Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorFranco Cardona, Carlos Jaime
dc.contributor.authorDelgado Rendón, David
dc.date.accessioned2023-11-09T18:05:00Z
dc.date.available2023-11-09T18:05:00Z
dc.date.issued2023-09-28
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84926
dc.descriptionilustraciones, diagramas
dc.description.abstractLa expansión de capacidad de generación en Colombia en los próximos años será a través de Fuentes no Convencionales de Energía Renovable (FNCER). En este contexto, las hidroeléctricas existentes enfrentarán varios retos que podrían afectar sus ingresos, como la disminución de los precios y el aumento de la volatilidad del precio de bolsa, por lo que es necesario encontrar nuevas alternativas de negocio que permitan mantener y aumentar la rentabilidad de las hidroeléctricas, y aprovechar sus fortalezas. Estas alternativas incluyen aprovechar la complementariedad del recurso hídrico con el solar y eólico, y ofrecer servicios relacionados con su capacidad de almacenamiento y flexibilidad de generación. Esta tesis tiene el objetivo de evaluar las oportunidades de negocio para centrales hidroeléctricas existentes en Colombia, en el contexto de alta penetración de FNCER. Para esto, se identificaron las oportunidades de negocio a partir de la revisión amplia de la literatura; luego se desarrolló un modelo dinámico sensible a los cambios en el sistema eléctrico derivados de la alta penetración de FNCER, y con este se evaluaron las alternativas de negocio. Los resultados muestran que los negocios con mayor potencial son: la prestación de servicios complementarios, la optimización de portafolio hidroeléctrico-eólico, y el aumento de potencia y de eficiencia de las hidroeléctricas; mientras que los siguientes negocios mostraron bajo potencial: hidroeléctricas reversibles, solar flotante y producción de hidrógeno. (Texto tomado de la fuente)
dc.description.abstractIn the coming years, Colombia's expansion of generation capacity will predominantly depend on Non-Conventional Renewable Energy Sources (NCRE). This scenario presents multiple challenges for existing hydroelectric power plants, potentially impacting their revenue streams due to fluctuating market prices and increased price volatility. To ensure the sustained profitability of hydroelectric facilities and capitalize on their inherent advantages, such as complementarity with solar and wind resources, storage capacity, and flexibility, it is imperative to explore new business opportunities. This thesis aims to comprehensively evaluate business opportunities for existing hydroelectric power plants in Colombia, considering the context of high NCRE penetration. To achieve this, a comprehensive literature review was conducted to identify potential opportunities. Subsequently, a dynamic model, designed to capture market changes resulting from the increased NCRE penetration, was developed to assess these opportunities. The results indicate that certain business ventures hold significant potential: offering auxiliary services, optimizing the hydroelectric-wind portfolio, and enhancing the power and efficiency of hydroelectric facilities. On the other hand, other initiatives have shown less potential: reversible hydroelectric plants, floating solar, and hydrogen production in conjunction with hydroelectricity.
dc.format.extent149 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energía
dc.titleOportunidades de negocio para las hidroeléctricas en el contexto de alta penetración de renovables no convencionales
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Sistemas Energéticos
dc.contributor.researchgroupSistemas Energéticos
dc.coverage.countryColombia
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ingeniería – Sistemas Energéticos
dc.description.researchareaMercados Energéticos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesAguirre, N., Palacio, J., & Ramírez, J. (2007). Características limnológicas del embalse El Peñol-Guatapé. Revista Ingenierías Universidad de Medellín, 6(10).
dc.relation.referencesAlizadeh, M. I., Parsa Moghaddam, M., Amjady, N., Siano, P., & Sheikh-El-Eslami, M. K. (2016). Flexibility in future power systems with high renewable penetration: A review. Renewable and Sustainable Energy Reviews, 57, 1186–1193. https://doi.org/10.1016/J.RSER.2015.12.200
dc.relation.referencesAn, Y., Fang, W., Ming, B., & Huang, Q. (2015). Theories and methodology of complementary hydro/photovoltaic operation: Applications to short-term scheduling. Journal of Renewable and Sustainable Energy, 7(6). https://doi.org/10.1063/1.4939056
dc.relation.referencesAyza, J. R. W. (2013). The role of hydropower in the context of renewable energies in Spain. Revista de Obras Publicas, 160(3548), 35–42.
dc.relation.referencesBareiß, K., de la Rua, C., Möckl, M., & Hamacher, T. (2019). Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems. Applied Energy, 237, 862–872. https://doi.org/10.1016/J.APENERGY.2019.01.001
dc.relation.referencesBarlas, Y. (1996). Formal aspects of model validity and validation in system dynamics. System Dynamics Review, 12(3). https://doi.org/10.1002/(SICI)1099-1727(199623)12:3
dc.relation.referencesCastro Abril, M. (2020). Intermittent renewable energy, hydropower dynamics and the profitability of storage arbitrage. https://doi.org/10.18235/0002360
dc.relation.referencesCheng, C. (2021). Function Remolding of Hydropower Systems for Carbon Neutral and Its Key Problems. Dianli Xitong Zidonghua/Automation of Electric Power Systems, 45(16), 29–36. https://doi.org/10.7500/AEPS20201220003
dc.relation.referencesChoe, C., Lee, B., Kim, A., Cheon, S., & Lim, H. (2021). Comprehensive assessment of CO2 methanation: Which H2 production pathway is practicable for green methane production in terms of technical, economic, and environmental aspects? Green Chemistry, 23(23), 9502–9514. https://doi.org/10.1039/d1gc02755g
dc.relation.referencesLey 1715 de 2014, (2014). https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=57353
dc.relation.referencesCONPES. (2022). CONPES 4075 Política de transición energética.
dc.relation.referencesCREG. (1994). Resolución 55 de 1994.
dc.relation.referencesCREG. (1995a). Resolución 24 de 1995.
dc.relation.referencesCREG. (1995b). Resolución 25 de 1995
dc.relation.referencesCREG. (1998). Resolución 70 de 1998. https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_creg_0070_1998.htm
dc.relation.referencesCREG. (1999). Resolución 75 de 1999. https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_creg_0075_1999.htm?resaltar=agc
dc.relation.referencesCREG. (2006a). Resolución 71 de 2006.
dc.relation.referencesCREG. (2006b). Resolución 71 de 2006 Por la cual se adopta la metodología para la remuneración del Cargo por Confiabilidad en el Mercado Mayorista de Energía. https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_creg_0071_2006.htm#3
dc.relation.referencesCREG. (2009). Resolución 51 de 2009. https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_creg_0051_2009.htm#INICIO
dc.relation.referencesCREG. (2015). Resolución 24 de 2015 .
dc.relation.referencesCREG. (2019a). Resolución 60 de 2019.
dc.relation.referencesCREG. (2019b). Resolución 60 de 2019. https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_creg_0060_2019.htm
dc.relation.referencesCREG. (2021). CREG 143 de 2021. http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/fb439e8b5fd28f92052588980081b115/$FILE/Creg143-2021.pdf
dc.relation.referencesda Rocha Santos, F., D’Angela Mariano, J., Sestrem Junior, J. A., & Junior, J. U. (2019). Analysis of solar photovoltaic energy potential in Brazilian hydroelectric reservoirs through floating panels. Brazilian Archives of Biology and Technology, 62(specialissue). https://doi.org/10.1590/1678-4324-SMART-2019190012
dc.relation.referencesDe La Nieta, A. A. S., Contreras, J., & Catalão, J. P. S. (2016). Optimal Single Wind Hydro-Pump Storage Bidding in Day-Ahead Markets Including Bilateral Contracts. IEEE Transactions on Sustainable Energy, 7(3), 1284–1294. https://doi.org/10.1109/TSTE.2016.2544704
dc.relation.referencesDenault, M., Dupuis, D., & Couture-Cardinal, S. (2009). Complementarity of hydro and wind power: Improving the risk profile of energy inflows. Energy Policy, 37(12), 5376–5384. https://doi.org/10.1016/J.ENPOL.2009.07.064
dc.relation.referencesDI-AVANTE, & PSR. (2018). Análisis de los servicios complementarios para el sistema interconectado nacional
dc.relation.referencesDiaz, F. (2011). Optimización de la operación y evaluación de la eficiencia técnica de una empresa de generación hidroeléctrica en mercados de corto plazo.
dc.relation.referencesDOE. (2022). Animation: How a wind turbine works. https://www.energy.gov/eere/wind/animation-how-wind-turbine-works
dc.relation.referencesDörenkämper, M., Wahed, A., Kumar, A., de Jong, M., Kroon, J., & Reindl, T. (2021). The cooling effect of floating PV in two different climate zones: A comparison of field test data from the Netherlands and Singapore. Solar Energy, 214, 239–247. https://doi.org/10.1016/J.SOLENER.2020.11.029
dc.relation.referencesDo Sacramento, E. M., Carvalho, P. C. M., De Araújo, J. C., Riffel, D. B., Da Cruz Corrêa, R. M., & Neto, J. S. P. (2015). Scenarios for use of floating photovoltaic plants in Brazilian reservoirs. IET Renewable Power Generation, 9(8). https://doi.org/10.1049/iet-rpg.2015.0120
dc.relation.referencesDujardin, J., Kahl, A., Kruyt, B., Bartlett, S., & Lehning, M. (2017). Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland. Energy, 135, 513–525. https://doi.org/10.1016/j.energy.2017.06.092
dc.relation.referencesEcheverri, J. (2021). Estudio del potencial eólico en Colombia y su complementariedad con fuentes de generación hidráulica.
dc.relation.referencesEIA. (2022). Issues in focus: drivers for standalone battery storage deployment in AEO2022. www.eia.gov
dc.relation.referencesLey 2099 de 2021, (2021). https://dapre.presidencia.gov.co/normativa/normativa/LEY 2099 DEL 10 DE JULIO DE 2021.pdf
dc.relation.referencesEnel. (2019). El Paso photovoltaic plant in Colombia is brought online
dc.relation.referencesEnel. (2022). El proyecto solar La Loma, el más grande que se construye del país, presenta un avance del 70%.
dc.relation.referencesENTSO-E. (2019). Fast frequency reserve — solution to the nordic inertia challenge.
dc.relation.referencesGarcía Mazo, C. M., Olaya, Y., & Botero Botero, S. (2020). Investment in renewable energy considering game theory and wind-hydro diversification. Energy Strategy Reviews, 28, 100447. https://doi.org/10.1016/J.ESR.2020.100447
dc.relation.referencesGobierno de Colombia. (2020). Actualización de la contribución determinada a nivel nacional de Colombia (NDC).
dc.relation.referencesGobierno de Colombia. (2021a). Estrategia climática de largo plazo de Colombia E2050 para cumplir con el Acuerdo de París
dc.relation.referencesGobierno de Colombia. (2021b). Transición energética: un legado para el presente y el futuro de Colombia
dc.relation.referencesGobierno de Colombia. (2021c). Hoja de ruta del hidrógeno en Colombia. https://www.minenergia.gov.co/documents/10192/24309272/Hoja+Ruta+Hidrogeno+Colombia_2810.pdf;jsessionid=X5NDbFlIoN6ZhVYorZqnjy0l.portal2
dc.relation.referencesGonzalez Sanchez, R., Kougias, I., Moner-Girona, M., Fahl, F., & Jäger-Waldau, A. (2021). Assessment of floating solar photovoltaics potential in existing hydropower reservoirs in Africa. Renewable Energy, 169, 687–699. https://doi.org/10.1016/j.renene.2021.01.041
dc.relation.referencesGullì, F., & Balbo, A. Lo. (2015). The impact of intermittently renewable energy on Italian wholesale electricity prices: Additional benefits or additional costs? Energy Policy, 83, 123–137. https://doi.org/10.1016/J.ENPOL.2015.04.00
dc.relation.referencesGurung, A. B., Borsdorf, A., Füreder, L., Kienast, F., Matt, P., Scheidegger, C., Schmocker, L., Zappa, M., & Volkart, K. (2016). Rethinking Pumped Storage Hydropower in the European Alps. Mountain Research and Development, 36(2), 222–232. https://doi.org/10.1659/MRD-JOURNAL-D-15-00069.1
dc.relation.referencesHaas, J., Khalighi, J., de la Fuente, A., Gerbersdorf, S. U., Nowak, W., & Chen, P.-J. (2020). Floating photovoltaic plants: Ecological impacts versus hydropower operation flexibility. Energy Conversion and Management, 206. https://doi.org/10.1016/j.enconman.2019.112414
dc.relation.referencesHartmann, B., Vokony, I., & Táczi, I. (2019). Effects of decreasing synchronous inertia on power system dynamics—Overview of recent experiences and marketisation of services. International Transactions on Electrical Energy Systems, 29(12). https://doi.org/10.1002/2050-7038.12128
dc.relation.referencesHenao, F., & Dyner, I. (2020). Renewables in the optimal expansion of colombian power considering the Hidroituango crisis. Renewable Energy, 158, 612–627. https://doi.org/10.1016/J.RENENE.2020.05.055
dc.relation.referencesHenao, F., Rodriguez, Y., Viteri, J. P., & Dyner, I. (2019). Optimising the insertion of renewables in the Colombian power sector. Renewable Energy, 132, 81–92. https://doi.org/10.1016/j.renene.2018.07.099
dc.relation.referencesHenao, F., Viteri, J., Rodríguez, Y., Gómez, J., & Dyner, I. (2020). Annual and interannual complementarities of renewable energy sources in Colombia. Renewable and Sustainable Energy Reviews, 134. https://doi.org/10.1016/j.rser.2020.110318
dc.relation.referencesHuang, J., Wu, X., Zheng, Z., Huang, Y., & Li, W. (2021). Multi-Objective Optimal Operation of Combined Cascade Reservoir and Hydrogen System. IEEE Transactions on Industry Applications. https://doi.org/10.1109/TIA.2021.3138949
dc.relation.referencesHuang, J., Wu, X., Zheng, Z., Huang, Y., & Li, W. (2022). Multi-objective Optimal Operation of Combined Cascade Reservoir and Hydrogen System. IEEE Transactions on Industry Applications, 58(2), 2836–2847. https://doi.org/10.1109/TIA.2021.3138949
dc.relation.referencesIEA. (2021a). Global hydrogen review 2021. https://iea.blob.core.windows.net/assets/5bd46d7b-906a-4429-abda-e9c507a62341/GlobalHydrogenReview2021.pdf
dc.relation.referencesIEA. (2021b). Hydropower special market report. OECD. https://doi.org/10.1787/07a7bac8-en
dc.relation.referencesIEA. (2021c). Hydropower - tracking report.
dc.relation.referencesIFC. (2015). Utility-scale solar photovoltaic power plants.
dc.relation.referencesIgder, M. A., Niknam, T., & Khooban, M.-H. (2017). Bidding strategies of the joint wind, hydro, and pumped-storage in generation company using novel improved clonal selection optimisation algorithm. IET Science, Measurement and Technology, 11(8), 991–1001. https://doi.org/10.1049/iet-smt.2017.0014
dc.relation.referencesIHA. (2022a). Hydropower 2050: Identifying the next 850+ GW towards Net Zero. https://www.hydropower.org/publications/hydropower-2050-identifying-the-next-850-gw-towards-2050
dc.relation.referencesIHA. (2022b). Types of Hydropower. https://www.hydropower.org/iha/discover-types-of-hydropower
dc.relation.referencesINESC TEC. (2020). XFLEX Hydro: Flexibility, technologies and scenarios for hydro power.
dc.relation.referencesIRENA. (2018). Power system flexibility for the energy transition, Part 1: Overview for policy makers.
dc.relation.referencesIRENA. (2022a). Global hydrogen trade to meet the 1.5 °C climate goal: Part I – TRADE OUTLOOK FOR 2050 AND WAY FORWARD. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Apr/IRENA_Global_Trade_Hydrogen_2022.pdf
dc.relation.referencesIRENA. (2022b). Renewable power generation costs in 2021. In Renewable Power Generation Costs in 2021. https://www.irena.org/publications/2022/Jul/Renewable-Power-Generation-Costs-in-2021
dc.relation.referencesIRENA. (2023). The changing role of hydropower: Challenges and opportunities. www.irena.org/publications
dc.relation.referencesISAGEN. (2021). Informe de gestión 2021.
dc.relation.referencesJamii, J., Abbes, D., & Mimouni, M. F. (2019). Energy management of wind power generation with pumped hydro energy storage and participation in frequency control: Study in electricity market. International Journal of Renewable Energy Research, 9(4), 2082–2091. https://doi.org/10.1002/9781118100509.ch@
dc.relation.referencesJamii, J., Abbes, D., & Mimouni, M. F. (2021). Joint operation between wind power generation and pumped hydro energy storage in the electricity market. Wind Engineering, 45(1), 50–62. https://doi.org/10.1177/0309524X19868473
dc.relation.referencesJiménez, J. (2019). Integración de fuentes fotovoltaicas en una mini-red aislada con presencia de pequeñas centrales hidroeléctricas.
dc.relation.referencesJovan, D. J., & Dolanc, G. (2020). Can green hydrogen production be economically viable under current market conditions. Energies, 13(24). https://doi.org/10.3390/en13246599
dc.relation.referencesJurasz, J., Kies, A., & Zajac, P. (2020). Synergetic operation of photovoltaic and hydro power stations on a day-ahead energy market. Energy, 212, 118686. https://doi.org/10.1016/J.ENERGY.2020.118686
dc.relation.referencesJurasz, J., Mikulik, J., Krzywda, M., Ciapała, B., & Janowski, M. (2018). Integrating a wind- and solar-powered hybrid to the power system by coupling it with a hydroelectric power station with pumping installation. Energy, 144, 549–563. https://doi.org/10.1016/j.energy.2017.12.011
dc.relation.referencesKarhinen, S., & Huuki, H. (2019). Private and social benefits of a pumped hydro energy storage with increasing amount of wind power. Energy Economics, 81, 942–959. https://doi.org/10.1016/j.eneco.2019.05.024
dc.relation.referencesKiene, S., & Linkevics, O. (2021). Simplified Model for Evaluation of Hydropower Plant Conversion into Pumped Storage Hydropower Plant. Latvian Journal of Physics and Technical Sciences, 58(3), 108–120. https://doi.org/10.2478/lpts-2021-0020
dc.relation.referencesKnežević, G., Topić, D., Jurić, M., & Nikolovski, S. (2019). Joint market bid of a hydroelectric system and wind parks. Computers and Electrical Engineering, 74, 138–148. https://doi.org/10.1016/j.compeleceng.2019.01.014
dc.relation.referencesKolb, S., Dillig, M., Plankenbühler, T., & Karl, J. (2020). The impact of renewables on electricity prices in Germany - An update for the years 2014–2018. Renewable and Sustainable Energy Reviews, 134, 110307. https://doi.org/10.1016/J.RSER.2020.110307
dc.relation.referencesLaoharojanaphand, V., & Ongsakul, W. (2021). Virtual battery storage service using hydropower plant with co-located floating solar and wind generation. Sustainable Energy Technologies and Assessments, 47. https://doi.org/10.1016/j.seta.2021.101531
dc.relation.referencesLAZARD. (2021). Levelized cost of storage analysis - version 7.0. https://www.lazard.com/media/451882/lazards-levelized-cost-of-storage-version-70-vf.pdf
dc.relation.referencesLAZARD. (2023). Levelized cost of energy. https://www.lazard.com/research-insights/2023-levelized-cost-of-energyplus/
dc.relation.referencesLee, N., Grunwald, U., Rosenlieb, E., Mirletz, H., Aznar, A., Spencer, R., & Cox, S. (2020a). Hybrid floating solar photovoltaics-hydropower systems: Benefits and global assessment of technical potential. Renewable Energy, 162, 1415–1427. https://doi.org/10.1016/J.RENENE.2020.08.080
dc.relation.referencesLee, N., Grunwald, U., Rosenlieb, E., Mirletz, H., Aznar, A., Spencer, R., & Cox, S. (2020b). Hybrid floating solar photovoltaics-hydropower systems: Benefits and global assessment of technical potential. Renewable Energy, 162, 1415–1427. https://doi.org/10.1016/J.RENENE.2020.08.080
dc.relation.referencesLiu, Y., Jiang, C., Shen, J., Hu, J., & Luo, Y. (2015). Coordination of hydro units with wind power generation based on RAROC. Renewable Energy, 80, 783–792. https://doi.org/10.1016/j.renene.2015.02.062
dc.relation.referencesLu, D., Wang, B., Wang, Y., Zhou, H., Liang, Q., Peng, Y., & Roskilly, T. (2015). Optimal operation of cascade hydropower stations using hydrogen as storage medium. Applied Energy, 137, 56–63. https://doi.org/10.1016/j.apenergy.2014.09.092
dc.relation.referencesMacedo, D. P., Marques, A. C., & Damette, O. (2020). The impact of the integration of renewable energy sources in the electricity price formation: is the Merit-Order Effect occurring in Portugal? Utilities Policy, 66, 101080. https://doi.org/10.1016/J.JUP.2020.10108
dc.relation.referencesMa, F., Li, L., Zeng, Q., & Zheng, J. (2020). Development Concept of Integrated Energy Network and Hydrogen Energy Industry Based on Hydrogen Production Using Surplus Hydropower. IOP Conference Series: Earth and Environmental Science, 555(1), 012022. https://doi.org/10.1088/1755-1315/555/1/012022
dc.relation.referencesMammadov, Z. A., Kerimov, R. E., Kerimov, O. Z., & Rahmanov, N. R. (2021). Estimation of energy resources potential for solar photovoltaic systems located on the water surface of small lakes and reservoirs. International Journal on Technical and Physical Problems of Engineering, 13(2), 107–111.
dc.relation.referencesMarco Antonio Esteves Galdino, & Marta Maria de Almeida Olivieri. (2017). Some Remarks about the Deployment of Floating PV Systems in Brazil. J. of Electrical Engineering, 5(1). https://doi.org/10.17265/2328-2223/2017.01.002
dc.relation.referencesMaués, J. A. (2019). Floating solar PV-hydroelectric power plants in Brazil: Energy storage solution with great application potential. International Journal of Energy Production and Management, 4(1), 40–52. https://doi.org/10.2495/EQ-V4-N1-40-52
dc.relation.referencesMehadi, A. A., Nahin-Al-Khurram, Shagor, M. R. K., & Sarder, M. A. I. (2021). Optimized seasonal performance analysis and integrated operation of 50MW floating solar photovoltaic system with Kaptai hydroelectric power plant: a case study. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2021.1962434
dc.relation.referencesMilstein, I., & Tishler, A. (2015). Can price volatility enhance market power? The case of renewable technologies in competitive electricity markets. Resource and Energy Economics, 41, 70–90. https://doi.org/10.1016/J.RESENEECO.2015.04.001
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2017). Política nacional de cambio climático.
dc.relation.referencesMohammadi, A., & Mehrpooya, M. (2018). A comprehensive review on coupling different types of electrolyzer to renewable energy sources. Energy, 158, 632–655. https://doi.org/10.1016/j.energy.2018.06.073
dc.relation.referencesMohandes, B., Moursi, M. S. El, Hatziargyriou, N., & Khatib, S. El. (2019). A review of power system flexibility with high penetration of renewables. IEEE Transactions on Power Systems, 34(4), 3140–3155. https://doi.org/10.1109/TPWRS.2019.2897727
dc.relation.referencesMonette, C., Marmont, H., Chamberland-Lauzon, J., Skagerstrand, A., Coutu, A., & Carlevi, J. (2016). Cost of enlarged operating zone for an existing Francis runner. IOP Conference Series: Earth and Environmental Science, 49(7), 072018. https://doi.org/10.1088/1755-1315/49/7/072018
dc.relation.referencesMorales Soler, D. (2023, April 9). Enel le apuesta a iniciar operación de tres parques solares este 2023 | Infraestructura | Economía | Portafolio. El Tiempo. https://www.portafolio.co/economia/infraestructura/enel-le-apuesta-a-iniciar-operacion-de-tres-parques-solares-este-2023-581161
dc.relation.referencesMurphy, C. A., Schleifer, A., & Eurek, K. (2021). A taxonomy of systems that combine utility-scale renewable energy and energy storage technologies. Renewable and Sustainable Energy Reviews, 139. https://doi.org/10.1016/J.RSER.2021.110711
dc.relation.referencesNaciones Unidas. (2015). The Paris Agreement. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
dc.relation.referencesNadaleti, W. C., Lourenço, V. A., & Americo, G. (2021). Green hydrogen-based pathways and alternatives: Towards the renewable energy transition in South America’s regions – Part A. International Journal of Hydrogen Energy, 46(43), 22247–22255. https://doi.org/10.1016/j.ijhydene.2021.03.239
dc.relation.referencesNASA. (2022). NASA Power - Prediction of worldwide energy resources. https://power.larc.nasa.gov/
dc.relation.referencesNGO. (2022). Wind energy. https://www.nationalgeographic.org/encyclopedia/wind-energy/
dc.relation.referencesNREL. (2021). Floating Photovoltaic System Cost Benchmark: Q1 2021 Installations on Artificial Water Bodies. www.nrel.gov/publications.
dc.relation.referencesOlaya, Y., Arango-Aramburo, S., & Larsen, E. R. (2015). How capacity mechanisms drive technology choice in power generation: The case of Colombia. https://doi.org/10.1016/j.rser.2015.11.065
dc.relation.referencesParra, L., Gómez, S., Montoya, C., & Henao, F. (2020). Assessing the Complementarities of Colombia’s Renewable Power Plants. Frontiers in Energy Research, 8, 280. https://doi.org/10.3389/FENRG.2020.575240/BIBTEX
dc.relation.referencesPelaez-Samaniego, M. R., Riveros-Godoy, G., Torres-Contreras, S., Garcia-Perez, T., & Albornoz-Vintimilla, E. (2014). Production and use of electrolytic hydrogen in Ecuador towards a low carbon economy. Energy, 64, 626–631. https://doi.org/10.1016/J.ENERGY.2013.11.012
dc.relation.referencesPeñaranda, A. F., Romero-Quete, D., & Cortés, C. A. (2021). Grid-scale battery energy storage for arbitrage purposes: a colombian case. Batteries 2021, Vol. 7, Page 59, 7(3), 59. https://doi.org/10.3390/BATTERIES7030059
dc.relation.referencesPenaranda Bayona, A. F., Romero Quete, D. F., Cortes Guerrero, C. A., & Moreno Restrepo, E. (2022). Impact of grid-scale energy storage systems on energy and frequency regulation Colombian markets. IEEE Latin America Transactions, 20(8), 2054–2062. https://doi.org/10.1109/TLA.2022.9853225
dc.relation.referencesPereira da Silva, P., & Horta, P. (2019). The effect of variable renewable energy sources on electricity price volatility: the case of the Iberian market. Https://Doi-Org.Ezproxy.Unal.Edu.Co/10.1080/14786451.2019.1602126, 38(8), 794–813. https://doi.org/10.1080/14786451.2019.1602126
dc.relation.referencesPerez, M., Perez, R., Ferguson, C. R., & Schlemmer, J. (2018). Deploying effectively dispatchable PV on reservoirs: Comparing floating PV to other renewable technologies. Solar Energy, 174, 837–847. https://doi.org/10.1016/j.solener.2018.08.088
dc.relation.referencesPinheiro Neto, D., Domingues, E. G., Coimbra, A. P., de Almeida, A. T., Alves, A. J., & Calixto, W. P. (2017). Portfolio optimization of renewable energy assets: Hydro, wind, and photovoltaic energy in the regulated market in Brazil. Energy Economics, 64, 238–250. https://doi.org/10.1016/J.ENECO.2017.03.020
dc.relation.referencesPosso Rivera, F., Zalamea, J., Espinoza, J. L., & Gonzalez, L. G. (2022). Sustainable use of spilled turbinable energy in Ecuador: Three different energy storage systems. Renewable and Sustainable Energy Reviews, 156. https://doi.org/10.1016/j.rser.2021.112005
dc.relation.referencesDecreto 570 de 2018, (2018).
dc.relation.referencesProost, J. (2019). State-of-the art CAPEX data for water electrolysers, and their impact on renewable hydrogen price settings. International Journal of Hydrogen Energy, 44(9), 4406–4413. https://doi.org/10.1016/J.IJHYDENE.2018.07.164
dc.relation.referencesPupo-Roncallo, O., Campillo, J., Ingham, D., Hughes, K., & Pourkashanian, M. (2019). Large scale integration of renewable energy sources (RES) in the future Colombian energy system. https://doi.org/10.1016/j.energy.2019.07.135
dc.relation.referencesQuaranta, E., Aggidis, G., Boes, R. M., Comoglio, C., De Michele, C., Ritesh Patro, E., Georgievskaia, E., Harby, A., Kougias, I., Muntean, S., Pérez-Díaz, J., Romero-Gomez, P., Rosa-Clot, M., Schleiss, A. J., Vagnoni, E., Wirth, M., & Pistocchi, A. (2021). Assessing the energy potential of modernizing the European hydropower fleet. Energy Conversion and Management, 246. https://doi.org/10.1016/j.enconman.2021.114655
dc.relation.referencesRamirez, J. (2022). Comparación de las tecnologías fotovoltaica e hidroeléctrica en Colombia.
dc.relation.referencesRauf, H., Gull, M. S., & Arshad, N. (2020). Complementing hydroelectric power with floating solar PV for daytime peak electricity demand. Renewable Energy, 162, 1227–1242. https://doi.org/10.1016/j.renene.2020.08.017
dc.relation.referencesRiddervold, H. O., Aasgård, E. K., Haukaas, L., & Korpås, M. (2021). Internal hydro- and wind portfolio optimisation in real-time market operations. Renewable Energy, 173, 675–687. https://doi.org/10.1016/j.renene.2021.04.001
dc.relation.referencesRosa-Clot, M., & Tina, G. M. (2017). Submerged and Floating Photovoltaic Systems : Modelling, Design and Case Studies. In Submerged and Floating Photovoltaic Systems: Modelling, Design and Case Studies. Elsevier Science
dc.relation.referencesRosa-Clot, M., & Tina, G. M. (2018). Submerged and Floating Photovoltaic Systems (M. Rosa-Clot & G. M. Tina, Eds.). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-812149-8.00001-6
dc.relation.referencesRubino, A., Sapio, A., & Scala, M. La. (2021). Handbook of Energy Economics and Policy: Fundamentals and Applications for Engineers and Energy Planners. Elsevier.
dc.relation.referencesSánchez de la Nieta, A. A., & Contreras, J. (2020). Quantifying the effect of renewable generation on day–ahead electricity market prices: The Spanish case. Energy Economics, 90, 104841. https://doi.org/10.1016/J.ENECO.2020.104841
dc.relation.referencesSauhats, A., Coban, H. H., Baltputnis, K., Broka, Z., Petrichenko, R., & Varfolomejeva, R. (2016). Optimal investment and operational planning of a storage power plant. International Journal of Hydrogen Energy, 41(29), 12443–12453. https://doi.org/10.1016/j.ijhydene.2016.03.078
dc.relation.referencesSeel, J., Mills, A., Wiser, R., Deb, S., Asokkumar, A., Hassanzadeh, M., & Aarabali, A. (2018). Impacts of high variable renewable energy futures on wholesale electricity prices, and on electric-sector decision making. https://emp.lbl.gov/publications/impacts-high-variable-renewable
dc.relation.referencesSeidel, U., Mende, C., Hübner, B., Weber, W., & Otto, A. (2014). Dynamic loads in Francis runners and their impact on fatigue life. IOP Conference Series: Earth and Environmental Science, 22(3), 032054. https://doi.org/10.1088/1755-1315/22/3/032054
dc.relation.referencesSensfuß, F., Ragwitz, M., & Genoese, M. (2008). The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany. Energy Policy, 36(8), 3086–3094. https://doi.org/10.1016/J.ENPOL.2008.03.035
dc.relation.referencesSerna, C. (2019). Eficiencia energética: alternativa de transformación para una empresa de generación de energía con un enfoque de sostenibilidad, competitividad, productividad y de responsabilidad por el medio ambiente, caso de estudio central hidroeléctrica San Carlos
dc.relation.referencesSerrano-Canalejo, C., Sarrias-Mena, R., Garcia-Trivino, P., & Fernandez-Ramirez, L. M. (2019). Energy management system design and economic feasibility evaluation for a hybrid wind power/pumped hydroelectric power plant. IEEE Latin America Transactions, 17(10), 1686–1693. https://doi.org/10.1109/TLA.2019.8986447
dc.relation.referencesSiemens energy. (2015). Kick-off for world’s largest electrolysis system in Mainz.
dc.relation.referencesSilvério, N. M., Barros, R. M., Tiago Filho, G. L., Redón-Santafé, M., Santos, I. F. S. D., & Valério, V. E. D. M. (2018). Use of floating PV plants for coordinated operation with hydropower plants: Case study of the hydroelectric plants of the São Francisco River basin. Energy Conversion and Management, 171, 339–349. https://doi.org/10.1016/j.enconman.2018.05.095
dc.relation.referencesStiubiener, U., Carneiro da Silva, T., Trigoso, F. B. M., Benedito, R. D. S., & Teixeira, J. C. (2020). PV power generation on hydro dam’s reservoirs in Brazil: A way to improve operational flexibility. Renewable Energy, 150, 765–776. https://doi.org/10.1016/j.renene.2020.01.003
dc.relation.referencesSu, C., Cheng, C., Wang, P., Shen, J., & Wu, X. (2019). Optimization model for long-distance integrated transmission of wind farms and pumped-storage hydropower plants. Applied Energy, 242, 285–293. https://doi.org/10.1016/j.apenergy.2019.03.080
dc.relation.referencesSupergrid Institute, & INESC TEC. (2020). The Hydropower Extending Power System Flexibility (XFLEX HYDRO) project D11.1-Common Methodology to Assess Cost of Hydroelectric Flexible Technologies
dc.relation.referencesTimmons, D., Elahee, K., & Lin, M. (2020). Microeconomics of electrical energy storage in a fully renewable electricity system. Solar Energy, 206, 171–180. https://doi.org/10.1016/j.solener.2020.05.057
dc.relation.referencesUPME. (2016). Invierta y gane con energía: guía práctica para la aplicación de los incentivos tributarios de la Ley 1715 de 2014.
dc.relation.referencesUPME. (2019a). Informe sobre la realización del subasta CLPE No. 02-2019.
dc.relation.referencesUPME. (2019b). Plan de expansión de referencia generación-transmisión 2020 – 2034.
dc.relation.referencesUPME. (2019c). Plan de expansión de referencia generación - transmisión 2020 - 2034 - Volumen 2. Generación. http://www.siel.gov.co/Inicio/Generación/PlanesdeExpansiónGeneraciónTransmisión/tabid/111/Default.aspx
dc.relation.referencesUPME. (2019d). Pliego de términos y condiciones específicas - subasta CLPE No. 02-2019.
dc.relation.referencesUPME. (2020). Plan energético nacional 2020-2050.
dc.relation.referencesUPME. (2022a). SIEL.
dc.relation.referencesUPME. (2022b). Capacidad acumulada de proyectos vigentes. https://app.powerbi.com/view?r=eyJrIjoiODRjNWM2NmEtZDI5MC00OGJhLWFmMTItYmU3NTNiMDE4MTM2IiwidCI6IjUxYzFhOGQwLTMyYmQtNDZlYi05YmRlLTkxZTZlNGU3MDRmZCJ9
dc.relation.referencesValente, A., Iribarren, D., Dufour, J., & Spazzafumo, G. (2015). Life-cycle performance of hydrogen as an energy management solution in hydropower plants: A case study in Central Italy. International Journal of Hydrogen Energy, 40(46), 16660–16672. https://doi.org/10.1016/j.ijhydene.2015.09.104
dc.relation.referencesVargas, J., Franco, C. J., & Jimenez, M. (2021). Electricity Pricing for Renewable Markets-A Simulation Approach for the Colombian Case. IEEE Latin America Transactions, 19(12), 1995–2002. https://doi.org/10.1109/TLA.2021.9480140
dc.relation.referencesVeileder. (2012). Cost base for hydropower plants. https://www.yumpu.com/en/document/view/50987873/veileder-cost-base-for-hydropower-plants
dc.relation.referencesViswanathan, V., Mongird, K., Franks, R., Li, X., Sprenkle, V., & Baxter, R. (2022). Grid energy storage technology cost and performance assessment.
dc.relation.referencesWoo, C. K., Moore, J., Schneiderman, B., Ho, T., Olson, A., Alagappan, L., Chawla, K., Toyama, N., & Zarnikau, J. (2016). Merit-order effects of renewable energy and price divergence in California’s day-ahead and real-time electricity markets. Energy Policy, 92, 299–312. https://doi.org/10.1016/J.ENPOL.2016.02.023
dc.relation.referencesWorld Bank Group. (2019). Where Sun Meets Water: Floating Solar Handbook for practitioners. World Bank, Washington, DC. https://doi.org/10.1596/32804
dc.relation.referencesWürzburg, K., Labandeira, X., & Linares, P. (2013). Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria. Energy Economics, 40, S159–S171. https://doi.org/10.1016/J.ENECO.2013.09.011
dc.relation.referencesWu, Y. K., Chang, L. T., Hsieh, T. Y., & Jan, B. S. (2017). A review of flexibility requirement of electric generators in high wind power penetration systems. Proceedings of the 2017 IEEE International Conference on Applied System Innovation: Applied System Innovation for Modern Technology, ICASI 2017, 1890–1893. https://doi.org/10.1109/ICASI.2017.7988317
dc.relation.referencesWu, Y., Zhang, T., Gao, R., & Wu, C. (2021). Portfolio planning of renewable energy with energy storage technologies for different applications from electricity grid. Applied Energy, 287. https://doi.org/10.1016/j.apenergy.2021.116562
dc.relation.referencesXM. (2017). Informe Integral de Gestión Sostenible 2017.
dc.relation.referencesXM. (2019a). Reporte integral de sostenibilidad, operación y mercado 2019.
dc.relation.referencesXM. (2019b). Resultados generales subasta OEF 2022-2023.
dc.relation.referencesXM. (2021a). Informe regulatorio nueva subasta CLPE - 2021.
dc.relation.referencesXM. (2021b). Pliego y bases de condiciones específicas de la subasta CLPE No. 03-2021.
dc.relation.referencesXM. (2021c). Reporte integral de sostenibilidad, operación y mercado 2021. https://informeanual.xm.com.co/informe/pages/home.html
dc.relation.referencesXM. (2022a). Análisis energético de largo plazo MPODE - Resultado de estudios. https://www.xm.com.co/operaci%C3%B3n/planeaci%C3%B3n/planeaci%C3%B3n-largo-plazo/an%C3%A1lisis-energ%C3%A9tico-de-largo-plazo-mpode-resultado-de-estudios
dc.relation.referencesXM. (2022b). Capacidad efectiva por tipo de generación.
dc.relation.referencesXM. (2022c). Flexibilidad: elemento clave para la transformación del sistema. https://www.foroxm.com.co/files/memories/03-JUAN-ZAPATA-FOROXM.pdf
dc.relation.referencesXM. (2022d). Reporte integral de sostenibilidad, operación y mercado 2022. https://informeanual.xm.com.co/12-capacidad-efectiva-neta-cen/index.html
dc.relation.referencesXM. (2022e). Resultados estudio de flexibilidad 2024-2027. https://stdrupal01.blob.core.windows.net/temporalportalxm/Flexibilidad_2022_12964.pdf?sig=t2DmiJu3gMQdKEUK7hpUw9vGT5cFAtPr4hYU8Rbxy3U%3D&st=2022-12-30T20%3A12%3A25Z&se=2022-12-30T20%3A14%3A25Z&sv=2019-02-02&sp=r&sr=c
dc.relation.referencesXM. (2022f). Volumen embalses
dc.relation.referencesXM. (2022g). Sinergox. https://sinergox.xm.com.co/Paginas/Home.aspx
dc.relation.referencesXu, X., Hu, W., Cao, D., Huang, Q., Chen, C., & Chen, Z. (2020). Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system. Renewable Energy, 147, 1418–1431. https://doi.org/10.1016/j.renene.2019.09.099
dc.relation.referencesYodwong, B., Guilbert, D., Phattanasak, M., Kaewmanee, W., Hinaje, M., & Vitale, G. (2020). AC-DC Converters for electrolyzer applications: state of the art and future challenges. Electronics, 9(6), 912. https://doi.org/10.3390/ELECTRONICS9060912
dc.relation.referencesZapata, S., Castaneda, M., Aristizabal, A. J., & Dyner, I. (2022). Renewables for supporting supply adequacy in Colombia. Energy, 239. https://doi.org/10.1016/j.energy.2021.122157
dc.relation.referencesZhou, Y., Chang, F.-J., Chang, L.-C., Lee, W.-D., Huang, A., Xu, C.-Y., & Guo, S. (2020). An advanced complementary scheme of floating photovoltaic and hydropower generation flourishing water-food-energy nexus synergies. Applied Energy, 275. https://doi.org/10.1016/j.apenergy.2020.115389
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembRecursos energéticos renovables
dc.subject.lembRenewable energy sources
dc.subject.lembCentrales hidroeléctricas - Colombia
dc.subject.proposalHidroelectricidad,
dc.subject.proposalGeneración renovable
dc.subject.proposalNuevos de negocios
dc.subject.proposalMercado eléctrico
dc.subject.proposalHydroelectricity,
dc.subject.proposalRenewable generation
dc.subject.proposalNew business
dc.subject.proposalElectricity market
dc.title.translatedBusiness opportunities for hydroelectric plants in the context of high penetration of non-conventional renewables
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informática
dc.contributor.orcidDelgado Rendón, David [0000-0002-8152-5364]
dc.contributor.orcidFranco Cardona, Carlos Jaime [0000-0002-7750-857X]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit