Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorTrujillo Oyola, Leonardo
dc.contributor.advisorRamirez Gil, Joaquin Guillermo
dc.contributor.authorVelásquez Tafur, Luis David
dc.date.accessioned2024-01-16T16:26:36Z
dc.date.available2024-01-16T16:26:36Z
dc.date.issued2023-11-02
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85329
dc.descriptionilustraciones, diagramas
dc.description.abstractEste trabajo aborda el problema práctico en la industria fitosanitaria de la producción de arroz mediante la implementación de una metodología de muestreo estadístico en redes. Se analizan diversos métodos para el muestreo en redes, incluyendo muestreo aleatorio simple, estimador Horvitz Thompson, clasificación no supervisada, y estimación Monte Carlo. Se exploran también muestreos de redes, enfocándose en nodos y conexiones específicas. Luego, se aplican estos conceptos al muestreo fitosanitario en cultivos de arroz utilizando datos de Fedearroz. (Texto tomado de la fuente)
dc.description.abstractThis work addresses the practical problem in the phytosanitary industry of rice production through the implementation of a statistical sampling methodology in networks. Various methods for network sampling are analyzed, including simple random sampling, Horvitz Thompson estimator, unsupervised classification, and Monte Carlo estimation. Network samplings are also explored, focusing on specific nodes and connections. Subsequently, these concepts are applied to phytosanitary sampling in rice crops using data from Fedearroz.
dc.format.extentxi, 69 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc310 - Colecciones de estadística general
dc.subject.ddc000 - Ciencias de la computación, información y obras generales
dc.titleMuestreo de Estructuras de Redes en Datos no Estructurados
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadística
dc.description.degreelevelMaestría
dc.description.degreenameMagister en estadística
dc.description.researchareaMuestreo estadístico
dc.description.technicalinfoMuestreo en redes
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesFrank, O. (1977a), ‘Estimation of graph totals’, Scandinavian Journal of Statistics pp. 81–89
dc.relation.referencesFrank, O. (1977b), ‘A note on bernoulli sampling in graphs and horvitz-thompson estima- tion’, Scandinavian Journal of Statistics pp. 178–180.
dc.relation.referencesFrank, O. (1977c), ‘Survey sampling in graphs’, Journal of Statistical Planning and Inference 1(3), 235–264.
dc.relation.referencesFrank, O. (1978), ‘Estimation of the number of connected components in a graph by using a sampled subgraph’, Scandinavian Journal of Statistics pp. 177–188.
dc.relation.referencesFrank, O. (1979), ‘Sampling and estimation in large social networks’, Social networks 1(1), 91–101.
dc.relation.referencesQi, X. (2022), ‘A review: Random walk in graph sampling’. URL: arxiv.org/abs/2209.13103
dc.relation.referencesRojas, H. (2009), Estrategias de muestreo. Diseño de Encuestas y Estimación de Parámetros, Ediciones de la U. URL: https://books.google.com.co/books?id=yiV8esNE9v4C
dc.relation.referencesSärndal„ C.-E., Swensson, B. Wretman, J. (1992), Model Assisted Survey Sampling, Springer Science & Business Media.
dc.relation.referencesShimbel, A. (1953), ‘Structural parameters of communication networks’, The bulletin of mathematical biophysics 15, 501–507.
dc.relation.referencesThompson, S. K. (2006), ‘Adaptive web sampling’, Biometrics 62(4), 1224–1234
dc.relation.referencesTrujillo, L., Nino, J. & G, H. (2016), ‘Latin american congress of probability and mathema- tical statistics’, CLAPEM, San José, Costa Rica
dc.relation.referencesZhang, L.-C. (2021), Graph Sampling, CRC Press.
dc.relation.referencesZhang, L.-C. Patone, M. (2017), ‘Graph sampling’, Metron 75, 277–299.
dc.relation.referencesZhang, P. Itan, Y. (2019), ‘Biological network approaches and applications in rare disease studies’, Genes 10(10), 797.
dc.relation.referencesAgrama, H. A., Yan, W., Jia, M., Fjellstrom, R., McClung, A. M. et al. (2010), ‘Genetic structure associated with diversity and geographic distribution in the usda rice world collection’, Natural Science 2(04), 247.
dc.relation.referencesAhn, Y.-Y., Han, S., Kwak, H., Moon, S. & Jeong, H. (2007), Analysis of topological characteristics of huge online social networking services, in ‘Proceedings of the 16th international conference on World Wide Web’, pp. 835–844.
dc.relation.referencesAshish (2020), ‘Graph sampling’. URL: https://github.com/Ashish7129/Graph Sampling
dc.relation.referencesBa˜nos, R.A. A.A., . (2020), ‘Induced random walk sampling: a new methodology for social network analysis’, Quality Quantity, 54(5), pp.1371-1387. DOI .
dc.relation.referencesBiggs, N., Lloyd, E. K. & Wilson, R. J. (1986), Graph Theory, 1736-1936, Oxford University Press.
dc.relation.referencesBinns, M. (2000), ‘Sampling and monitoring in crop protection: The theoretical basis for developing practical decision guides. by mr binns, jp nyrop and w. van der werf. wallingford, uk: Cabi publishing (2000), pp. 284,£ 49.95. isbn 0-85199-347-8.’, Experimental Agriculture 37(1), 125–134.
dc.relation.referencesBirnbaum, Z. W. & Sirken, M. G. (1965), Design of Sample Surveys to Estimate the Prevalence of Rare Diseases: Three Unbiased Estimates, number 1000, Vital Health Statistics, 2(11), pp. 1-14. National Center for Health Statistics.
dc.relation.referencesBloemena, A. (1964), ‘Sampling from a graph’, MC Tracts .
dc.relation.referencesBrewer, K. (2002), ‘Combined survey sampling inference: Weighing basu’s elephants’, Arnold Publishers .
dc.relation.referencesCarrington, P. J., Scott, J. & Wasserman, S. (2005), Models and Methods in Social Network Analysis, Vol. 28, Cambridge university press.
dc.relation.referencesCassel, C. M., S¨arndal, C. E. & Wretman, J. H. (1976), ‘Some results on generalized difference estimation and generalized regression estimation for finite populations’, Biometrika 63(3), 615–620.
dc.relation.referencesCharitou, T., Bryan, K. & Lynn, D. J. (2016), ‘Using biological networks to integrate, visualize and analyze genomics data’, Genetics Selection Evolution 48(1), 1–12.
dc.relation.referencesCochran, W. G. (1954), ‘The combination of estimates from different experiments’, Biometrics 10(1), 101–129.
dc.relation.referencesCochran, W. G. (1977), Sampling Techniques, John Wiley & Sons New, York, USA.
dc.relation.referencesDANE (2014), 3er censo nacional agropecuario: Hay campo para todos, Technical report, Departamento Administrativo Nacional de Estad´ıstica.Bogot´a,Colombia.
dc.relation.referencesDangeti, P. (2017), Statistics for Machine Learning, Packt Publishing Ltd.
dc.relation.referencesDuan, Y. & Lu, F. (2014), ‘Robustness of city road networks at different granularities’, Physica A: Statistical Mechanics and its Applications 411, 21–34.
dc.relation.referencesDuda, R., Hart, P., Stork, D. & Ionescu, A. (2000), ‘Pattern classification, chapter nonparametric techniques’.
dc.relation.referencesDurand-Morat, A. & Bairagi, S. (2021), ‘International rice outlook: International rice baseline projections 2020-2030’.
dc.relation.referencesFarris, J. S. (1969), ‘On the cophenetic correlation coefficient’, Systematic Zoology 18(3), 279–285.
dc.relation.referencesFedearroz (2021), ‘Cultivo de arroz en colombia 1998-2016: Cambios espaciales’, Divisi´on de Investigaciones Econ´omicas .
dc.relation.referencesGarrett, K., Madden, L., Hughes, G. & Pfender, W. (2004), ‘New applications of statistical tools in plant pathology’, Phytopathology 94(9), 999–1003.
dc.relation.referencesGilbert, E. N. (1959), ‘Random graphs’, The Annals of Mathematical Statistics 30(4), 1141– 1144.
dc.relation.referencesGile, K. J., Beaudry, I. S., Handcock, M. S. & Ott, M. Q. (2018), ‘Methods for inference from respondent-driven sampling data’, Annual Review of Statistics and Its Application 5, 65–93.
dc.relation.referencesAgrama, H. A., Yan, W., Jia, M., Fjellstrom, R., McClung, A. M. et al. (2010), ‘Genetic structure associated with diversity and geographic distribution in the usda rice world collection’, Natural Science 2(04), 247.
dc.relation.referencesAhn, Y.-Y., Han, S., Kwak, H., Moon, S. & Jeong, H. (2007), Analysis of topological characteristics of huge online social networking services, in ‘Proceedings of the 16th international conference on World Wide Web’, pp. 835–844.
dc.relation.referencesBinns, M. (2000), ‘Sampling and monitoring in crop protection: The theoretical basis for developing practical decision guides. by mr binns, jp nyrop and w. van der werf. wallingford, uk: Cabi publishing (2000), pp. 284,£ 49.95. isbn 0-85199-347-8.’, Experimental Agriculture 37(1), 125–134.
dc.relation.referencesBloemena, A. (1964), ‘Sampling from a graph’, MC Tracts .
dc.relation.referencesCarrington, P. J., Scott, J. & Wasserman, S. (2005), Models and Methods in Social Network Analysis, Vol. 28, Cambridge university press.
dc.relation.referencesCassel, C. M., S¨arndal, C. E. & Wretman, J. H. (1976), ‘Some results on generalized difference estimation and generalized regression estimation for finite populations’, Biometrika 63(3), 615–620.
dc.relation.referencesCharitou, T., Bryan, K. & Lynn, D. J. (2016), ‘Using biological networks to integrate, visualize and analyze genomics data’, Genetics Selection Evolution 48(1), 1–12
dc.relation.referencesCochran, W. G. (1954), ‘The combination of estimates from different experiments’, Biometrics 10(1), 101–129.
dc.relation.referencesCochran, W. G. (1977), Sampling Techniques, John Wiley & Sons New, York, USA.
dc.relation.referencesDANE (2014), 3er censo nacional agropecuario: Hay campo para todos, Technical report, Departamento Administrativo Nacional de Estad´ıstica.Bogot´a,Colombia.
dc.relation.referencesDangeti, P. (2017), Statistics for Machine Learning, Packt Publishing Ltd.
dc.relation.referencesDuan, Y. & Lu, F. (2014), ‘Robustness of city road networks at different granularities’, Physica A: Statistical Mechanics and its Applications 411, 21–34.
dc.relation.referencesDuda, R., Hart, P., Stork, D. & Ionescu, A. (2000), ‘Pattern classification, chapter nonparametric techniques’.
dc.relation.referencesDurand-Morat, A. & Bairagi, S. (2021), ‘International rice outlook: International rice baseline projections 2020-2030’.
dc.relation.referencesFarris, J. S. (1969), ‘On the cophenetic correlation coefficient’, Systematic Zoology 18(3), 279–285.
dc.relation.referencesFedearroz (2021), ‘Cultivo de arroz en colombia 1998-2016: Cambios espaciales’, Divisi´on de Investigaciones Econ´omicas .
dc.relation.referencesFrank, O. (1971), ‘Statistical inference in graphs’, F¨orsvarets forskningsanstalt .
dc.relation.referencesFrank, O. (1977a), ‘Estimation of graph totals’, Scandinavian Journal of Statistics pp. 81–89.
dc.relation.referencesGarrett, K., Madden, L., Hughes, G. & Pfender, W. (2004), ‘New applications of statistical tools in plant pathology’, Phytopathology 94(9), 999–1003.
dc.relation.referencesGilbert, E. N. (1959), ‘Random graphs’, The Annals of Mathematical Statistics 30(4), 1141– 1144.
dc.relation.referencesGile, K. J., Beaudry, I. S., Handcock, M. S. & Ott, M. Q. (2018), ‘Methods for inference from respondent-driven sampling data’, Annual Review of Statistics and Its Application 5, 65–93.
dc.relation.referencesGregoire, T. G. & Valentine, H. T. (2007), Sampling Strategies for Natural Resources and the Environment, CRC Press.
dc.relation.referencesGupta, L., Jain, R. & Vaszkun, G. (2015), ‘Survey of important issues in uav communication networks’, IEEE communications surveys & tutorials 18(2), 1123–1152.
dc.relation.referencesHarrison, R. L. (2010), Introduction to monte carlo simulation in aip conference proceedings, Vol. 1204, American Institute of Physics, pp. 17–21.
dc.relation.referencesHastie, T., Tibshirani, R., Friedman, J. H. & Friedman, J. H. (2009), The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Vol. 2, Springer.
dc.relation.referencesHorvitz, D. G. & Thompson, D. J. (1952), ‘A generalization of sampling without replacement from a finite universe’, Journal of the American statistical Association 47(260), 663–685.
dc.relation.referencesHu, M.-G. &Wang, J.-F. (2011), ‘A spatial sampling optimization package using msn theory’, Environmental Modelling & Software 26(4), 546–548.
dc.relation.referencesIFAPA (2004), ‘Comportamiento de pyricularia oryzae en las marimas del guadalquivir. eficacia fungicida frente al p´atogeno’, Junta de Andaluc´ıa. Consejer´ıa de Agricultura y Pesca .
dc.relation.referencesJessen, R. J. (1955), ‘Determining the fruit count on a tree by randomized branch sampling’, Biometrics 11(1), 99–109.
dc.relation.referencesKaufman, L. & Rousseeuw, P. J. (1990), Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley & Sons.
dc.relation.referencesLangville, A. N. & Meyer, C. D. (2006), Google’s PageRank and beyond: The science of Search Engine Rankings, Princeton university press.
dc.relation.referencesLavall´ee, P. (2007), ‘Gwsm and calibration’, Indirect Sampling pp. 121–150.
dc.relation.referencesLeskovec, J., Kleinberg, J. & Faloutsos, C. (2007), ‘Graph evolution: Densification and shrinking diameters’, ACM transactions on Knowledge Discovery from Data 1(1), 2–es.
dc.relation.referencesLinde, Y., Buzo, A. & Gray, R. (1980), ‘An algorithm for vector quantizer design’, IEEE Transactions on Communications 28(1), 84–95.
dc.relation.referencesL’heureux, A., Grolinger, K., Elyamany, H. F. & Capretz, M. A. (2017), ‘Machine learning with big data: Challenges and approaches’, IEEE Access 5, 7776–7797.
dc.relation.referencesMadden, L. & Hughes, G. (1999), ‘Sampling for plant disease incidence’, Phytopathology 89(11), 1088–1103. URL: arxiv.org/pdf/physics/0603229.pdf
dc.relation.referencesMadden, L. V., Hughes, G. & Van Den Bosch, F. (2007), The Study of Plant Disease Epidemics.
dc.relation.referencesMcLaren, C. D. & Bruner, M. W. (2022), ‘Citation network analysis’, International Review of Sport and Exercise Psychology 15(1), 179–198.
dc.relation.referencesMichalski, R. S., Carbonell, J. G. & Mitchell, T. M. (2013), Machine Learning: An Artificial Intelligence Approach, Springer Science & Business Media.
dc.relation.referencesNajafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R. & Muharemagic, E. (2015), ‘Deep learning applications and challenges in big data analytics’, Journal of big data 2(1), 1–21.
dc.relation.referencesNewman, M. E. (2001), ‘The structure of scientific collaboration networks’, Proceedings of the national academy of sciences 98(2), 404–409.
dc.relation.referencesPearson, K. (1905), ‘The problem of the random walk’, Nature 72(1865), pp. 294.
dc.relation.referencesPorta, M. (2014), A Dictionary of Epidemiology, Oxford university press.
dc.relation.referencesPortenoy, J., Hullman, J. & West, J. D. (2017), ‘Leveraging citation networks to visualize scholarly influence over time’, Frontiers in Research Metrics and Analytics 2, 8.
dc.relation.referencesQi, X. (2022), ‘A review: Random walk in graph sampling’. URL: arxiv.org/abs/2209.13103
dc.relation.referencesRojas, H. (2009), Estrategias de muestreo. Dise˜no de Encuestas y Estimaci´on de Par´ametros, Ediciones de la U. URL: https://books.google.com.co/books?id=yiV8esNE9v4C
dc.relation.referencesRousseeuw, P. J. (1987), ‘Silhouettes: A graphical aid to the interpretation and validation of cluster analysis’, Journal of Computational and Applied Mathematics 20, 53–65.
dc.relation.referencesSalganik, M. J. & Heckathorn, D. D. (2004), ‘Sampling and estimation in hidden populations using respondent-driven sampling’, Sociological methodology 34(1), 193–240.
dc.relation.referencesS¨arndal, C.-E., Swensson, B. & Wretman, J. (2003), Model Assisted Survey Sampling (2nd edition), Springer Science & Business Media.
dc.relation.referencesS¨arndal, C., Swensson, B. & Wretman, J. (1992), Model Assisted Survey Sampling, Springer series in statistics, Springer-Verlag. URL: https://books.google.com.co/books?id=MWCzngEACAAJ
dc.relation.referencesShimbel, A. (1953), ‘Structural parameters of communication networks’, The bulletin of mathematical biophysics 15, 501–507.
dc.relation.referencesThompson, S. K. (2006), ‘Adaptive web sampling’, Biometrics 62(4), 1224–1234.
dc.relation.referencesVan den Bos, W., Crone, E. A., Meuwese, R. & G¨uro˘glu, B. (2018), ‘Social network cohesion in school classes promotes prosocial behavior’, PLoS One 13(4), e0194656.
dc.relation.referencesWiegand, H. & Kish, L. (1965), ‘Survey sampling’.
dc.relation.referencesXie, F. & Levinson, D. (2007), ‘Measuring the structure of road networks’, Geographical analysis 39(3), 336–356.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembIndustrias de semillas de arroz
dc.subject.lembRice seed industry
dc.subject.lembEstadísticas y datos numéricos
dc.subject.lembStatistics & numerical data
dc.subject.proposalMuestreo de grafos
dc.subject.proposalRedes
dc.subject.proposalCultivos de arroz
dc.subject.proposalMuestreo de caminatas aleatorias
dc.subject.proposalMuestreo basado en nodos
dc.subject.proposalGraph sampling
dc.subject.proposalNetworks
dc.subject.proposalRice crops
dc.subject.proposalRandom walk sampling
dc.subject.proposalNode-based sampling
dc.title.translatedSampling of Network Structures in Unstructured Data
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit