Digestión anaerobia de residuos porcícolas con uso de zeolita natural como alternativa biotecnológica para la generación de energía renovable y recuperación de nutrientes
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.contributor.advisor | Cadavid Rodríguez, Luz Stella |
dc.contributor.advisor | Cadena Chamorro, Edith Marleny |
dc.contributor.author | Ruiz Bastidas, Rosa Cecilia |
dc.date.accessioned | 2024-01-29T19:18:14Z |
dc.date.available | 2024-01-29T19:18:14Z |
dc.date.issued | 2023 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85490 |
dc.description | Ilustraciones, mapas |
dc.description.abstract | El objetivo de este proyecto de investigación fue contribuir al mejoramiento de la digestión anaerobia (DA) de residuos porcícolas mediante el uso de zeolita natural, buscando potenciar la generación de biogás, la recuperación de nutrientes y la calidad del digestato. Para lo cual, se determinó la capacidad de adsorción de nitrógeno amoniacal total (TAN) por parte de zeolita natural comercializada en Colombia (zeolita ecuatoriana); se evaluó el efecto de zeolita sobre la DA de residuos porcícolas en régimen discontinuo (batch) y semicontinuo; y se realizó un análisis de la DA de residuos porcícolas con uso de zeolita incluyendo análisis energético, de recuperación de nutrientes y costo-beneficio. Como principales resultados se obtuvieron que, la zeolita natural ecuatoriana tiene una capacidad de adsorción entre 37 y 65 mg NH3-N/g-Z cuando se usa residuos porcícolas. La adición de zeolita tuvo un efecto significativo en la producción de metano en régimen discontinuo (p < 0.01), con incremento en la producción de metano de 28% con una dosis de 4 g/L. En el régimen semicontinuo, la adición de zeolita con dosis entre 1 y 4 g/L provocó un aumento en la producción de metano hasta en un 68% durante el arranque y en promedio un 8% en condiciones estables, una disminución en la concentración de H2S presente en el biogás de hasta en un 63%, un digestato con una concentración de TAN hasta un 51% menor y evitó la formación de espumas. La obtención de zeolita enriquecida con nitrógeno, fósforo y potasio constituye una oportunidad para promover el reciclaje de nutrientes. Los resultados evidenciaron que el uso de zeolita natural mejoró la DA de residuos porcícolas, pero se requieren estudios adicionales de valoración del uso agronómico de la zeolita para establecer la viabilidad económica del uso de zeolita. (texto tomado de la fuente) |
dc.description.abstract | The objective of this research project was to contribute to the improvement of anaerobic digestion (DA) of pig waste using natural zeolite, seeking to enhance biogas generation, nutrient recovery and digestate quality. For which, the total ammonia nitrogen (TAN) adsorption capacity by natural zeolite marketed in Colombia (Ecuadorian zeolite) was determined; the effect of zeolite on the DA of pig waste in batch and semicontinuous regime was evaluated; and an analysis of the DA of swine residues with the use of zeolite was carried out, including energy, nutrients recovery, and cost-benefit analysis. The main results obtained were that the Ecuadorian natural zeolite has an adsorption capacity between 37 and 65 mg NH3-N/g-Z when pig manure was used. The addition of zeolite had a significant effect on the production of methane in the discontinuous regime (p < 0.01), with an increase in methane production of 28% with a dose of 4.0 g/L. In the semi-continuous regime, the addition of zeolite with doses between 1 and 4 g/L caused an increase in methane production of up to 68%, a decrease in the concentration of H2S present in the biogas of up to 63%, a digestate with up to 51% lower TAN concentration and prevented the formation of foams. Obtaining zeolite enriched with nitrogen, phosphorus and potassium constitutes an opportunity for the recycling of nutrients. The results showed that the use of natural zeolite improved the DA of swine waste |
dc.description.abstract | The objective of this research project was to contribute to the improvement of anaerobic digestion (DA) of pig waste using natural zeolite, seeking to enhance biogas generation, nutrient recovery and digestate quality. For which, the total ammonia nitrogen (TAN) adsorption capacity by natural zeolite marketed in Colombia (Ecuadorian zeolite) was determined; the effect of zeolite on the DA of pig waste in batch and semicontinuous regime was evaluated; and an analysis of the DA of swine residues with the use of zeolite was carried out, including energy, nutrients recovery, and cost-benefit analysis. The main results obtained were that the Ecuadorian natural zeolite has an adsorption capacity between 37 and 65 mg NH3-N/g-Z when pig manure was used. The addition of zeolite had a significant effect on the production of methane in the discontinuous regime (p < 0.01), with an increase in methane production of 28% with a dose of 4.0 g/L. In the semi-continuous regime, the addition of zeolite with doses between 1 and 4 g/L caused an increase in methane production of up to 68%, a decrease in the concentration of H2S present in the biogas of up to 63%, a digestate with up to 51% lower TAN concentration and prevented the formation of foams. Obtaining zeolite enriched with nitrogen, phosphorus and potassium constitutes an opportunity for the recycling of nutrients. The results showed that the use of natural zeolite improved the DA of swine waste. |
dc.format.extent | 118 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.subject.ddc | 600 - Tecnología (Ciencias aplicadas) |
dc.subject.ddc | 660 - Ingeniería química::666 - Cerámica y tecnologías afines |
dc.title | Digestión anaerobia de residuos porcícolas con uso de zeolita natural como alternativa biotecnológica para la generación de energía renovable y recuperación de nutrientes |
dc.type | Trabajo de grado - Doctorado |
dc.type.driver | info:eu-repo/semantics/doctoralThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Medellín - Ciencias - Doctorado en Biotecnología |
dc.contributor.researchgroup | Grupo de Investigación Prospectiva Ambiental |
dc.description.degreelevel | Doctorado |
dc.description.degreename | Doctor en Biotecnología |
dc.description.researcharea | Energías renovables |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ciencias |
dc.publisher.place | Medellín, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín |
dc.relation.references | Abouelenien, F., Fujiwara, W., Namba, Y., Kosseva, M., Nishio, N., & Nakashimada, Y. (2010). Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Bioresource Technology, 101(16), 6368–6373. https://doi.org/10.1016/j.biortech.2010.03.071 |
dc.relation.references | Abouelenien, F., Nakashimada, Y., & Nishio, N. (2009). Dry mesophilic fermentation of chicken manure for production of methane by repeated batch culture. Journal of Bioscience and Bioengineering, 107(3), 293–295. https://doi.org/10.1016/j.jbiosc.2008.10.009 |
dc.relation.references | Adam, M. R., Othman, M. H. D., Abu Samah, R., Puteh, M. H., Ismail, A. F., Mustafa, A., A. Rahman, M., & Jaafar, J. (2019). Current trends and future prospects of ammonia removal in wastewater: A comprehensive review on adsorptive membrane development. Separation and Purification Technology, 213, 114–132. https://doi.org/10.1016/j.seppur.2018.12.030 |
dc.relation.references | André, L., Pauss, A., & Ribeiro, T. (2018). Solid anaerobic digestion: State-of-art, scientific and technological hurdles. Bioresource Technology, 247(August 2017), 1027–1037. https://doi.org/10.1016/j.biortech.2017.09.003 |
dc.relation.references | Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, a. J., Kalyuzhnyi, S., Jenicek, P., & Van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Science and Technology, 59(5), 927–934. https://doi.org/10.2166/wst.2009.040 |
dc.relation.references | Angelidaki, Irini, Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, 36(2), 452–466. https://doi.org/10.1016/j.biotechadv.2018.01.011 |
dc.relation.references | APHA. (2017). Standard methods for the examination of Water and Wastewater, 23rd ed. American Public Health Assossiation, American Water Works Assossiation, Water Environment Federation. Washington, D.C. |
dc.relation.references | Arif, S., Liaquat, R., & Adil, M. (2018). Applications of materials as additives in anaerobic digestion technology. Renewable and Sustainable Energy Reviews, 97(January 2017), 354–366. https://doi.org/10.1016/j.rser.2018.08.039 |
dc.relation.references | Asociación Colombiana de Porcicultores. (2016). Informe de los proyectos de inversión desarrollados durante el año 2016. Recuperado Julio 20, 2023, de https://porkcolombia.co/wp-content/uploads/2020/08/Informe-de-Gesti%C3%B3n-I-semestre-2016-Porkcolombia.pdf |
dc.relation.references | Astals, S., Peces, M., Batstone, D. J., Jensen, P. D., & Tait, S. (2018). Characterising and modelling free ammonia and ammonium inhibition in anaerobic systems. Water Research, 143, 127–135. https://doi.org/10.1016/j.watres.2018.06.021 |
dc.relation.references | Barampouti, E. M., Mai, S., Malamis, D., Moustakas, K., & Loizidou, M. (2020). Exploring technological alternatives of nutrient recovery from digestate as a secondary resource. Renewable and Sustainable Energy Reviews, 134(September), 110379. https://doi.org/10.1016/j.rser.2020.110379 |
dc.relation.references | Baykara, H., Martinez, M. C., Rey, D. V., Urbina, D. S., Paredes, C., Rigail-Cedeño, A., & Aviles, M. O. (2018). Preparation and determination of antimicrobial property of cation-exchanged ecuadorian natural zeolite to be used as filler for polyethylene and polypropylene matrices. Journal of Polymers and the Environment, 26(6), 2566–2578. https://doi.org/10.1007/s10924-017-1153-8 |
dc.relation.references | Bayrakdar, A., Sürmeli, R. Ö., & Çalli, B. (2017). Dry anaerobic digestion of chicken manure coupled with membrane separation of ammonia. Bioresource Technology, 244(June), 816–823. https://doi.org/10.1016/j.biortech.2017.08.047 |
dc.relation.references | Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible , interactive , scalable and extensible microbiome data science using QIIME 2. Nature BiotechNology, 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 |
dc.relation.references | Buswell, A. M., & Mueller, H. F. (1952). Mechanism of Methane Fermentation. Industrial & Engineering Chemistry, 44(3), 550–552. https://doi.org/10.1021/ie50507a033 |
dc.relation.references | Butti, M. (2018). Introducción a la Digestión anaeróbica. Curso Introductorio de Pequeña Escala, Foz de Iguazú, 18 y 18 de Septiembre de 2018. Recuperado Julio 28, 2019, de http://redbiolac.org/wp-content/uploads/1-Introducci%C3%B3n-a-la-digesti%C3%B3n-anaer%C3%B3bica.pdf |
dc.relation.references | Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2 : High-resolution sample inference from Illumina amplicon data. Nature Methods, May, 1–7. https://doi.org/10.1038/nmeth.3869 |
dc.relation.references | Calli, B., Mertoglu, B., Inanc, B., & Yenigun, O. (2005). Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochemistry, 40(3–4), 1285–1292. https://doi.org/10.1016/j.procbio.2004.05.008 |
dc.relation.references | Calvo, B., Canoira, L., Morante, F., Martínez-Bedia, J. M., Vinagre, C., García-González, J.-E., Elsen, J., & Alcantara, R. (2009). Continuous elimination of Pb2+,Cu2+,Zn2+,H+ and NH4+ from acidic waters by ionic exchange on natural zeolites. Journal of Hazardous Materials Journal, 166, 619–627. https://doi.org/10.1016/j.jhazmat.2008.11.087 |
dc.relation.references | Cardona, L., Mazéas, L., & Chapleur, O. (2021). Zeolite favours propionate syntrophic degradation during anaerobic digestion of food waste under low ammonia stress. Chemosphere, 262(Article 127932). https://doi.org/10.1016/j.chemosphere.2020.127932 |
dc.relation.references | Castro, L., Escalante, H., Díaz, L. J., Vecino, K., Rojas, G., & Mantilla, L. (2017). Low cost digester monitoring under realistic conditions : Rural use of biogas and digestate quality. Bioresource Technology, 239, 311–317. https://doi.org/10.1016/j.biortech.2017.05.035 |
dc.relation.references | Chen, S., He, J., Wang, H., Dong, B., Li, N., & Dai, X. (2018). Microbial responses and metabolic pathways reveal the recovery mechanism of an anaerobic digestion system subjected to progressive inhibition by ammonia. Chemical Engineering Journal, 350(May), 312–323. https://doi.org/10.1016/j.cej.2018.05.168 |
dc.relation.references | Chen, Y., & Cheng, J. J. (2007). Effect of Potassium Inhibition on the Thermophilic Anaerobic Digestion of Swine Waste. Water Environ. Res., 79, 667–674. https://doi.org/10.2175/106143007X156853 |
dc.relation.references | Cooney, E. L., Booker, N. A., Shallcross, D. C., & Stevens, G. W. (1999). Ammonia Removal from Wastewaters Using Natural Australian Zeolite. I. Characterization of the Zeolite. Separation Science and Technology, 34(12), 2307–2327. https://doi.org/10.1081/SS-100100774 |
dc.relation.references | Corporación Autónoma Regional del Valle del Cauca, C. (2019). Informe de gestión. Vigencia 2018. Recuperado Julio 28, 2023, de https://www1.upme.gov.co/InformesGestion/Informe_gestion_2018.pdf |
dc.relation.references | De Vrieze, J., Colica, G., Pintucci, C., Sarli, J., Pedizzi, C., Willeghems, G., Bral, A., Varga, S., Prat, D., Peng, L., Spiller, M., Buysse, J., Colsen, J., Benito, O., Carballa, M., & Vlaeminck, S. E. (2019). Resource recovery from pig manure via an integrated approach: A technical and economic assessment for full-scale applications. Bioresource Technology, 272(October 2018), 582–593. https://doi.org/10.1016/j.biortech.2018.10.024 |
dc.relation.references | Duan, N., Zhang, D., Lin, C., Zhang, Y., Zhao, L., Liu, H., & Liu, Z. (2019). Effect of organic loading rate on anaerobic digestion of pig manure: Methane production, mass flow, reactor scale and heating scenarios. Journal of Environmental Management, 231(July 2018), 646–652. https://doi.org/10.1016/j.jenvman.2018.10.062 |
dc.relation.references | Escalante, H., Castro, L., Amaya, M. P., Jaimes, L., & Jaimes-Estévez, J. (2018). Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Waste Management, 71, 711–718. https://doi.org/10.1016/j.wasman.2017.09.026 |
dc.relation.references | Esteves, E. M. M., Herrera, A. M. N., Esteves, V. P. P., & Morgado, C. do R. V. (2019). Life cycle assessment of manure biogas production: A review. Journal of Cleaner Production, 219, 411–423. https://doi.org/10.1016/j.jclepro.2019.02.091 |
dc.relation.references | Fernandes, T. V., Keesman, K. J., Zeeman, G., & van Lier, J. B. (2012). Effect of ammonia on the anaerobic hydrolysis of cellulose and tributyrin. Biomass and Bioenergy, 47, 316–323. https://doi.org/10.1016/j.biombioe.2012.09.029 |
dc.relation.references | Ganidi, N., Tyrrel, S., & Cartmell, E. (2009). Anaerobic digestion foaming causes - A review. Bioresource Technology, 100(23), 5546–5554. https://doi.org/10.1016/j.biortech.2009.06.024 |
dc.relation.references | García Arbeláez, C. ., Barrera, X., Gómez Castaño, R. ., & Castaño, R. . S. (2015). El ABC de los compromisos de Colombia para la COP21. Recuperado Julio 28, 2019, de http://mvccolombia.co/images/ABC_S3_B24_C8_web.pdf |
dc.relation.references | Garcia, M. L., & Angenent, L. T. (2009). Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment. Water Research, 43(9), 2373–2382. https://doi.org/10.1016/j.watres.2009.02.036 |
dc.relation.references | Garfí, M., Martí-Herrero, J., Garwood, A., & Ferrer, I. (2016). Household anaerobic digesters for biogas production in Latin America: A review. Renewable and Sustainable Energy Reviews, 60, 599–614. https://doi.org/10.1016/j.rser.2016.01.071 |
dc.relation.references | Gelves Diaz, J. F. (2017). Zeolitas naturales colombianas de la formación Combia, municipio de La Pintada: mineralogía, caracterización y aplicaciones. Universidad Nacional de Colombia. Recuperado Julio 29, 2023, de https://repositorio.unal.edu.co/handle/unal/59065?show=full |
dc.relation.references | Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Tackling climate change through livestock - A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome. Recuperado Julio 29, 2023, de https://www.fao.org/3/i3437e/i3437e.pdf |
dc.relation.references | Gonzales Rubio, C. H. (2016). Estudio de prefactibilidad para la generación de energía a partir de biomasa residual en granjas de cerdo de una industria porcícola. Recuperado Julio 29, 2023, de https://repository.icesi.edu.co/biblioteca_digital/bitstream/10906/85596/1/T01828.pdf |
dc.relation.references | Gonzáles, X. (2019). El sector porcícola colombiano mueve al año $2,6 billones en términos de producción. Recuperado Julio 29, 2023, de https://www.agronegocios.co/ganaderia/el-sector-porcicola-colombiano-mueve-al-ano-26-billones-en-terminos-de-produccion-2832964 |
dc.relation.references | Gould, C. M. (2015). Bioenergy and anaerobic digestion. Chapter 18. Bioenergy, 297–317. https://doi.org/10.1016/B978-0-12-407909-0.00018-3 |
dc.relation.references | Hansen, K. H., Angelidaki, I., & Ahring, B. K. (1998). Anaerobic Digestion of Swine Manure: Inhibition by ammonia. Water Research, 32(1), 5–12. https://doi.org/10.1016/S0043-1354(97)00201-7 |
dc.relation.references | Hedström, A. (2001). Ion exchange in zeolites: a literature review. Journal of Environmental Engineering, 127(8), 673–682. |
dc.relation.references | Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., Buffière, P., Carballa, M., De Wilde, V., Ebertseder, F., Fernández, B., Ficara, E., Fotidis, I., Frigon, J. C., De Laclos, H. F., Ghasimi, D. S. M., Hack, G., Hartel, M., … Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515–2522. https://doi.org/10.2166/wst.2016.336 |
dc.relation.references | Hosseini, S. S., Azadi Tabar, M., Vankelecom, I. F. J., & Denayer, J. F. M. (2023). Progress in high performance membrane materials and processes for biogas production, upgrading and conversion. Separation and Purification Technology, 310(September 2022), 123139. https://doi.org/10.1016/j.seppur.2023.123139 |
dc.relation.references | Hristov, A. N., Oh, J., Lee, C., Meinen, R., Montes, F., Ott, T., Firkins, J., Rotz, A., Dell, C., Adesogan, A., Yang, W., Tricarico, J., Kebreab, E., Waghorn, G., Dijkstra, J., & Oosting, S. (2013). Mitigación de las emisiones de gases de efecto invernadero en la producción ganadera – Una revisión de las opciones técnicas para la reducción de las emisiones de gases diferentes al CO2. FAO, Roma, Italia. Recuperado Julio 29, 2023, de https://www.fao.org/3/i3288s/i3288s.pdf |
dc.relation.references | Hu, Y., Wu, J., Li, H., Poncin, S., Wang, K. jun, & Zuo, J. (2019). Study of an enhanced dry anaerobic digestion of swine manure: Performance and microbial community property. Bioresource Technology, 282(January), 353–360. https://doi.org/10.1016/j.biortech.2019.03.014 |
dc.relation.references | Huang, H., Xiao, X., Yan, B., & Yang, L. (2010). Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. Journal of Hazardous Materials, 175(1–3), 247–252. https://doi.org/10.1016/j.jhazmat.2009.09.156 |
dc.relation.references | Huang, J., Kankanamge, N. R., Chow, C., Welsh, D. T., Li, T., & Teasdale, P. R. (2018). Removing ammonium from water and wastewater using cost-effective adsorbents : A review. Journal of Environmental Sciences, 63, 174–197. https://doi.org/10.1016/j.jes.2017.09.009 |
dc.relation.references | Huang, X., Miao, X., Chu, X., Luo, L., Zhang, H., & Sun, Y. (2023). Enhancement effect of biochar addition on anaerobic co-digestion of pig manure and corn straw under biogas slurry circulation. Bioresource Technology, 372(November 2022), 128654. https://doi.org/10.1016/j.biortech.2023.128654 |
dc.relation.references | ICA. (2022). Censos Pecuarios Nacional. Censo Pecuario Año 2022. Recuperado Julio 29, 2023, de https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018/mapa-no-porcinos-2022.aspx |
dc.relation.references | ICA. (2023). Número de porcinos por departamento en Colombia año 2023. Recuperado Julio 29, 2023, de https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/mapa-y-grafico-censo-porcinos-2023-1.aspx |
dc.relation.references | IEA Bioenergy. (2015). IEA Bioenergy Task 37 - Country Reports Summary 2014. Recuperado Julio 29, 2023, de https://www.ieabioenergy.com/wp-content/uploads/2015/01/IEA-Bioenergy-Task-37-Country-Report-Summary-2014_Final.pdf |
dc.relation.references | Iocoli, G. A., Zabaloy, M. C., Pasdevicelli, G., & Gómez, M. A. (2019). Use of biogas digestates obtained by anaerobic digestion and co-digestion as fertilizers: Characterization, soil biological activity and growth dynamic of Lactuca sativa L. Science of the Total Environment, 647, 11–19. https://doi.org/10.1016/j.scitotenv.2018.07.444 |
dc.relation.references | Jha, V. K., & Hayashi, S. (2009). Modification on natural clinoptilolite zeolite for its NH4+ retention capacity. Journal of Hazardous Materials, 169(1–3), 29–35. https://doi.org/10.1016/j.jhazmat.2009.03.052 |
dc.relation.references | Jiang, Y., McAdam, E., Zhang, Y., Heaven, S., Banks, C., & Longhurst, P. (2019). Ammonia inhibition and toxicity in anaerobic digestion: A critical review. Journal of Water Process Engineering, 32(July), 100899. https://doi.org/10.1016/j.jwpe.2019.100899 |
dc.relation.references | Kantiranis, N., Sikalidis, K., Godelitsas, A., Squires, C., Papastergios, G., & Filippidis, A. (2011). Extra-framework cation release from heulandite-type rich tuffs on exchange with NH4+. Journal of Environmental Management, 92(6), 1569–1576. https://doi.org/10.1016/j.jenvman.2011.01.013 |
dc.relation.references | Koszel, M., & Lorencowicz, E. (2015). Agricultural Use of Biogas Digestate as a Replacement Fertilizers. Agriculture and Agricultural Science Procedia, 7, 119–124. https://doi.org/10.1016/j.aaspro.2015.12.004 |
dc.relation.references | Kotsopoulos, T. A., Karamanlis, X., Dotas, D., & Martzopoulos, G. G. (2008). The impact of different natural zeolite concentrations on the methane production in thermophilic anaerobic digestion of pig waste. Biosystems Engineering, 99(1), 105–111. https://doi.org/10.1016/j.biosystemseng.2007.09.018 |
dc.relation.references | Kougias, P. G., Boe, K., Tsapekos, P., & Angelidaki, I. (2014). Foam suppression in overloaded manure-based biogas reactors using antifoaming agents. Bioresource Technology, 153, 198–205. https://doi.org/10.1016/j.biortech.2013.11.083 |
dc.relation.references | Kozłowski, K., Pietrzykowski, M., Czeka, W., Dach, J., Kowalczyk-ju, A., & Krzysztof, J. (2019). Energetic and economic analysis of biogas plant with using the dairy industry waste. Energy, 183, 1023–1031. https://doi.org/10.1016/j.energy.2019.06.179 |
dc.relation.references | Kwietniewska, E., & Tys, J. (2014). Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renewable and Sustainable Energy Reviews, 34, 491–500. https://doi.org/10.1016/j.rser.2014.03.041 |
dc.relation.references | Lambert, M. (2017). Biogas: A significant contribution to decarbonising gas markets? The Oxford Institute for Energy Studies, June, 1–15. Recuperado Julio 28, 2023, de https://www.oxfordenergy.org/wpcms/wp-content/uploads/2017/06/Biogas-A-significant-contribution-to-decarbonising-gas-markets.pdf |
dc.relation.references | Lehtomäki, A., Huttunen, S., Lehtinen, T. M., & Rintala, J. A. (2008). Anaerobic digestion of grass silage in batch leach bed processes for methane production. Bioresource Technology, 99(8), 3267–3278. https://doi.org/10.1016/j.biortech.2007.04.072 |
dc.relation.references | Lei, L., Li, X., & Zhang, X. (2008). Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite. Separation and Purification Technology, 58, 359–366. https://doi.org/10.1016/j.seppur.2007.05.008 |
dc.relation.references | Lendormi, T., Jaziri, K., Béline, F., Le Roux, S., Bureau, C., Midoux, C., Barrington, S., & Dabert, P. (2022). Methane production and microbial community acclimation of five manure inocula during psychrophilic anaerobic digestion of swine manure. Journal of Cleaner Production, 340(January), 130772. https://doi.org/10.1016/j.jclepro.2022.130772 |
dc.relation.references | Li, R., Liu, D., Zhang, Y., Duan, N., Zhou, J., Liu, Z., & Zhang, Y. (2019). Improved methane production and energy recovery of post-hydrothermal liquefaction waste water via integration of zeolite adsorption and anaerobic digestion. Science of the Total Environment, 651, 61–69. https://doi.org/10.1016/j.scitotenv.2018.09.175 |
dc.relation.references | Li, Y., Zhang, Y., Sun, Y., Wu, S., Kong, X., Yuan, Z., & Dong, R. (2017). The performance efficiency of bioaugmentation to prevent anaerobic digestion failure from ammonia and propionate inhibition. Bioresource Technology, 231, 94–100. https://doi.org/10.1016/j.biortech.2017.01.068 |
dc.relation.references | Lin, L., Lei, Z., Wang, L., Liu, X., Zhang, Y., Wan, C., Lee, D., & Tay, J. H. (2013). Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites. Separation and Purification Technology, 103, 15–20. https://doi.org/10.1016/j.seppur.2012.10.005 |
dc.relation.references | Lin, L., Wan, C., Liu, X., Lei, Z., Lee, D. J., Zhang, Y., Tay, J. H., & Zhang, Z. (2013). Anaerobic digestion of swine manure under natural zeolite addition: VFA evolution, cation variation, and related microbial diversity. Applied Microbiology and Biotechnology, 97(24), 10575–10583. https://doi.org/10.1007/s00253-013-5313-z |
dc.relation.references | Liu, L., Pang, C., Wu, S., & Dong, R. (2015). Optimization and evaluation of an air-recirculated stripping for ammonia removal from the anaerobic digestate of pig manure. Process Safety and Environmental Protection, 94(C), 350–357. https://doi.org/10.1016/j.psep.2014.08.006 |
dc.relation.references | Lourinho, G., Rodrigues, L. F. T. G., & Brito, P. S. D. (2020). Recent advances on anaerobic digestion of swine wastewater. International Journal of Environmental Science and Technology, 17(12), 4917–4938. https://doi.org/10.1007/s13762-020-02793-y |
dc.relation.references | Lu, X., Wang, H., Ma, F., Zhao, G., & Wang, S. (2018). Improved process performance of the acidification phase in a two-stage anaerobic digestion of complex organic waste: Effects of an iron oxide-zeolite additive. Bioresource Technology, 262, 169–176. https://doi.org/10.1016/j.biortech.2018.04.052 |
dc.relation.references | Makara, A., & Kowalski, Z. (2018). Selection of pig manure management strategies: Case study of Polish farms. Journal of Cleaner Production, 172, 187–195. https://doi.org/10.1016/j.jclepro.2017.10.095 |
dc.relation.references | Margeta, K., Zabukovec, N., Šiljeg, M., & Farkaš, A. (2013). Natural zeolites in water treatment - How effective is their use. In Water Treatment (pp. 81–112). https://doi.org/10.5772/2883 |
dc.relation.references | Martí-Herrero, J., Castro, L., Jaimes-Estévez, J., Grijalva, M., Gualatoña, M., Aldás, M. B., & Escalante, H. (2022). Biomethane potential test applied to psychrophilic conditions: Three issues about inoculum temperature adaptation. Bioresource Technology Reports, 20(November). https://doi.org/10.1016/j.biteb.2022.101279 |
dc.relation.references | Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412–427. https://doi.org/10.1016/j.rser.2014.04.039 |
dc.relation.references | McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0061217 |
dc.relation.references | Midden, C. Van, Harris, J., Shaw, L., Sizmur, T., & Pawlett, M. (2023). The impact of anaerobic digestate on soil life : A review. Applied Soil Ecology, 191(July), 105066. https://doi.org/10.1016/j.apsoil.2023.105066 |
dc.relation.references | Milán, Z., Sánchez, E., Weiland, P., Borja, R., Martín, A., & Ilangovan, K. (2001). Influence of different natural zeolite concentrations on the anaerobic digestion of piggery waste. Bioresource Technology, 80(1), 37–43. https://doi.org/10.1016/S0960-8524(01)00064-5 |
dc.relation.references | Ministerio del Medio Ambiente, & Sociedad de Agricultores de Colombia. (2002). Guía Ambiental para el subsector porcícola. Recuperado Julio 20, 2023, de https://www.porkcolombia.co/wp-content/uploads/2018/07/GUIA-AMBIENTAL-PORCICOLA-opt.pdf |
dc.relation.references | Möller, K., & Müller, T. (2012). Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Engineering in Life Sciences, 12(3), 242–257. https://doi.org/10.1002/elsc.201100085 |
dc.relation.references | Montalvo, S., Guerrero, L., Borja, R., Travieso, L., Sánchez, E., & Díaz, F. (2006). Use of natural zeolite at different doses and dosage procedures in batch and continuous anaerobic digestion of synthetic and swine wastes. Resources, Conservation and Recycling, 47(1), 26–41. https://doi.org/10.1016/j.resconrec.2005.10.001 |
dc.relation.references | Montalvo, S., Huiliñir, C., Borja, R., Sánchez, E., & Herrmann, C. (2020). Application of zeolites for biological treatment processes of solid wastes and wastewaters – A review. Bioresource Technology, 301(October 2019), 122808. https://doi.org/10.1016/j.biortech.2020.122808 |
dc.relation.references | Montalvo, Silvio, Guerrero, L., Borja, R., Sánchez, E., Milán, Z., Cortés, I., & De, M. A. (2012). Application of natural zeolites in anaerobic digestion processes : A review. Applied Clay Science, 58, 125–133. https://doi.org/10.1016/j.clay.2012.01.013 |
dc.relation.references | Muthudineshkumar, R., & Anand, R. (2019). Anaerobic digestion of various feedstocks for second-generation biofuel production. In Advances in Eco-Fuels for a Sustainable Environment (pp. 157–185). Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102728-8.00006-1 |
dc.relation.references | Nagarajan, A., Goyette, B., Raghavan, V., Bhaskar, A., & Rajagopal, R. (2023). Nutrient recovery via struvite production from livestock manure-digestate streams : Towards closed loop bio-economy. Process Safety and Environmental Protection, 171(December 2022), 273–288. https://doi.org/10.1016/j.psep.2023.01.006 |
dc.relation.references | Neshat, S. A., Mohammadi, M., Najafpour, G. D., & Lahijani, P. (2017). Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renewable and Sustainable Energy Reviews, 79(May), 308–322. https://doi.org/10.1016/j.rser.2017.05.137 |
dc.relation.references | Nielsen, H. B., & Angelidaki, I. (2008). Strategies for optimizing recovery of the biogas process following ammonia inhibition. Bioresource Technology, 99(17), 7995–8001. https://doi.org/10.1016/j.biortech.2008.03.049 |
dc.relation.references | Nordgård, A. S. R., Bergland, W. H., Bakke, R., Østgaard, K., & Bakke, I. (2018). Mapping anaerobic sludge bed community adaptations to manure supernatant in biogas reactors. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-34088-1 |
dc.relation.references | OCDE-FAO. (2022). Perspectivas Agrícolas 2022-2031. OECD Publishing, Paris. Recuperado Julio 20, 2023, de https://doi.org/10.1787/820ef1bb-es |
dc.relation.references | Paolini, V., Petracchini, F., Carnevale, M., Gallucci, F., Perilli, M., Esposito, G., Segreto, M., Occulti, L. G., Scaglione, D., Ianniello, A., & Frattoni, M. (2018). Characterisation and cleaning of biogas from sewage sludge for biomethane production. Journal of Environmental Management, 217, 288–296. https://doi.org/10.1016/j.jenvman.2018.03.113 |
dc.relation.references | Pérez-Pérez, T., Pereda-Reyes, I., Correia, G. T., Pozzi, E., Kwong, W. H., Oliva-Merencio, D., Zaiat, M., Montalvo, S., & Huiliñir, C. (2021). Performance of EGSB reactor using natural zeolite as support for treatment of synthetic swine wastewater. Journal of Environmental Chemical Engineering, 9(1). https://doi.org/10.1016/j.jece.2020.104922 |
dc.relation.references | Poirier, S., Madigou, C., Bouchez, T., & Chapleur, O. (2017). Improving anaerobic digestion with support media : Mitigation of ammonia inhibition and effect on microbial communities. Bioresource Technology, 235, 229–239. https://doi.org/10.1016/j.biortech.2017.03.099 |
dc.relation.references | Portejoie, S., Martinez, J., Guiziou, F., & Coste, C. M. (2003). Effect of covering pig slurry stores on the ammonia emission processes. Bioresource Technology, 87(3), 199–207. https://doi.org/10.1016/S0960-8524(02)00260-2 |
dc.relation.references | Qiao, F., Zhang, G., Fan, J., Zhang, H., Shi, B., Yang, J., Zhang, J., & Han, Z. (2023). Hydrothermal pretreatment of protein-rich substrate: Modified phsiochemical properties and consequent responses in its anaerobic digestion. Carbon Resources Conversion, 6(1), 1–10. https://doi.org/10.1016/j.crcon.2022.10.001 |
dc.relation.references | Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, O. (2013). The SILVA ribosomal RNA gene database project : improved data processing and web-based tools. Nucleic Acids Research, 41(November 2012), 590–596. https://doi.org/10.1093/nar/gks1219 |
dc.relation.references | Rajagopal, R., Massé, D. I., & Singh, G. (2013). A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, 143, 632–641. https://doi.org/10.1016/j.biortech.2013.06.030 |
dc.relation.references | Rasapoor, M., Young, B., Brar, R., Sarmah, A., Zhuang, W. Q., & Baroutian, S. (2020). Recognizing the challenges of anaerobic digestion: Critical steps toward improving biogas generation. Fuel, 261(Article 116497). https://doi.org/10.1016/j.fuel.2019.116497 |
dc.relation.references | Rizzioli, F., Bertasini, D., Bolzonella, D., Frison, N., & Battista, F. (2023). A critical review on the techno-economic feasibility of nutrients recovery from anaerobic digestate in the agricultural sector. Separation and Purification Technology, 306(Article 122690). https://doi.org/10.1016/j.seppur.2022.122690 |
dc.relation.references | Rodrigues, R. P., Rodrigues, D. P., Klepacz-Smolka, A., Martins, R. C., & Quina, M. J. (2019). Comparative analysis of methods and models for predicting biochemical methane potential of various organic substrates. Science of the Total Environment, 649, 1599–1608. https://doi.org/10.1016/j.scitotenv.2018.08.270 |
dc.relation.references | Rodríguez Galindo, M. O. (2019). Informe de sostenibilidad. In Porkcolombia - Fondo Nacional de la Porcicultura (Issue 9). Recuperado Julio 29, 2023, de https://doi.org/10.1017/CBO9781107415324.004 |
dc.relation.references | Safavi, S. M., & Unnthorsson, R. (2018). Enhanced methane production from pig slurry with pulsed electric field pre-treatment. Environmental Technology, 39(4), 479–489. https://doi.org/10.1080/09593330.2017.1304455 |
dc.relation.references | Seadi, T. Al, Rutz, D., Prassl, H., Kottner, M., Finsterwalder, T., Volk, S., & Janssen, R. (2008). Biogas handbook (T. Al Seadi (ed.)). University of Southern Denmark Esbjerg, Niels Bohrs Vej 9-10, DK-6700 Esbjerg, Denmark. |
dc.relation.references | Shi, L., Xie, S., Hu, Z., Wu, G., Morrison, L., Croot, P., Hu, H., & Zhan, X. (2019). Nutrient recovery from pig manure digestate using electrodialysis reversal: Membrane fouling and feasibility of long-term operation. Journal of Membrane Science, 573(August 2018), 560–569. https://doi.org/10.1016/j.memsci.2018.12.037 |
dc.relation.references | Sidartha Roa, Z., Mendoza Cordoba, J. C., González Muñoz, S. S., Kaiser Caldera, F. L., & Gebauer, A. (2020). Guía de biogás para el sector porcícola en Colombia. Recuperado Julio 29, 2023, de https://economiacircular.minambiente.gov.co/wp-content/uploads/2021/09/guia-biogas-sector-porcicola-ministerio-de-ambiente-desarrollo-sostenible.pdf |
dc.relation.references | Souza, I. M. S., Gurgel, G. C. S., Medeiros, A. M., Zonta, E., Ruiz, J. A. C., Paskocimas, C. A., Motta, F. V., & Bomio, M. R. D. (2018). The use of clinoptilolite as carrier of nitrogened fertilizer with controlled release. Journal of Environmental Chemical Engineering, 6(4), 4171–4177. https://doi.org/10.1016/j.jece.2018.06.017 |
dc.relation.references | Steinmetz, R. (2018). Curso Introductorio de Gran Escala. Bases Bioquímicas de Digestión Anaerobia. Recuperado Julio 28, 2019, de http://redbiolac.org/wp-content/uploads/CIBGE-1-Bases-bioqui%CC%81micas-da-digesta%CC%83o-anaero%CC%81bia.pdf |
dc.relation.references | Tada, C., Yang, Y., Hanaoka, T., Sonoda, A., Ooi, K., & Sawayama, S. (2005). Effect of natural zeolite on methane production for anaerobic digestion of ammonium rich organic sludge. Bioresource Technology, 96(4), 459–464. https://doi.org/10.1016/j.biortech.2004.05.025 |
dc.relation.references | Tao, Z., Chen, C., Yang, Q., Zhong, Z., Wan, Y., Chen, S., Yao, F., Pi, Z., Li, X., & Wang, D. (2021). Understanding the impact of allicin for organic matter release and microorganism community in anaerobic co-digestion of food waste and waste activated sludge. Science of the Total Environment, 776(Article 145598). https://doi.org/10.1016/j.scitotenv.2021.145598 |
dc.relation.references | Tavera-Ruiz, C., Martí-Herrero, J., Mendieta, O., Jaimes-Estévez, J., Gauthier-Maradei, P., Azimov, U., Escalante, H., & Castro, L. (2023). Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study. Renewable and Sustainable Energy Reviews, 173(May 2022). https://doi.org/10.1016/j.rser.2022.113097 |
dc.relation.references | Timonen, K., Sinkko, T., Luostarinen, S., Tampio, E., & Joensuu, K. (2019). LCA of anaerobic digestion: Emission allocation for energy and digestate. Journal of Cleaner Production, 235, 1567–1579. https://doi.org/10.1016/j.jclepro.2019.06.085 |
dc.relation.references | UNAL, & TECSOL. (2018). Estimación del potencial de conversión a biogás de la biomasa en colombia y su aprovechamiento. Recuperado Julio 28, 2019, de https://bdigital.upme.gov.co/jspui/bitstream/001/1317/1/Informe final.pdf |
dc.relation.references | United States Department of Agriculture. (2018). Livestock and Poultry: World Markets and Trade. Recuperado Julio 28, 2023, de https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf |
dc.relation.references | UPME, IREES, & TEP. (2019). Primer balance de Energía Útil para Colombia y Cuantificación de las Perdidas energéticas relacionadas y la brecha de eficiencia energética, Resumen Ejecutivo BEU Sector Residencial y Terciario. In Unidad de Planeación Minero-Energética (Vol. 1). Recuperado Julio 29, 2023, de https://www1.upme.gov.co/DemandayEficiencia/Documents/Balance_energia_util/BEU-Residencial.pdf |
dc.relation.references | Varnero Moreno, M. T. (2011). Manual del Biogás. Roma. doi: ISBN 978-95-306892-0. Recuperado Julio 28, 2023, de http://www.fao.org/docrep/019/as400s/as400s.pdf |
dc.relation.references | Wandera, S. M., Qiao, W., Algapani, D. E., Bi, S., Yin, D., Qi, X., Liu, Y., Dach, J., & Dong, R. (2018). Searching for possibilities to improve the performance of full scale agricultural biogas plants. Renewable Energy, 116, 720–727. https://doi.org/10.1016/j.renene.2017.09.087 |
dc.relation.references | Wang, Q., Yang, Y., Yu, C., Huang, H., Kim, M., Feng, C., & Zhang, Z. (2011). Study on a fixed zeolite bioreactor for anaerobic digestion of ammonium-rich swine wastes. Bioresource Technology, 102(14), 7064–7068. https://doi.org/10.1016/j.biortech.2011.04.085 |
dc.relation.references | Wang, S., & Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal Journal, 156, 11–24. https://doi.org/10.1016/j.cej.2009.10.029 |
dc.relation.references | Wickham, H. (2016). Programming with ggplot2. In ggplot2. Usa R! (pp. 241–253). Springer, Cham. https://doi.org/10.1007/978-3-319-24277-4_12 |
dc.relation.references | Wijesinghe, D. T. N., Dassanayake, K. B., Scales, P., & Chen, D. (2018). Developing an anaerobic digester with external Zeolite filled column for enhancing methane production from swine manure–A feasibility study. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 53(11), 751–760. https://doi.org/10.1080/03601234.2018.1480164 |
dc.relation.references | Wijesinghe, D. T. N., Dassanayake, K. B., Scales, P. J., Sommer, S. G., & Chen, D. (2018a). Effect of Australian zeolite on methane production and ammonium removal during anaerobic digestion of swine manure. Journal of Environmental Chemical Engineering, 6(1), 1233–1241. https://doi.org/10.1016/j.jece.2018.01.028 |
dc.relation.references | Wijesinghe, D. T. N., Dassanayake, K. B., Scales, P., Sommer, S. G., & Chen, D. (2018b). Removal of excess nutrients by Australian zeolite during anaerobic digestion of swine manure. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 53(4), 362–372. https://doi.org/10.1080/10934529.2017.1401398 |
dc.relation.references | Wijesinghe, D. T. N., Dassanayake, K. B., Sommer, S. G., Jayasinghe, G. Y., J. Scales, P., & Chen, D. (2016). Ammonium removal from high-strength aqueous solutions by Australian zeolite. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 51(8), 614–625. https://doi.org/10.1080/10934529.2016.1159861 |
dc.relation.references | Wu, X., Dong, C., Yao, W., & Zhu, J. (2011). Anaerobic digestion of dairy manure influenced by the waste milk from milking operations. Journal of Dairy Science, 94(8), 3778–3786. https://doi.org/10.3168/jds.2010-4129 |
dc.relation.references | Xiao, B., Qin, Y., Wu, J., Chen, H., Yu, P., Liu, J., & Li, Y. Y. (2018). Comparison of single-stage and two-stage thermophilic anaerobic digestion of food waste: Performance, energy balance and reaction process. Energy Conversion and Management, 156(November 2017), 215–223. https://doi.org/10.1016/j.enconman.2017.10.092 |
dc.relation.references | Xiaodong, P., Liangwei, D., Yong, Y., Li, S., & Zhiyong, W. (2010). Economic benefit analysis on large and middle-scale biogas plants with different heating methods. Journal of Agricultural Engineering, 26(7), 281–284. |
dc.relation.references | Yang, Z., Wang, W., Liu, C., Zhang, R., & Liu, G. (2019). Mitigation of ammonia inhibition through bioaugmentation with different microorganisms during anaerobic digestion: Selection of strains and reactor performance evaluation. Water Research, 155, 214–224. https://doi.org/10.1016/j.watres.2019.02.048 |
dc.relation.references | Yenigün, O., & Demirel, B. (2013). Ammonia inhibition in anaerobic digestion : A review. Process Biochemistry, 48(5–6), 901–911. https://doi.org/10.1016/j.procbio.2013.04.012 |
dc.relation.references | Zha, X., Tsapekos, P., Alvarado-morales, M., Lu, X., & Angelidaki, I. (2020). Potassium inhibition during sludge and biopulp co-digestion ; experimental and model-based approaches. Waste Management, 113, 304–311. https://doi.org/10.1016/j.wasman.2020.06.007 |
dc.relation.references | Zhang, N., Stanislaus, M. S., Hu, X., Zhao, C., Zhu, Q., Li, D., & Yang, Y. (2016). Strategy of mitigating ammonium-rich waste inhibition on anaerobic digestion by using illuminated bio-zeolite fixed-bed process. Bioresource Technology, 222, 59–65. https://doi.org/10.1016/j.biortech.2016.09.053 |
dc.relation.references | Zhang, Q., Hu, J., & Lee, D. J. (2016). Biogas from anaerobic digestion processes: Research updates. Renewable Energy, 98, 108–119. https://doi.org/10.1016/j.renene.2016.02.029 |
dc.relation.references | Zhao, J., Liu, Y., Wang, D., Chen, F., Li, X., & Zeng, G. (2017). Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Management, 67, 308–314. https://doi.org/10.1016/j.wasman.2017.05.016 |
dc.relation.references | Zheng, H., Li, D., Stanislaus, M. S., Zhang, N., Zhu, Q., Hu, X., & Yang, Y. (2015). Development of a bio-zeolite fixed-bed bioreactor for mitigating ammonia inhibition of anaerobic digestion with extremely high ammonium concentration livestock waste. Chemical Engineering Journal, 280, 106–114. https://doi.org/10.1016/j.cej.2015.06.024 |
dc.relation.references | Zilio, M., Pigoli, A., Rizzi, B., Geromel, G., Meers, E., Schoumans, O., Giordano, A., & Adani, F. (2021). Measuring ammonia and odours emissions during full field digestate use in agriculture. Science of the Total Environment, 782(Article 146882). https://doi.org/10.1016/j.scitotenv.2021.146882 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.lemb | Industria de la zeolita |
dc.subject.proposal | Residuos porcícolas |
dc.subject.proposal | Amoníaco |
dc.subject.proposal | Inhibición |
dc.subject.proposal | Zeolita |
dc.subject.proposal | Adsorción |
dc.subject.proposal | Metano |
dc.subject.proposal | Pig waste |
dc.subject.proposal | Ammonia |
dc.subject.proposal | Inhibition |
dc.subject.proposal | Zeolite |
dc.subject.proposal | Adsorption |
dc.subject.proposal | Methane |
dc.title.translated | Anaerobic digestion of swine waste using natural zeolite as a biotechnological alternative for the generation of renewable energy and nutrients recovery |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TD |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Estudiantes |
dcterms.audience.professionaldevelopment | Investigadores |
dcterms.audience.professionaldevelopment | Maestros |
dcterms.audience.professionaldevelopment | Proveedores de ayuda financiera para estudiantes |
dcterms.audience.professionaldevelopment | Público general |
dcterms.audience.professionaldevelopment | Receptores de fondos federales y solicitantes |
dcterms.audience.professionaldevelopment | Responsables políticos |
dc.description.curriculararea | Área curricular Biotecnología |
dc.contributor.orcid | Ruiz-Bastidas, Rosa Cecilia [0000-0002-1152-4040] |
dc.contributor.cvlac | Ruiz-Bastidas, Rosa Cecilia |
dc.subject.wikidata | Digestión anaeróbica |
Files in this item
This item appears in the following Collection(s)
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit