benisi, S. Z., & Shojaei, S. (2023). Physical, mechanical, and biological performance of chitosan-based nanocomposite coating deposited on the polycaprolactone-based 3D printed scaffold: Potential application in bone tissue engineering. International Journal of Biological Macromolecules, 243, 125218. https://doi.org/10.1016/j.ijbiomac.2023.125218 |
dc.relation.references | Nerlich, A. G., Zink, A., Szeimies, U., & Hagedorn, H. G. (2000). Ancient Egyptian prosthesis of the big toe. The Lancet, 356(9248), 2176–2179. https://doi.org/10.1016/S0140-6736(00)03507-8 |
dc.relation.references | O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95. https://doi.org/10.1016/S1369-7021(11)70058-X |
dc.relation.references | Ortega, E. S., Sanz-Garcia, A., Pernia-Espinoza, A., & Escobedo-Lucea, C. (2019). Efficient fabrication of polycaprolactone scaffolds for printing hybrid tissue-engineered constructs. Materials, 12(4), 1–18. https://doi.org/10.3390/ma12040613 |
dc.relation.references | Park, H. J., Lee, O. J., Lee, M. C., Moon, B. M., Ju, H. W., Lee, J. min, Kim, J.-H., Kim, D. W., & Park, C. H. (2015). Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction. International Journal of Biological Macromolecules, 78, 215–223. https://doi.org/10.1016/j.ijbiomac.2015.03.064 |
dc.relation.references | Park, S., Kim, G., Jeon, Y. C., Koh, Y., & Kim, W. (2009). 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system. Journal of Materials Science: Materials in Medicine, 20(1), 229–234. https://doi.org/10.1007/s10856-008-3573-4 |
dc.relation.references | Park, W. H., Kim, B. S., Park, K. E., You, H. K., Lee, J., & Kim, M. H. (2015). Effect of nanofiber content on bone regeneration of silk fibroin/poly(ε-caprolactone) nano/microfibrous composite scaffolds. International Journal of Nanomedicine, 485. https://doi.org/10.2147/IJN.S72730 |
dc.relation.references | Prakasam, M., Popescu, M., Piticescu, R., & Largeteau, A. (2017). Fabrication Methodologies of Biomimetic and Bioactive Scaffolds for Tissue Engineering Applications. In Scaffolds in Tissue Engineering - Materials, Technologies and Clinical Applications. InTech. https://doi.org/10.5772/intechopen.70707 |
dc.relation.references | Rezania, N., Asadi-Eydivand, M., Abolfathi, N., Bonakdar, S., Mehrjoo, M., & Solati-Hashjin, M. (2022). Three-dimensional printing of polycaprolactone/hydroxyapatite bone tissue engineering scaffolds mechanical properties and biological behavior. Journal of Materials Science: Materials in Medicine, 33(3), 31. https://doi.org/10.1007/s10856-022-06653-8 |
dc.relation.references | Rezgui, F., Swistek, M., Hiver, J. M., G’Sell, C., & Sadoun, T. (2005). Deformation and damage upon stretching of degradable polymers (PLA and PCL). Polymer, 46(18), 7370–7385. https://doi.org/10.1016/j.polymer.2005.03.116 |
dc.relation.references | Rohner, D., Hutmacher, D. W., Cheng, T. K., Oberholzer, M., & Hammer, B. (2003). In vivo efficacy of bone-marrow-coated polycaprolactone scaffolds for the reconstruction of orbital defects in the pig. Journal of Biomedical Materials Research, 66B(2), 574–580. https://doi.org/10.1002/jbm.b.10037 |
dc.relation.references | Rosa, D. S., Guedes, C. G. F., & Pedroso, A. G. (2004). Gelatinized and nongelatinized corn starch/ poly(epsilon-caprolactone) blends: characterization by rheological, mechanical and morphological properties. Polímeros, 14(3), 181–186. https://doi.org/10.1590/S0104-14282004000300014 |
dc.relation.references | Rudnik, E. (2013). Compostable Polymer Properties and Packaging Applications. In Plastic Films in Food Packaging (pp. 217–248). |
dc.relation.references | Salgado, C. L., Sanchez, E. M. S., Zavaglia, C. A. C., & Granja, P. L. (2012). Biocompatibility and biodegradation of polycaprolactone-sebacic acid blended gels. Journal of Biomedical Materials Research Part A, 100A(1), 243–251. https://doi.org/10.1002/jbm.a.33272 |
dc.relation.references | Shabab, T., Bas, O., Dargaville, B. L., Ravichandran, A., Tran, P. A., & Hutmacher, D. W. (2023). Microporous/Macroporous Polycaprolactone Scaffolds for Dental Applications. Pharmaceutics, 15(5), 1340. https://doi.org/10.3390/pharmaceutics15051340 |
dc.relation.references | Sharma, N., Pratap Yadav, V., & Sharma, A. (2021). Attitudes and empathy of youth towards physically disabled persons. Heliyon, 7(8), e07852. https://doi.org/10.1016/j.heliyon.2021.e07852 |
dc.relation.references | Sodupe Ortega, E., Sanz-Garcia, A., Pernia-Espinoza, A., & Escobedo-Lucea, C. (2019). Efficient Fabrication of Polycaprolactone Scaffolds for Printing Hybrid Tissue-Engineered Constructs. Materials, 12(4), 613. https://doi.org/10.3390/ma12040613 |
dc.relation.references | Vyas, C., Zhang, J., Øvrebø, Ø., Huang, B., Roberts, I., Setty, M., Allardyce, B., Haugen, H., Rajkhowa, R., & Bartolo, P. (2021). 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications. Materials Science and Engineering: C, 118, 111433. https://doi.org/10.1016/j.msec.2020.111433 |
dc.relation.references | Wang, L., Abedalwafa, M., Wang, F., & Li, C. (2013). Biodegradable Poly-Ε-Caprolactone (Pcl) for Tissue Engineering Applications: a Review. Rev. Adv. Mater. Sci, 34, 123–140. http://www.ipme.ru/e-journals/RAMS/no_23413/02_23413_abedalwafa.pdf |
dc.relation.references | Whitaker, M. (2014). The history of 3D printing in healthcare. The Bulletin of the Royal College of Surgeons of England, 96(7), 228–229. https://doi.org/10.1308/147363514X13990346756481 |
dc.relation.references | Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer - Polycaprolactone in the 21st century. Progress in Polymer Science (Oxford), 35(10), 1217–1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002 |
dc.relation.references | Zhang, Q., Zhou, X., Du, H., Ha, Y., Xu, Y., Ao, R., & He, C. (2023). Bifunctional Hydrogel-Integrated 3D Printed Scaffold for Repairing Infected Bone Defects. ACS Biomaterials Science & Engineering, 9(8), 4583–4596. https://doi.org/10.1021/acsbiomaterials.3c00564 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.lemb | Imagen tridimensional en diseño |
dc.subject.lemb | Design imaging |
dc.subject.lemb | Sistemas de representacion tridimencional |
dc.subject.lemb | Three-dimensional display systems |
dc.subject.proposal | Tecnología aditiva |
dc.subject.proposal | Andamios |
dc.subject.proposal | Pruebas mecánicas |
dc.subject.proposal | Análisis de imagen |
dc.subject.proposal | Additive technology |
dc.subject.proposal | Scaffolds |
dc.subject.proposal | Mechanical tests |
dc.subject.proposal | Image analysis |
dc.title.translated | Obtaining a scaffold with potential use in tissue engineering using polycaprolactone in a 3D printer. |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Estudiantes |
dc.contributor.cvlac | FLÓREZ PRIETO, MIGUEL ÁNGEL |