dc.rights.license | Atribución-NoComercial 4.0 Internacional |
dc.contributor.advisor | Trujillo Oyola, Leonardo |
dc.contributor.advisor | Ramirez Gil, Joaquin Guillermo |
dc.contributor.author | Velásquez Tafur, Luis David |
dc.date.accessioned | 2024-01-16T16:26:36Z |
dc.date.available | 2024-01-16T16:26:36Z |
dc.date.issued | 2023-11-02 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85329 |
dc.description | ilustraciones, diagramas |
dc.description.abstract | Este trabajo aborda el problema práctico en la industria fitosanitaria de la producción de arroz mediante la implementación de una metodología de muestreo estadístico en redes. Se analizan diversos métodos para el muestreo en redes, incluyendo muestreo aleatorio simple, estimador Horvitz Thompson, clasificación no supervisada, y estimación Monte Carlo. Se exploran también muestreos de redes, enfocándose en nodos y conexiones específicas. Luego, se aplican estos conceptos al muestreo fitosanitario en cultivos de arroz utilizando datos de Fedearroz. (Texto tomado de la fuente) |
dc.description.abstract | This work addresses the practical problem in the phytosanitary industry of rice production through the implementation of a statistical sampling methodology in networks. Various methods for network sampling are analyzed, including simple random sampling, Horvitz Thompson estimator, unsupervised classification, and Monte Carlo estimation. Network samplings are also explored, focusing on specific nodes and connections. Subsequently, these concepts are applied to phytosanitary sampling in rice crops using data from Fedearroz. |
dc.format.extent | xi, 69 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ |
dc.subject.ddc | 310 - Colecciones de estadística general |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales |
dc.title | Muestreo de Estructuras de Redes en Datos no Estructurados |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Estadística |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magister en estadística |
dc.description.researcharea | Muestreo estadístico |
dc.description.technicalinfo | Muestreo en redes |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ciencias |
dc.publisher.place | Bogotá, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Frank, O. (1977a), ‘Estimation of graph totals’, Scandinavian
Journal of Statistics pp. 81–89 |
dc.relation.references | Frank, O. (1977b), ‘A note on bernoulli sampling in graphs and
horvitz-thompson estima- tion’, Scandinavian Journal of
Statistics pp. 178–180. |
dc.relation.references | Frank, O. (1977c), ‘Survey sampling in graphs’, Journal of
Statistical Planning and Inference 1(3), 235–264. |
dc.relation.references | Frank, O. (1978), ‘Estimation of the number of connected
components in a graph by using a sampled subgraph’,
Scandinavian Journal of Statistics pp. 177–188. |
dc.relation.references | Frank, O. (1979), ‘Sampling and estimation in large social
networks’, Social networks 1(1), 91–101. |
dc.relation.references | Qi, X. (2022), ‘A review: Random walk in graph sampling’. URL:
arxiv.org/abs/2209.13103 |
dc.relation.references | Rojas, H. (2009), Estrategias de muestreo. Diseño de Encuestas
y Estimación de Parámetros, Ediciones de la U. URL:
https://books.google.com.co/books?id=yiV8esNE9v4C |
dc.relation.references | Särndal„ C.-E., Swensson, B. Wretman, J. (1992), Model
Assisted Survey Sampling, Springer Science & Business Media. |
dc.relation.references | Shimbel, A. (1953), ‘Structural parameters of communication
networks’, The bulletin of mathematical biophysics 15, 501–507. |
dc.relation.references | Thompson, S. K. (2006), ‘Adaptive web sampling’, Biometrics
62(4), 1224–1234 |
dc.relation.references | Trujillo, L., Nino, J. & G, H. (2016), ‘Latin american congress of
probability and mathema- tical statistics’, CLAPEM, San José,
Costa Rica |
dc.relation.references | Zhang, L.-C. (2021), Graph Sampling, CRC Press. |
dc.relation.references | Zhang, L.-C. Patone, M. (2017), ‘Graph sampling’, Metron 75,
277–299. |
dc.relation.references | Zhang, P. Itan, Y. (2019), ‘Biological network approaches and
applications in rare disease studies’, Genes 10(10), 797. |
dc.relation.references | Agrama, H. A., Yan, W., Jia, M., Fjellstrom, R., McClung, A. M. et al. (2010), ‘Genetic
structure associated with diversity and geographic distribution in the usda rice world
collection’, Natural Science 2(04), 247. |
dc.relation.references | Ahn, Y.-Y., Han, S., Kwak, H., Moon, S. & Jeong, H. (2007), Analysis of topological characteristics
of huge online social networking services, in ‘Proceedings of the 16th international
conference on World Wide Web’, pp. 835–844. |
dc.relation.references | Ashish (2020), ‘Graph sampling’.
URL: https://github.com/Ashish7129/Graph Sampling |
dc.relation.references | Ba˜nos, R.A. A.A., . (2020), ‘Induced random walk sampling: a new methodology for social
network analysis’, Quality Quantity, 54(5), pp.1371-1387. DOI . |
dc.relation.references | Biggs, N., Lloyd, E. K. & Wilson, R. J. (1986), Graph Theory, 1736-1936, Oxford University
Press. |
dc.relation.references | Binns, M. (2000), ‘Sampling and monitoring in crop protection: The theoretical basis for developing
practical decision guides. by mr binns, jp nyrop and w. van der werf. wallingford,
uk: Cabi publishing (2000), pp. 284,£ 49.95. isbn 0-85199-347-8.’, Experimental Agriculture
37(1), 125–134. |
dc.relation.references | Birnbaum, Z. W. & Sirken, M. G. (1965), Design of Sample Surveys to Estimate the Prevalence
of Rare Diseases: Three Unbiased Estimates, number 1000, Vital Health Statistics,
2(11), pp. 1-14. National Center for Health Statistics. |
dc.relation.references | Bloemena, A. (1964), ‘Sampling from a graph’, MC Tracts . |
dc.relation.references | Brewer, K. (2002), ‘Combined survey sampling inference: Weighing basu’s elephants’, Arnold
Publishers . |
dc.relation.references | Carrington, P. J., Scott, J. & Wasserman, S. (2005), Models and Methods in Social Network
Analysis, Vol. 28, Cambridge university press. |
dc.relation.references | Cassel, C. M., S¨arndal, C. E. & Wretman, J. H. (1976), ‘Some results on generalized difference
estimation and generalized regression estimation for finite populations’, Biometrika
63(3), 615–620. |
dc.relation.references | Charitou, T., Bryan, K. & Lynn, D. J. (2016), ‘Using biological networks to integrate, visualize
and analyze genomics data’, Genetics Selection Evolution 48(1), 1–12. |
dc.relation.references | Cochran, W. G. (1954), ‘The combination of estimates from different experiments’, Biometrics
10(1), 101–129. |
dc.relation.references | Cochran, W. G. (1977), Sampling Techniques, John Wiley & Sons New, York, USA. |
dc.relation.references | DANE (2014), 3er censo nacional agropecuario: Hay campo para todos, Technical report,
Departamento Administrativo Nacional de Estad´ıstica.Bogot´a,Colombia. |
dc.relation.references | Dangeti, P. (2017), Statistics for Machine Learning, Packt Publishing Ltd. |
dc.relation.references | Duan, Y. & Lu, F. (2014), ‘Robustness of city road networks at different granularities’,
Physica A: Statistical Mechanics and its Applications 411, 21–34. |
dc.relation.references | Duda, R., Hart, P., Stork, D. & Ionescu, A. (2000), ‘Pattern classification, chapter nonparametric
techniques’. |
dc.relation.references | Durand-Morat, A. & Bairagi, S. (2021), ‘International rice outlook: International rice baseline
projections 2020-2030’. |
dc.relation.references | Farris, J. S. (1969), ‘On the cophenetic correlation coefficient’, Systematic Zoology
18(3), 279–285. |
dc.relation.references | Fedearroz (2021), ‘Cultivo de arroz en colombia 1998-2016: Cambios espaciales’, Divisi´on de
Investigaciones Econ´omicas . |
dc.relation.references | Garrett, K., Madden, L., Hughes, G. & Pfender, W. (2004), ‘New applications of statistical
tools in plant pathology’, Phytopathology 94(9), 999–1003. |
dc.relation.references | Gilbert, E. N. (1959), ‘Random graphs’, The Annals of Mathematical Statistics 30(4), 1141–
1144. |
dc.relation.references | Gile, K. J., Beaudry, I. S., Handcock, M. S. & Ott, M. Q. (2018), ‘Methods for inference
from respondent-driven sampling data’, Annual Review of Statistics and Its Application
5, 65–93. |
dc.relation.references | Agrama, H. A., Yan, W., Jia, M., Fjellstrom, R., McClung, A. M. et al. (2010), ‘Genetic
structure associated with diversity and geographic distribution in the usda rice world
collection’, Natural Science 2(04), 247. |
dc.relation.references | Ahn, Y.-Y., Han, S., Kwak, H., Moon, S. & Jeong, H. (2007), Analysis of topological characteristics
of huge online social networking services, in ‘Proceedings of the 16th international
conference on World Wide Web’, pp. 835–844. |
dc.relation.references | Binns, M. (2000), ‘Sampling and monitoring in crop protection: The theoretical basis for developing
practical decision guides. by mr binns, jp nyrop and w. van der werf. wallingford,
uk: Cabi publishing (2000), pp. 284,£ 49.95. isbn 0-85199-347-8.’, Experimental Agriculture
37(1), 125–134. |
dc.relation.references | Bloemena, A. (1964), ‘Sampling from a graph’, MC Tracts . |
dc.relation.references | Carrington, P. J., Scott, J. & Wasserman, S. (2005), Models and Methods in Social Network
Analysis, Vol. 28, Cambridge university press. |
dc.relation.references | Cassel, C. M., S¨arndal, C. E. & Wretman, J. H. (1976), ‘Some results on generalized difference
estimation and generalized regression estimation for finite populations’, Biometrika
63(3), 615–620. |
dc.relation.references | Charitou, T., Bryan, K. & Lynn, D. J. (2016), ‘Using biological networks to integrate, visualize
and analyze genomics data’, Genetics Selection Evolution 48(1), 1–12 |
dc.relation.references | Cochran, W. G. (1954), ‘The combination of estimates from different experiments’, Biometrics
10(1), 101–129. |
dc.relation.references | Cochran, W. G. (1977), Sampling Techniques, John Wiley & Sons New, York, USA. |
dc.relation.references | DANE (2014), 3er censo nacional agropecuario: Hay campo para todos, Technical report,
Departamento Administrativo Nacional de Estad´ıstica.Bogot´a,Colombia. |
dc.relation.references | Dangeti, P. (2017), Statistics for Machine Learning, Packt Publishing Ltd. |
dc.relation.references | Duan, Y. & Lu, F. (2014), ‘Robustness of city road networks at different granularities’,
Physica A: Statistical Mechanics and its Applications 411, 21–34. |
dc.relation.references | Duda, R., Hart, P., Stork, D. & Ionescu, A. (2000), ‘Pattern classification, chapter nonparametric
techniques’. |
dc.relation.references | Durand-Morat, A. & Bairagi, S. (2021), ‘International rice outlook: International rice baseline
projections 2020-2030’. |
dc.relation.references | Farris, J. S. (1969), ‘On the cophenetic correlation coefficient’, Systematic Zoology
18(3), 279–285. |
dc.relation.references | Fedearroz (2021), ‘Cultivo de arroz en colombia 1998-2016: Cambios espaciales’, Divisi´on de
Investigaciones Econ´omicas . |
dc.relation.references | Frank, O. (1971), ‘Statistical inference in graphs’, F¨orsvarets forskningsanstalt . |
dc.relation.references | Frank, O. (1977a), ‘Estimation of graph totals’, Scandinavian Journal of Statistics pp. 81–89. |
dc.relation.references | Garrett, K., Madden, L., Hughes, G. & Pfender, W. (2004), ‘New applications of statistical
tools in plant pathology’, Phytopathology 94(9), 999–1003. |
dc.relation.references | Gilbert, E. N. (1959), ‘Random graphs’, The Annals of Mathematical Statistics 30(4), 1141–
1144. |
dc.relation.references | Gile, K. J., Beaudry, I. S., Handcock, M. S. & Ott, M. Q. (2018), ‘Methods for inference
from respondent-driven sampling data’, Annual Review of Statistics and Its Application
5, 65–93. |
dc.relation.references | Gregoire, T. G. & Valentine, H. T. (2007), Sampling Strategies for Natural Resources and
the Environment, CRC Press. |
dc.relation.references | Gupta, L., Jain, R. & Vaszkun, G. (2015), ‘Survey of important issues in uav communication
networks’, IEEE communications surveys & tutorials 18(2), 1123–1152. |
dc.relation.references | Harrison, R. L. (2010), Introduction to monte carlo simulation in aip conference proceedings,
Vol. 1204, American Institute of Physics, pp. 17–21. |
dc.relation.references | Hastie, T., Tibshirani, R., Friedman, J. H. & Friedman, J. H. (2009), The Elements of
Statistical Learning: Data Mining, Inference, and Prediction, Vol. 2, Springer. |
dc.relation.references | Horvitz, D. G. & Thompson, D. J. (1952), ‘A generalization of sampling without replacement
from a finite universe’, Journal of the American statistical Association 47(260), 663–685. |
dc.relation.references | Hu, M.-G. &Wang, J.-F. (2011), ‘A spatial sampling optimization package using msn theory’,
Environmental Modelling & Software 26(4), 546–548. |
dc.relation.references | IFAPA (2004), ‘Comportamiento de pyricularia oryzae en las marimas del guadalquivir.
eficacia fungicida frente al p´atogeno’, Junta de Andaluc´ıa. Consejer´ıa de Agricultura y
Pesca . |
dc.relation.references | Jessen, R. J. (1955), ‘Determining the fruit count on a tree by randomized branch sampling’,
Biometrics 11(1), 99–109. |
dc.relation.references | Kaufman, L. & Rousseeuw, P. J. (1990), Finding Groups in Data: An Introduction to Cluster
Analysis, John Wiley & Sons. |
dc.relation.references | Langville, A. N. & Meyer, C. D. (2006), Google’s PageRank and beyond: The science of
Search Engine Rankings, Princeton university press. |
dc.relation.references | Lavall´ee, P. (2007), ‘Gwsm and calibration’, Indirect Sampling pp. 121–150. |
dc.relation.references | Leskovec, J., Kleinberg, J. & Faloutsos, C. (2007), ‘Graph evolution: Densification and shrinking
diameters’, ACM transactions on Knowledge Discovery from Data 1(1), 2–es. |
dc.relation.references | Linde, Y., Buzo, A. & Gray, R. (1980), ‘An algorithm for vector quantizer design’, IEEE
Transactions on Communications 28(1), 84–95. |
dc.relation.references | L’heureux, A., Grolinger, K., Elyamany, H. F. & Capretz, M. A. (2017), ‘Machine learning
with big data: Challenges and approaches’, IEEE Access 5, 7776–7797. |
dc.relation.references | Madden, L. & Hughes, G. (1999), ‘Sampling for plant disease incidence’, Phytopathology
89(11), 1088–1103.
URL: arxiv.org/pdf/physics/0603229.pdf |
dc.relation.references | Madden, L. V., Hughes, G. & Van Den Bosch, F. (2007), The Study of Plant Disease Epidemics. |
dc.relation.references | McLaren, C. D. & Bruner, M. W. (2022), ‘Citation network analysis’, International Review
of Sport and Exercise Psychology 15(1), 179–198. |
dc.relation.references | Michalski, R. S., Carbonell, J. G. & Mitchell, T. M. (2013), Machine Learning: An Artificial
Intelligence Approach, Springer Science & Business Media. |
dc.relation.references | Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R. & Muharemagic,
E. (2015), ‘Deep learning applications and challenges in big data analytics’, Journal
of big data 2(1), 1–21. |
dc.relation.references | Newman, M. E. (2001), ‘The structure of scientific collaboration networks’, Proceedings of
the national academy of sciences 98(2), 404–409. |
dc.relation.references | Pearson, K. (1905), ‘The problem of the random walk’, Nature 72(1865), pp. 294. |
dc.relation.references | Porta, M. (2014), A Dictionary of Epidemiology, Oxford university press. |
dc.relation.references | Portenoy, J., Hullman, J. & West, J. D. (2017), ‘Leveraging citation networks to visualize
scholarly influence over time’, Frontiers in Research Metrics and Analytics 2, 8. |
dc.relation.references | Qi, X. (2022), ‘A review: Random walk in graph sampling’.
URL: arxiv.org/abs/2209.13103 |
dc.relation.references | Rojas, H. (2009), Estrategias de muestreo. Dise˜no de Encuestas y Estimaci´on de Par´ametros,
Ediciones de la U.
URL: https://books.google.com.co/books?id=yiV8esNE9v4C |
dc.relation.references | Rousseeuw, P. J. (1987), ‘Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis’, Journal of Computational and Applied Mathematics 20, 53–65. |
dc.relation.references | Salganik, M. J. & Heckathorn, D. D. (2004), ‘Sampling and estimation in hidden populations
using respondent-driven sampling’, Sociological methodology 34(1), 193–240. |
dc.relation.references | S¨arndal, C.-E., Swensson, B. & Wretman, J. (2003), Model Assisted Survey Sampling (2nd
edition), Springer Science & Business Media. |
dc.relation.references | S¨arndal, C., Swensson, B. & Wretman, J. (1992), Model Assisted Survey Sampling, Springer
series in statistics, Springer-Verlag.
URL: https://books.google.com.co/books?id=MWCzngEACAAJ |
dc.relation.references | Shimbel, A. (1953), ‘Structural parameters of communication networks’, The bulletin of
mathematical biophysics 15, 501–507. |
dc.relation.references | Thompson, S. K. (2006), ‘Adaptive web sampling’, Biometrics 62(4), 1224–1234. |
dc.relation.references | Van den Bos, W., Crone, E. A., Meuwese, R. & G¨uro˘glu, B. (2018), ‘Social network cohesion
in school classes promotes prosocial behavior’, PLoS One 13(4), e0194656. |
dc.relation.references | Wiegand, H. & Kish, L. (1965), ‘Survey sampling’. |
dc.relation.references | Xie, F. & Levinson, D. (2007), ‘Measuring the structure of road networks’, Geographical
analysis 39(3), 336–356. |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.lemb | Industrias de semillas de arroz |
dc.subject.lemb | Rice seed industry |
dc.subject.lemb | Estadísticas y datos numéricos |
dc.subject.lemb | Statistics & numerical data |
dc.subject.proposal | Muestreo de grafos |
dc.subject.proposal | Redes |
dc.subject.proposal | Cultivos de arroz |
dc.subject.proposal | Muestreo de caminatas aleatorias |
dc.subject.proposal | Muestreo basado en nodos |
dc.subject.proposal | Graph sampling |
dc.subject.proposal | Networks |
dc.subject.proposal | Rice crops |
dc.subject.proposal | Random walk sampling |
dc.subject.proposal | Node-based sampling |
dc.title.translated | Sampling of Network Structures in Unstructured Data |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Estudiantes |