Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorYris, Olaya Morales
dc.contributor.authorRios Martinez, Jenny Rocio
dc.date.accessioned2024-02-13T18:22:10Z
dc.date.available2024-02-13T18:22:10Z
dc.date.issued2023-02-13
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85696
dc.descriptionIlustraciones, gráficas, tablas
dc.description.abstractThe study of urban air pollution holds paramount significance within the realms of environmental science and public health. Urban areas are epicenters of diverse human activities, industrial operations, and vehicular traffic, collectively contributing to elevated concentrations of air pollutants. As the use of LCS devices becomes more prevalent in citizen science initiatives, educational purposes, rise of information and awareness, it is crucial to establish their performance characteristics and evaluation metrics for air pollution monitoring. This thesis focuses on evaluating the performance of Low-cost sensors (LCS) in the monitoring of PM2.5 concentrations in outdoor urban environments in Colombia using data mining and machine learning models. The results show that the polynomial regression and Artificial Neural Networks models present a better enhancing in the accuracy and precision of the measurements of the different models of LCS used in this study compared with simple linear regression and other machine learning models. Lastly, the project endeavors to demonstrate the applicability of LCS devices for monitoring PM2.5 concentration in various transportation modes within the city of Medellin. This research contributes to the broader understanding of LCS devices' potential in enhancing air quality monitoring and their suitability for citizen-driven initiatives in regions lacking regulatory-grade instruments.
dc.description.abstractEl estudio de la contaminación del aire urbano tiene una importancia fundamental en los ámbitos de la ciencia ambiental y la salud pública. Las áreas urbanas son epicentros de diversas actividades humanas, operaciones industriales y tráfico vehicular, contribuyendo colectivamente a concentraciones elevadas de contaminantes atmosféricos. A medida que el uso de dispositivos LCS se vuelve más frecuente en iniciativas de ciencia ciudadana, con fines educativos, aumento de información y conciencia, es crucial establecer sus características de rendimiento y métricas de evaluación para el monitoreo de la contaminación del aire. Esta tesis se centra en evaluar el rendimiento de los sensores de bajo costo (LCS) en el monitoreo de las concentraciones de PM2.5 en entornos urbanos al aire libre en Colombia mediante la minería de datos y modelos de aprendizaje automático. Los resultados muestran que los modelos de regresión polinómica y redes neuronales artificiales mejoran la precisión y la exactitud de las mediciones de los diferentes modelos de LCS utilizados en este estudio en comparación con la regresión lineal simple y otros modelos de aprendizaje de máquinas. Por último, el proyecto pretende demostrar la aplicabilidad de los dispositivos LCS para monitorear la concentración de PM2.5 en diversos modos de transporte dentro de la ciudad de Medellín. Esta investigación contribuye a una comprensión más amplia del potencial de los dispositivos LCS para mejorar el monitoreo de la calidad del aire y su idoneidad para iniciativas impulsadas por ciudadanos en regiones que carecen de instrumentos de calidad regulatoria. (text tomado de la fuente)
dc.description.sponsorshipColciencias Convocatoria 727 doctorados nacionales
dc.format.extent196 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemas
dc.titleMonitoring urban air pollution using low-cost sensor devices
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas
dc.contributor.researchgroupCiencias de la Decision
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.researchareaInvestigación de operaciones
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesAgarwal, A., Kaushik, A., Kumar, S., & Mishra, R. K. (2020). Comparative study on air quality status in Indian and Chinese cities before and during the COVID-19 lockdown period. Air Quality, Atmosphere & Health, 13(10), 1167–1178. https://doi.org/10.1007/s11869-020-00881-z
dc.relation.referencesAggarwal, C. C. (2015). Data Mining. Springer International Publishing. https://doi.org/10.1007/978-3-319-14142-8
dc.relation.referencesAlcaldía Mayor de Bogotá D.C., S. de A. (2022). Red de Monitoreo de Calidad del Aire de Bogotá—RMCAB. Secretaría Distrital de Ambiente. https://ambientebogota.gov.co/red-de-monitoreo-de-calidad-del-aire-de-bogota-rmcab
dc.relation.referencesAlfano, B., Barretta, L., Del Giudice, A., De Vito, S., Di Francia, G., Esposito, E., Formisano, F., Massera, E., Miglietta, M. L., & Polichetti, T. (2020). A Review of Low-Cost Particulate Matter Sensors from the Developers’ Perspectives. Sensors, 20(23), Article 23. https://doi.org/10.3390/s20236819
dc.relation.referencesAMVA. (2018). Plan de acción para la implementación del Plan Operacional para enfrentar Episodios de Contaminación Atmosférica (POECA) en el área Metropolitana del Valle de Aburrá. https://www.metropol.gov.co/ambiental/calidad-del-aire/Documents/POECA/Plan-de-Accion-POECA-2019.pdf
dc.relation.referencesAMVA. (2019). Condiciones especiales del valle de aburrá. https://www.metropol.gov.co:443/ambientales/calidad-del-aire/generalidades/condiciones-especiales
dc.relation.referencesAMVA. (2021). Ciudadanos Científicos. Programa local de ciencia, educación y tecnología. https://www.metropol.gov.co:443/ambiental/siata/Paginas/ciudadanos-cientificos.aspx
dc.relation.referencesAMVA. (2022). Encuesta origen destino. https://www.metropol.gov.co:443/observatorio/Paginas/encuestaorigendestino.aspx
dc.relation.referencesApte, J. S., Marshall, J. D., Cohen, A. J., & Brauer, M. (2015). Addressing Global Mortality from Ambient PM 2.5. Environmental Science & Technology, 49(13), 8057–8066. https://doi.org/10.1021/acs.est.5b01236
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá. (2022). Encuesta de Origen—Destino. https://www.metropol.gov.co/observatorio/Paginas/encuestaorigendestino.aspx
dc.relation.referencesArfire, A., Marjovi, A., & Martinoli, A. (2016). Enhancing measurement quality through active sampling in mobile air quality monitoring sensor networks. 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 1022–1027. https://doi.org/10.1109/AIM.2016.7576904
dc.relation.referencesAstudillo, G. D., Garza-Castanon, L. E., & Minchala Avila, L. I. (2020). Design and Evaluation of a Reliable Low-Cost Atmospheric Pollution Station in Urban Environment. IEEE Access, 8, 51129–51144. https://doi.org/10.1109/ACCESS.2020.2980736
dc.relation.referencesAustin, E., Novosselov, I., Seto, E., & Yost, M. G. (2015). Laboratory Evaluation of the Shinyei PPD42NS Low-Cost Particulate Matter Sensor. PLOS ONE, 10(9), e0137789. https://doi.org/10.1371/journal.pone.0137789
dc.relation.referencesBadura, M., Batog, P., Drzeniecka-Osiadacz, A., & Modzel, P. (2019). Regression methods in the calibration of low-cost sensors for ambient particulate matter measurements. SN Applied Sciences, 1(6), 622. https://doi.org/10.1007/s42452-019-0630-1
dc.relation.referencesBai, L., Huang, L., Wang, Z., Ying, Q., Zheng, J., Shi, X., & Hu, J. (2020). Long-term field Evaluation of Low-cost Particulate Matter Sensors in Nanjing. Aerosol and Air Quality Research, 20(2), 242–253. https://doi.org/10.4209/aaqr.2018.11.0424
dc.relation.referencesBAM-1020 Continuous Particulate Monitor. (2021). Met One Instruments. https://metone.com/products/bam-1020/
dc.relation.referencesBarcelo-Ordinas, J. M., Doudou, M., Garcia-Vidal, J., & Badache, N. (2019). Self-calibration methods for uncontrolled environments in sensor networks: A reference survey. Ad Hoc Networks, 88, 142–159. https://doi.org/10.1016/j.adhoc.2019.01.008
dc.relation.referencesBáthory, C., Dobó, Z., Garami, A., Palotás, Á., & Tóth, P. (2022). Low-cost monitoring of atmospheric PM—development and testing. Journal of Environmental Management, 304, 114158. https://doi.org/10.1016/j.jenvman.2021.114158
dc.relation.referencesBenabbas, A., Geißelbrecht, M., Nikol, G. M., Mahr, L., Nähr, D., Steuer, S., Wiesemann, G., Müller, T., Nicklas, D., & Wieland, T. (2019). Measure particulate matter by yourself: Data-quality monitoring in a citizen science project. Journal of Sensors and Sensor Systems, 8(2), 317–328. https://doi.org/10.5194/jsss-8-317-2019
dc.relation.referencesBerghmans, P., Bleux, N., Panis, L. I., Mishra, V. K., Torfs, R., & Van Poppel, M. (2009). Exposure assessment of a cyclist to PM10 and ultrafine particles. Science of The Total Environment, 407(4), 1286–1298. https://doi.org/10.1016/j.scitotenv.2008.10.041
dc.relation.referencesBergmann, M. L., Andersen, Z. J., Amini, H., Khan, J., Lim, Y. H., Loft, S., Mehta, A., Westendorp, R. G., & Cole-Hunter, T. (2022). Ultrafine particle exposure for bicycle commutes in rush and non-rush hour traffic: A repeated measures study in Copenhagen, Denmark. Environmental Pollution, 294, 118631. https://doi.org/10.1016/j.envpol.2021.118631
dc.relation.referencesBoniardi, L., Borghi, F., Straccini, S., Fanti, G., Campagnolo, D., Campo, L., Olgiati, L., Lioi, S., Cattaneo, A., Spinazzè, A., Cavallo, D. M., & Fustinoni, S. (2021). Commuting by car, public transport, and bike: Exposure assessment and estimation of the inhaled dose of multiple airborne pollutants. Atmospheric Environment, 262, 118613. https://doi.org/10.1016/j.atmosenv.2021.118613
dc.relation.referencesBorghi, F., Fanti, G., Cattaneo, A., Campagnolo, D., Rovelli, S., Keller, M., Spinazzè, A., & Cavallo, D. M. (2020). Estimation of the inhaled dose of airborne pollutants during commuting: Case study and application for the general population. International Journal of Environmental Research and Public Health, 17(17), 1–14. Scopus. https://doi.org/10.3390/ijerph17176066
dc.relation.referencesBožilov, A., Tasić, V., Živković, N., Lazović, I., Blagojević, M., Mišić, N., & Topalović, D. (2022). Performance assessment of NOVA SDS011 low-cost PM sensor in various microenvironments. Environmental Monitoring and Assessment, 194(9), 595. https://doi.org/10.1007/s10661-022-10290-7
dc.relation.referencesBrunekreef, B., & Holgate, S. T. (2002). Air pollution and health. The Lancet, 360(9341), 1233–1242. https://doi.org/10.1016/S0140-6736(02)11274-8
dc.relation.referencesBuiles-Jaramillo, A., Gómez-Bedoya, J., Lopera-Uribe, S., & Fajardo-Castaño, V. (2020). Hotspots, daily cycles and average daily dose of PM2.5 in a cycling route in Medellin. Revista Facultad de Ingeniería Universidad de Antioquia, 96, 87–99. https://doi.org/10.17533/udea.redin.20191153 Bulot, F. M. J., Johnston, S. J., Basford, P. J., Easton, N. H. C., Apetroaie-Cristea, M., Foster, G. L., Morris, A. K. R., Cox, S. J., & Loxham, M. (2019). Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment. Scientific Reports, 9(1), 7497. https://doi.org/10.1038/s41598-019-43716-3
dc.relation.referencesBurnett, R. T., Pope, C. A., Ezzati, M., Olives, C., Lim, S. S., Mehta, S., Shin, H. H., Singh, G., Hubbell, B., Brauer, M., Anderson, H. R., Smith, K. R., Balmes, J. R., Bruce, N. G., Kan, H., Laden, F., Prüss-Ustün, A., Turner, M. C., Gapstur, S. M., … Cohen, A. (2014). An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure. Environmental Health Perspectives, 122(4), 397–403. https://doi.org/10.1289/ehp.1307049
dc.relation.referencesBulot, F. M. J., Johnston, S. J., Basford, P. J., Easton, N. H. C., Apetroaie-Cristea, M., Foster, G. L., Morris, A. K. R., Cox, S. J., & Loxham, M. (2019). Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment. Scientific Reports, 9(1), 7497. https://doi.org/10.1038/s41598-019-43716-3
dc.relation.referencesBulot, F. M. J., Ossont, S. J., Morris, A. K. R., Basford, P. J., Easton, N. H. C., Mitchell, H. L., Foster, G. L., Cox, S. J., & Loxham, M. (2023). Characterisation and calibration of low-cost PM sensors at high temporal resolution to reference-grade performance. Heliyon, 9(5), e15943. https://doi.org/10.1016/j.heliyon.2023.e15943
dc.relation.referencesCamprodon, G., González, Ó., Barberán, V., Pérez, M., Smári, V., de Heras, M. Á., & Bizzotto, A. (2019). Smart Citizen Kit and Station: An open environmental monitoring system for citizen participation and scientific experimentation. HardwareX. https://doi.org/10.1016/j.ohx.2019.e00070
dc.relation.referencesCanAirIO. (2021). CanAirIO. Citizen Network for Monitoring Air Quality. https://canair.io/index.html
dc.relation.referencesCarvalho, H. (2017). The global burden of air pollution-associated deaths—How many are needed for countries to react? The Lancet Planetary Health, 1(5), e179. https://doi.org/10.1016/S2542-5196(17)30076-1
dc.relation.referencesCastell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., Broday, D., & Bartonova, A. (2017). Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environment International, 99, 293–302. https://doi.org/10.1016/j.envint.2016.12.007
dc.relation.referencesCavaliere, A., Carotenuto, F., Di Gennaro, F., Gioli, B., Gualtieri, G., Martelli, F., Matese, A., Toscano, P., Vagnoli, C., & Zaldei, A. (2018). Development of Low-Cost Air Quality Stations for Next Generation Monitoring Networks: Calibration and Validation of PM2.5 and PM10 Sensors. Sensors, 18(9), 2843. https://doi.org/10.3390/s18092843
dc.relation.referencesCepeda, M., Schoufour, J., Freak-Poli, R., Koolhaas, C. M., Dhana, K., Bramer, W. M., & Franco, O. H. (2017). Levels of ambient air pollution according to mode of transport: A systematic review. The Lancet Public Health, 2(1), e23–e34. https://doi.org/10.1016/S2468-2667(16)30021-4
dc.relation.referencesChen, C.-H., Wu, C.-D., Chiang, H.-C., Chu, D., Lee, K.-Y., Lin, W.-Y., Yeh, J.-I., Tsai, K.-W., & Guo, Y.-L. L. (2019). The effects of fine and coarse particulate matter on lung function among the elderly. Scientific Reports, 9(1), 14790. https://doi.org/10.1038/s41598-019-51307-5
dc.relation.referencesChen, H., Covert, I. C., Lundberg, S. M., & Lee, S.-I. (2023). Algorithms to estimate Shapley value feature attributions. Nature Machine Intelligence, 5(6), Article 6. https://doi.org/10.1038/s42256-023-00657-x
dc.relation.referencesChen, L.-J., Ho, Y.-H., Lee, H.-C., Wu, H.-C., Liu, H.-M., Hsieh, H.-H., Huang, Y.-T., & Lung, S.-C. C. (2017). An Open Framework for Participatory PM2.5 Monitoring in Smart Cities. IEEE Access, 5, 14441–14454. https://doi.org/10.1109/ACCESS.2017.2723919
dc.relation.referencesChen, Z., Barros, C. P., & Gil-Alana, L. A. (2016). The persistence of air pollution in four mega-cities of China. Habitat International, 56, 103–108. https://doi.org/10.1016/j.habitatint.2016.05.004
dc.relation.referencesClements, A., Duvall, R., & Dye, T. (2022). The Enhanced Air Sensor Guidebook. https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=356426&Lab=CEMM
dc.relation.referencesCohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., … Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6
dc.relation.referencesCole-Hunter, T., Jayaratne, R., Stewart, I., Hadaway, M., Morawska, L., & Solomon, C. (2013). Utility of an alternative bicycle commute route of lower proximity to motorised traffic in decreasing exposure to ultra-fine particles, respiratory symptoms and airway inflammation – a structured exposure experiment. Environmental Health, 12(1), 29. https://doi.org/10.1186/1476-069X-12-29
dc.relation.referencesCollier-Oxandale, A., Feenstra, B., Papapostolou, V., Zhang, H., Kuang, M., Der Boghossian, B., & Polidori, A. (2020). Field and laboratory performance evaluations of 28 gas-phase air quality sensors by the AQ-SPEC program. Atmospheric Environment, 220, 117092. https://doi.org/10.1016/j.atmosenv.2019.117092
dc.relation.referencesCommodore, A., Wilson, S., Muhammad, O., Svendsen, E., & Pearce, J. (2017). Community-based participatory research for the study of air pollution: A review of motivations, approaches, and outcomes. Environmental Monitoring and Assessment, 189(8), 378. https://doi.org/10.1007/s10661-017-6063-7
dc.relation.referencesCorreia, C., Martins, V., Cunha-Lopes, I., Faria, T., Diapouli, E., Eleftheriadis, K., & Almeida, S. M. (2020). Particle exposure and inhaled dose while commuting in Lisbon. Environmental Pollution, 257, 113547. https://doi.org/10.1016/j.envpol.2019.113547
dc.relation.referencesCrilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., & Pope, F. D. (2018). Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring. Atmospheric Measurement Techniques, 11(2), 709–720. https://doi.org/10.5194/amt-11-709-2018
dc.relation.referencesCross, E. S., Williams, L. R., Lewis, D. K., Magoon, G. R., Onasch, T. B., Kaminsky, M. L., Worsnop, D. R., & Jayne, J. T. (2017). Use of electrochemical sensors for measurement of air pollution: Correcting interference response and validating measurements. Atmospheric Measurement Techniques, 10(9), 3575–3588. https://doi.org/10.5194/amt-10-3575-2017
dc.relation.referencesDavies, L., Fradera, R., Riesch, H., & Lakeman-Fraser, P. (2016). Surveying the citizen science landscape: An exploration of the design, delivery and impact of citizen science through the lens of the Open Air Laboratories (OPAL) programme. BMC Ecology, 16(S1), 17. https://doi.org/10.1186/s12898-016-0066-z
dc.relation.referencesDC1700-PM PM2.5/PM10 AQM. (2022). http://www.dylosproducts.com/dcpmaqm.html
dc.relation.referencesde Nazelle, A., Fruin, S., Westerdahl, D., Martinez, D., Ripoll, A., Kubesch, N., & Nieuwenhuijsen, M. (2012). A travel mode comparison of commuters’ exposures to air pollutants in Barcelona. Atmospheric Environment, 59, 151–159. https://doi.org/10.1016/j.atmosenv.2012.05.013
dc.relation.referencesde Nazelle, A., Seto, E., Donaire-Gonzalez, D., Mendez, M., Matamala, J., Nieuwenhuijsen, M. J., & Jerrett, M. (2013). Improving estimates of air pollution exposure through ubiquitous sensing technologies. Environmental Pollution, 176, 92–99. https://doi.org/10.1016/j.envpol.2012.12.032
dc.relation.referencesDelaney, D. G., Sperling, C. D., Adams, C. S., & Leung, B. (2008). Marine invasive species: Validation of citizen science and implications for national monitoring networks. Biological Invasions, 10(1), 117–128. https://doi.org/10.1007/s10530-007-9114-0
dc.relation.referencesDeng, Q., Deng, L., Miao, Y., Guo, X., & Li, Y. (2019). Particle deposition in the human lung: Health implications of particulate matter from different sources. Environmental Research, 169, 237–245. https://doi.org/10.1016/j.envres.2018.11.014
dc.relation.referencesDeng, Q., Lu, C., Norbäck, D., Bornehag, C.-G., Zhang, Y., Liu, W., Yuan, H., & Sundell, J. (2015). Early life exposure to ambient air pollution and childhood asthma in China. Environmental Research, 143, 83–92. https://doi.org/10.1016/j.envres.2015.09.032
dc.relation.referencesDuvall, R., Clements, A., Hagler, G., Kamal, A., Vasu Kilaru, Goodman, L., Frederick, S., Barkjohn, K. J., VonWald, D., Greene, D., & Dye, T. (2021). Performance Testing Protocols, Metrics, and Target Values for Fine Particulate Matter Air Sensors: Use in Ambient, Outdoor, Fixed Site, Non-Regulatory Supplemental and Informational Monitoring Applications (EPA/600/R-20/280). U.S. EPA Office of Research and Development.
dc.relation.referencesDylos Corporation. (2022, October 10). Dylos Corporation. Air quality monitoring innovation. http://www.dylosproducts.com/
dc.relation.referencesEAFIT. (2020). Informe Anual de Calidad de Aire 2020. https://www.metropol.gov.co/ambiental/calidad-del-aire/informes_red_calidaddeaire/Informe-Anual-Aire-2020.pdf
dc.relation.referencesEAFIT. (2021). Informe Anual de la Calidad de Aire 2021. https://www.metropol.gov.co/ambiental/calidad-del-aire/informes_red_calidaddeaire/Informe-Anual-Aire-2021.pdf
dc.relation.referencesEitzel, M. V., Cappadonna, J. L., Santos-Lang, C., Duerr, R. E., Virapongse, A., West, S. E., Kyba, C. C. M., Bowser, A., Cooper, C. B., Sforzi, A., Metcalfe, A. N., Harris, E. S., Thiel, M., Haklay, M., Ponciano, L., Roche, J., Ceccaroni, L., Shilling, F. M., Dörler, D., … Jiang, Q. (2017). Citizen Science Terminology Matters: Exploring Key Terms. Citizen Science: Theory and Practice, 2(1), 1. https://doi.org/10.5334/cstp.96
dc.relation.referencesEl Colombiano. (2023, April 27). Encuesta en Medellín y el Aburrá revela que se camina más, se usa mucho la moto y el transporte público pierde protagonismo. www.elcolombiano.com. https://www.elcolombiano.com/antioquia/resultados-encuesta-origen-destino-area-metropolitana-2023-HD21226562
dc.relation.referencesEPA. (2014). Air Quality Index. A Guide to Air Quality and your Health. U.S. Environmental Protection Agency. Office of Air Quality Planning and Standards. https://www3.epa.gov/airnow/aqi_brochure_02_14.pdf
dc.relation.referencesERG - King’s College London. (2017). Air Pollution Guide. http://www.londonair.org.uk/LondonAir/guide/WhatIsLAQN.aspx
dc.relation.referencesEuropean Environment Agency. (2021). Air quality standards—European Environment Agency [Page]. https://www.eea.europa.eu/themes/air/air-quality-concentrations/air-quality-standards
dc.relation.referencesFanti, G., Borghi, F., Spinazzè, A., Rovelli, S., Campagnolo, D., Keller, M., Cattaneo, A., Cauda, E., & Cavallo, D. M. (2021). Features and Practicability of the Next-Generation Sensors and Monitors for Exposure Assessment to Airborne Pollutants: A Systematic Review. Sensors, 21(13), Article 13. https://doi.org/10.3390/s21134513
dc.relation.referencesFeenstra, B., Papapostolou, V., Hasheminassab, S., Zhang, H., Boghossian, B. D., Cocker, D., & Polidori, A. (2019). Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site. Atmospheric Environment, 216, 116946. https://doi.org/10.1016/j.atmosenv.2019.116946
dc.relation.referencesFerrer-Cid, P., Barcelo-Ordinas, J. M., Garcia-Vidal, J., Ripoll, A., & Viana, M. (2019). A Comparative Study of Calibration Methods for Low-Cost Ozone Sensors in IoT Platforms. IEEE Internet of Things Journal, 6(6), 9563–9571. https://doi.org/10.1109/JIOT.2019.2929594
dc.relation.referencesFerrer-Cid, P., Barcelo-Ordinas, J. M., Garcia-Vidal, J., Ripoll, A., & Viana, M. (2020). Multisensor Data Fusion Calibration in IoT Air Pollution Platforms. IEEE Internet of Things Journal, 7(4), 3124–3132. https://doi.org/10.1109/JIOT.2020.2965283
dc.relation.referencesFranco, J. F., Segura, J. F., & Mura, I. (2016). Air Pollution alongside Bike-Paths in Bogotá-Colombia. Frontiers in Environmental Science, 4. https://doi.org/10.3389/fenvs.2016.00077
dc.relation.referencesGao, M., Cao, J., & Seto, E. (2015). A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an, China. Environmental Pollution, 199, 56–65. https://doi.org/10.1016/j.envpol.2015.01.013
dc.relation.referencesGarcia, D., Parra, M. A., Gómez, D., Alzate, C. A., Herrera, L., & Hoyos Ortiz, C. D. (2018). Citizen Scientists of the Aburrá Valley: The results of an education, communication, and science strategy. 2018, ED54A-02.
dc.relation.referencesGoel, A., & Kumar, P. (2014). A review of fundamental drivers governing the emissions, dispersion and exposure to vehicle-emitted nanoparticles at signalised traffic intersections. Atmospheric Environment, 97, 316–331. https://doi.org/10.1016/j.atmosenv.2014.08.037
dc.relation.referencesGonzález, R. (2020, June 25). Arenas del Sahara afectan calidad del aire en el Valle de Aburrá. https://territoriossostenibles.com/cambio-climatico/arenas-del-sahara-afectan-calidad-del-aire-en-el-valle-de-aburra/
dc.relation.referencesGuevara, M., Tena, C., Soret, A., Serradell, K., Guzmán, D., Retama, A., Camacho, P., Jaimes-Palomera, M., & Mediavilla, A. (2017). An emission processing system for air quality modelling in the Mexico City metropolitan area: Evaluation and comparison of the MOBILE6.2-Mexico and MOVES-Mexico traffic emissions. Science of The Total Environment, 584–585, 882–900. https://doi.org/10.1016/j.scitotenv.2017.01.135
dc.relation.referencesGulia, S., Shiva Nagendra, S. M., Khare, M., & Khanna, I. (2015). Urban air quality management-A review. Atmospheric Pollution Research, 6(2), 286–304. https://doi.org/10.5094/APR.2015.033
dc.relation.referencesHabitatMap. (2023). Airbeam—User’s Guide. HabitatMap Is an Environmental Tech Org and Maker of AirBeam. https://www.habitatmap.org/airbeam/users-guide
dc.relation.referencesHagan, D. H., Isaacman-VanWertz, G., Franklin, J. P., Wallace, L. M. M., Kocar, B. D., Heald, C. L., & Kroll, J. H. (2018). Calibration and assessment of electrochemical air quality sensors by co-location with regulatory-grade instruments. Atmospheric Measurement Techniques, 11(1), 315–328. https://doi.org/10.5194/amt-11-315-2018
dc.relation.referencesVineis, P., Forastiere, F., Saldiva, P., Yorifuji, T., & Loomis, D. (2014). Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic Review and Meta-Analysis. Environmental Health Perspectives. https://doi.org/10.1289/ehp.1408092
dc.relation.referencesHan, J., & Kamber, M. (2012). Data mining: Concepts and techniques (3rd ed). Elsevier.
dc.relation.referencesHankey, S., & Marshall, J. D. (2015). On-bicycle exposure to particulate air pollution: Particle number, black carbon, PM 2.5 , and particle size. Atmospheric Environment, 122, 65–73. https://doi.org/10.1016/j.atmosenv.2015.09.025
dc.relation.referencesHastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Springer New York. https://doi.org/10.1007/978-0-387-84858-7
dc.relation.referencesHeimann, I., Bright, V. B., McLeod, M. W., Mead, M. I., Popoola, O. A. M., Stewart, G. B., & Jones, R. L. (2015). Source attribution of air pollution by spatial scale separation using high spatial density networks of low cost air quality sensors. Atmospheric Environment, 113, 10–19. https://doi.org/10.1016/j.atmosenv.2015.04.057
dc.relation.referencesHermelin, M. (2007, August). Valle de Aburrá: ¿Quo vadis? Gestión y Ambiente, 10(2), 7–16.
dc.relation.referencesHernández, M. A., Ramírez, O., Benavides, J. A., & Franco, J. F. (2021). Urban cycling and air quality: Characterizing cyclist exposure to particulate-related pollution. Urban Climate, 36. Scopus. https://doi.org/10.1016/j.uclim.2020.100767
dc.relation.referencesHernández-Paniagua, I. Y., Andraca-Ayala, G. L., Diego-Ayala, U., Ruiz-Suarez, L. G., Zavala-Reyes, J. C., Cid-Juárez, S., Torre-Bouscoulet, L., Gochicoa-Rangel, L., Rosas-Pérez, I., & Jazcilevich, A. (2018). Personal Exposure to PM2.5 in the Megacity of Mexico: A Multi-Mode Transport Study. Atmosphere, 9(2), Article 2. https://doi.org/10.3390/atmos9020057
dc.relation.referencesHerrera-Mejía, L., & Hoyos, C. D. (2019). Characterization of the atmospheric boundary layer in a narrow tropical valley using remote-sensing and radiosonde observations and the WRF model: The Aburrá Valley case-study. Quarterly Journal of the Royal Meteorological Society, 145(723), 2641–2665. https://doi.org/10.1002/qj.3583
dc.relation.referencesHolstius, D. M., Pillarisetti, A., Smith, K. R., & Seto, E. (2014). Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California. Atmospheric Measurement Techniques, 7(4), 1121–1131. https://doi.org/10.5194/amt-7-1121-2014
dc.relation.referencesHoyos, C. D., Herrera-Mejía, L., Roldán-Henao, N., & Isaza, A. (2020). Effects of fireworks on particulate matter concentration in a narrow valley: The case of the Medellín metropolitan area. Environmental Monitoring and Assessment, 192(1), 6. https://doi.org/10.1007/s10661-019-7838-9
dc.relation.referencesHu, K., Rahman, A., Bhrugubanda, H., & Sivaraman, V. (2017). HazeEst: Machine Learning Based Metropolitan Air Pollution Estimation From Fixed and Mobile Sensors. IEEE Sensors Journal, 17(11), 3517–3525. https://doi.org/10.1109/JSEN.2017.2690975
dc.relation.referencesHubbell, B. J., Kaufman, A., Rivers, L., Schulte, K., Hagler, G., Clougherty, J., Cascio, W., & Costa, D. (2018). Understanding social and behavioral drivers and impacts of air quality sensor use. Science of The Total Environment, 621, 886–894. https://doi.org/10.1016/j.scitotenv.2017.11.275
dc.relation.referencesInt Panis, L., de Geus, B., Vandenbulcke, G., Willems, H., Degraeuwe, B., Bleux, N., Mishra, V., Thomas, I., & Meeusen, R. (2010). Exposure to particulate matter in traffic: A comparison of cyclists and car passengers. Atmospheric Environment, 44(19), 2263–2270. https://doi.org/10.1016/j.atmosenv.2010.04.028
dc.relation.referencesJiang, Q., Kresin, F., Bregt, A. K., Kooistra, L., Pareschi, E., van Putten, E., Volten, H., & Wesseling, J. (2016). Citizen Sensing for Improved Urban Environmental Monitoring. Journal of Sensors, 2016, 1–9. https://doi.org/10.1155/2016/5656245
dc.relation.referencesJiao, W., Hagler, G., Williams, R., Sharpe, R., Brown, R., Garver, D., Judge, R., Caudill, M., Rickard, J., Davis, M., Weinstock, L., Zimmer-Dauphinee, S., & Buckley, K. (2016). Community Air Sensor Network (CAIRSENSE) project: Evaluation of low-costsensor performance in a suburban environment in the southeastern UnitedStates. Atmospheric Measurement Techniques, 9(11), 5281–5292. https://doi.org/10.5194/amt-9-5281-2016
dc.relation.referencesJovašević-Stojanović, M., Bartonova, A., Topalović, D., Lazović, I., Pokrić, B., & Ristovski, Z. (2015). On the use of small and cheaper sensors and devices for indicative citizen-based monitoring of respirable particulate matter. Environmental Pollution, 206, 696–704. https://doi.org/10.1016/j.envpol.2015.08.035
dc.relation.referencesKaneko, H. (2023). Interpretation of Machine Learning Models for Data Sets with Many Features Using Feature Importance. ACS Omega, 8(25), 23218–23225. https://doi.org/10.1021/acsomega.3c03722
dc.relation.referencesKang, Y., Aye, L., Ngo, T. D., & Zhou, J. (2022). Performance evaluation of low-cost air quality sensors: A review. Science of The Total Environment, 818, 151769. https://doi.org/10.1016/j.scitotenv.2021.151769
dc.relation.referencesKaragulian, F., Barbiere, M., Kotsev, A., Spinelle, L., Gerboles, M., Lagler, F., Redon, N., Crunaire, S., & Borowiak, A. (2019). Review of the Performance of Low-Cost Sensors for Air Quality Monitoring. Atmosphere, 10(9), 506. https://doi.org/10.3390/atmos10090506
dc.relation.referencesKaur, K., & Kelly, K. E. (2023). Laboratory evaluation of the Alphasense OPC-N3, and the Plantower PMS5003 and PMS6003 sensors. Journal of Aerosol Science, 171, 106181. https://doi.org/10.1016/j.jaerosci.2023.106181
dc.relation.referencesKelly, K. E., Whitaker, J., Petty, A., Widmer, C., Dybwad, A., Sleeth, D., Martin, R., & Butterfield, A. (2017). Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environmental Pollution, 221, 491–500. https://doi.org/10.1016/j.envpol.2016.12.039
dc.relation.referencesKim, K.-H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143. https://doi.org/10.1016/j.envint.2014.10.005
dc.relation.referencesKobernus, M., Berre, A. J., Gonzalez, M., Liu, H.-Y., Rombouts, R., & Bartanova, A. (2015). A Practical Approach to an Integrated Citizens’ Observatory: The CITI-SENSE Framework. https://ceur-ws.org/Vol-1322/paper_1.pdf
dc.relation.referencesKosmidis, E., Syropoulou, P., Tekes, S., Schneider, P., Spyromitros-Xioufis, E., Riga, M., Charitidis, P., Moumtzidou, A., Papadopoulos, S., Vrochidis, S., & others. (2018). HackAIR: Towards raising awareness about air quality in Europe by developing a collective online platform. ISPRS International Journal of Geo-Information, 7(5), 187.
dc.relation.referencesKumar, P., Hama, S., Nogueira, T., Abbass, R. A., Brand, V. S., Andrade, M. de F., Asfaw, A., Aziz, K. H., Cao, S.-J., El-Gendy, A., Islam, S., Jeba, F., Khare, M., Mamuya, S. H., Martinez, J., Meng, M.-R., Morawska, L., Muula, A. S., Shiva Nagendra, S. M., … Salam, A. (2021). In-car particulate matter exposure across ten global cities. Science of The Total Environment, 750, 141395. https://doi.org/10.1016/j.scitotenv.2020.141395
dc.relation.referencesKumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino, S., Bell, M., Norford, L., & Britter, R. (2015). The rise of low-cost sensing for managing air pollution in cities. Environment International, 75, 199–205. https://doi.org/10.1016/j.envint.2014.11.019
dc.relation.referencesKumar, P., Rivas, I., Singh, A. P., Ganesh, V. J., Ananya, M., & Frey, H. C. (2018). Dynamics of coarse and fine particle exposure in transport microenvironments. Npj Climate and Atmospheric Science, 1(1), 11. https://doi.org/10.1038/s41612-018-0023-y
dc.relation.referencesLandrigan, P. J., Fuller, R., Acosta, N. J. R., Adeyi, O., Arnold, R., Basu, N. (Nil), Baldé, A. B., Bertollini, R., Bose-O’Reilly, S., Boufford, J. I., Breysse, P. N., Chiles, T., Mahidol, C., Coll-Seck, A. M., Cropper, M. L., Fobil, J., Fuster, V., Greenstone, M., Haines, A., … Zhong, M. (2017). The Lancet Commission on pollution and health. The Lancet. https://doi.org/10.1016/S0140-6736(17)32345-0
dc.relation.referencesLevy Zamora, M., Xiong, F., Gentner, D., Kerkez, B., Kohrman-Glaser, J., & Koehler, K. (2019). Field and Laboratory Evaluations of the Low-Cost Plantower Particulate Matter Sensor. Environmental Science & Technology, 53(2), 838–849. https://doi.org/10.1021/acs.est.8b05174
dc.relation.referencesLi, S.-T., & Shue, L.-Y. (2004). Data mining to aid policy making in air pollution management. Expert Systems with Applications, 27(3), 331–340. https://doi.org/10.1016/j.eswa.2004.05.015
dc.relation.referencesLiu, H.-Y., Schneider, P., Haugen, R., & Vogt, M. (2019). Performance Assessment of a Low-Cost PM2.5 Sensor for a near Four-Month Period in Oslo, Norway.
dc.relation.referencesLoomis, D., Huang, W., & Chen, G. (2014). The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: Focus on China. Chinese Journal of Cancer, 33(4), 189–196. https://doi.org/10.5732/cjc.014.10028
dc.relation.referencesLuengo-Oroz, J., & Reis, S. (2019). Assessment of cyclists’ exposure to ultrafine particles along alternative commuting routes in Edinburgh. Atmospheric Pollution Research, 10(4), 1148–1158. https://doi.org/10.1016/j.apr.2019.01.020
dc.relation.referencesLundberg, S. M., & Lee, S.-I. (2017). Consistent feature attribution for tree ensembles. Proceedings of the 34 Th International Conference on Machine Learning.
dc.relation.referencesMa, Y., Richards, M., Ghanem, M., Guo, Y., & Hassard, J. (2008). Air Pollution Monitoring and Mining Based on Sensor Grid in London. Sensors, 8(6), 3601–3623. https://doi.org/10.3390/s8063601
dc.relation.referencesMaag, B., Zhou, Z., & Thiele, L. (2018). A Survey on Sensor Calibration in Air Pollution Monitoring Deployments. IEEE Internet of Things Journal, 5(6), 4857–4870. https://doi.org/10.1109/JIOT.2018.2853660
dc.relation.referencesMahajan, S., Chung, M.-K., Martinez, J., Olaya, Y., Helbing, D., & Chen, L.-J. (2022). Translating citizen-generated air quality data into evidence for shaping policy. Humanities and Social Sciences Communications, 9(1), Article 1. https://doi.org/10.1057/s41599-022-01135-2
dc.relation.referencesMahajan, S., & Kumar, P. (2020). Evaluation of low-cost sensors for quantitative personal exposure monitoring. Sustainable Cities and Society, 57, 102076. https://doi.org/10.1016/j.scs.2020.102076
dc.relation.referencesMahajan, S., Kumar, P., Pinto, J. A., Riccetti, A., Schaaf, K., Camprodon, G., Smári, V., Passani, A., & Forino, G. (2020). A citizen science approach for enhancing public understanding of air pollution. Sustainable Cities and Society, 52, 101800. https://doi.org/10.1016/j.scs.2019.101800
dc.relation.referencesMahajan, S., Luo, C.-H., Wu, D.-Y., & Chen, L.-J. (2021). From Do-It-Yourself (DIY) to Do-It-Together (DIT): Reflections on designing a citizen-driven air quality monitoring framework in Taiwan. Sustainable Cities and Society, 66, 102628. https://doi.org/10.1016/j.scs.2020.102628
dc.relation.referencesMakri, A., & Stilianakis, N. I. (2008). Vulnerability to air pollution health effects. International Journal of Hygiene and Environmental Health, 211(3–4), 326–336. https://doi.org/10.1016/j.ijheh.2007.06.005
dc.relation.referencesMannucci, P., & Franchini, M. (2017). Health Effects of Ambient Air Pollution in Developing Countries. International Journal of Environmental Research and Public Health, 14(9), 1048. https://doi.org/10.3390/ijerph14091048
dc.relation.referencesManojkumar, N., Monishraj, M., & Srimuruganandam, B. (2021). Commuter exposure concentrations and inhalation doses in traffic and residential routes of Vellore city, India. Atmospheric Pollution Research, 12(1), 219–230. https://doi.org/10.1016/j.apr.2020.09.002
dc.relation.referencesManojkumar, N., & Srimuruganandam, B. (2021). Investigation of on-road fine particulate matter exposure concentration and its inhalation dosage levels in an urban area. Building and Environment, 198, 107914. https://doi.org/10.1016/j.buildenv.2021.107914
dc.relation.referencesMarjovi, A., Arfire, A., & Martinoli, A. (2015). High Resolution Air Pollution Maps in Urban Environments Using Mobile Sensor Networks. 2015 International Conference on Distributed Computing in Sensor Systems, 11–20. https://doi.org/10.1109/DCOSS.2015.32
dc.relation.referencesMcKercher, G. R., Salmond, J. A., & Vanos, J. K. (2017). Characteristics and applications of small, portable gaseous air pollution monitors. Environmental Pollution, 223, 102–110. https://doi.org/10.1016/j.envpol.2016.12.045
dc.relation.referencesMead, M. I., Popoola, O. A. M., Stewart, G. B., Landshoff, P., Calleja, M., Hayes, M., Baldovi, J. J., McLeod, M. W., Hodgson, T. F., Dicks, J., Lewis, A., Cohen, J., Baron, R., Saffell, J. R., & Jones, R. L. (2013). The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. Atmospheric Environment, 70, 186–203. https://doi.org/10.1016/j.atmosenv.2012.11.060
dc.relation.referencesMedellín Cómo Vamos. (2021). Informe de de Calidad de Vida de Medellín, 2020. https://www.medellincomovamos.org/system/files/2021-09/docuprivados/Movilidad%20y%20espacio%20p%C3%BAblico%20Informe%20de%20Calidad%20de%20Vida%20de%20Medell%C3%ADn%2C%202020.pdf Resolución 2254 de 2017, (2017). https://www.minambiente.gov.co/documento-entidad/resolucion-2254-de-2017/
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2021). Contaminación Atmosférica. Ministerio de Ambiente y Desarrollo Sostenible. https://www.minambiente.gov.co/asuntos-ambientales-sectorial-y-urbana/contaminacion-atmosferica/
dc.relation.referencesMoore, E., Chatzidiakou, L., Kuku, M.-O., Jones, R. L., Smeeth, L., Beevers, S., Kelly, F. J., Barratt, B., & Quint, J. (2016). Global Associations between Air Pollutants and Chronic Obstructive Pulmonary Disease Hospitalizations: A Systematic Review. Annals of the American Thoracic Society, AnnalsATS.201601-064OC. https://doi.org/10.1513/AnnalsATS.201601-064OC
dc.relation.referencesMorawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., Bedini, A., Chai, F., Christensen, B., Dunbabin, M., Gao, J., Hagler, G. S. W., Jayaratne, R., Kumar, P., Lau, A. K. H., Louie, P. K. K., Mazaheri, M., Ning, Z., Motta, N., … Williams, R. (2018). Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environment International, 116, 286–299. https://doi.org/10.1016/j.envint.2018.04.018
dc.relation.referencesMukherjee, A., Stanton, L., Graham, A., & Roberts, P. (2017). Assessing the Utility of Low-Cost Particulate Matter Sensors over a 12-Week Period in the Cuyama Valley of California. Sensors, 17(8), 1805. https://doi.org/10.3390/s17081805
dc.relation.referencesNABEL. (2017). National Air Pollution Monitoring Network (NABEL). https://www.bafu.admin.ch/bafu/en/home/topics/air/state/data/national-air-pollution-monitoring-network--nabel-.html
dc.relation.referencesNoble, C. A., Vanderpool, R. W., Peters, T. M., McElroy, F. F., Gemmill, D. B., & Wiener, R. W. (2001). Federal Reference and Equivalent Methods for Measuring Fine Particulate Matter. Aerosol Science and Technology, 34(5), 457–464. https://doi.org/10.1080/02786820121582
dc.relation.referencesOCL. (2019). People-centered informed decision making for participatory democracy. https://opencitieslab.org/odd/home
dc.relation.referencesOpenSeneca. (2019). Open-Seneca in Nairobi. https://centreforglobalequality.org/news/open-seneca-in-nairobi/
dc.relation.referencesPapapostolou, V., Zhang, H., Feenstra, B. J., & Polidori, A. (2017). Development of an environmental chamber for evaluating the performance of low-cost air quality sensors under controlled conditions. Atmospheric Environment, 171, 82–90. https://doi.org/10.1016/j.atmosenv.2017.10.003
dc.relation.referencesPerera, F. (2017). Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. International Journal of Environmental Research and Public Health, 15(1), 16. https://doi.org/10.3390/ijerph15010016
dc.relation.referencesPope, C. A., & Dockery, D. W. (2006). Health Effects of Fine Particulate Air Pollution: Lines that Connect. Journal of the Air & Waste Management Association, 56(6), 709–742. https://doi.org/10.1080/10473289.2006.10464485
dc.relation.referencesPope III, C. A. (2002). Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. JAMA, 287(9), 1132. https://doi.org/10.1001/jama.287.9.1132
dc.relation.referencesPopoola, O. A. M., Carruthers, D., Lad, C., Bright, V. B., Mead, M. I., Stettler, M. E. J., Saffell, J. R., & Jones, R. L. (2018). Use of networks of low cost air quality sensors to quantify air quality in urban settings. Atmospheric Environment, 194, 58–70. https://doi.org/10.1016/j.atmosenv.2018.09.030
dc.relation.referencesPurpleAir. (2023). PurpleAir | Real-time Air Quality Monitoring. PurpleAir, Inc. https://www2.purpleair.com/
dc.relation.referencesRamírez, O., Mura, I., & Franco, J. F. (2017). How Do People Understand Urban Air Pollution? Exploring Citizens’ Perception on Air Quality, Its Causes and Impacts in Colombian Cities. Open Journal of Air Pollution, 6(1), Article 1. https://doi.org/10.4236/ojap.2017.61001
dc.relation.referencesRamos, C. A., Silva, J. R., Faria, T., Wolterbeek, T. H., & Almeida, S. M. (2017). Exposure assessment of a cyclist to particles and chemical elements. Environmental Science and Pollution Research, 24(13), 11879–11889. https://doi.org/10.1007/s11356-016-6365-2
dc.relation.referencesRamos, C. A., Wolterbeek, H. T., & Almeida, S. M. (2016). Air pollutant exposure and inhaled dose during urban commuting: A comparison between cycling and motorized modes. Air Quality, Atmosphere & Health, 9(8), 867–879. https://doi.org/10.1007/s11869-015-0389-5
dc.relation.referencesRendón, A. M., Salazar, J. F., Palacio, C. A., & Wirth, V. (2015). Temperature Inversion Breakup with Impacts on Air Quality in Urban Valleys Influenced by Topographic Shading. Journal of Applied Meteorology and Climatology, 54(2), 302–321. https://doi.org/10.1175/JAMC-D-14-0111.1
dc.relation.referencesRendón, A. M., Salazar, J. F., Palacio, C. A., Wirth, V., & Brötz, B. (2014). Effects of Urbanization on the Temperature Inversion Breakup in a Mountain Valley with Implications for Air Quality. Journal of Applied Meteorology and Climatology, 53(4), 840–858.
dc.relation.referencesRiesch, H., & Potter, C. (2014). Citizen science as seen by scientists: Methodological, epistemological and ethical dimensions. Public Understanding of Science, 23(1), 107–120. https://doi.org/10.1177/0963662513497324
dc.relation.referencesRiojas-Rodríguez, H., Texcalac-Sangrador, J. L., & Moreno-Banda, G. L. (2016). Air pollution management and control in Latin America and the Caribbean: Implications for climate change. Rev Panam Salud Publica, 10.
dc.relation.referencesRoldán Henao, N., Isaza, A., Herrera, L., & Hoyos Ortiz, C. D. (2018). Aburrá Valley (Colombia) spatio-temporal air quality assessment from a monitoring network using low-cost sensors and citizen science. 2018, A12E-08.
dc.relation.referencesRoldán-Henao, N., Hoyos, C. D., Herrera-Mejía, L., & Isaza, A. (2020). An Investigation of the Precipitation Net Effect on the Particulate Matter Concentration in a Narrow Valley: Role of Lower-Troposphere Stability. Journal of Applied Meteorology and Climatology, 59(3), 401–426. https://doi.org/10.1175/JAMC-D-18-0313.1
dc.relation.referencesRoy, H. E., & Brown, P. M. J. (2015). Ten years of invasion: Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) in Britain. Ecological Entomology, 40(4), 336–348. Scopus. https://doi.org/10.1111/een.12203
dc.relation.referencesSamad, A., & Vogt, U. (2021). Mobile air quality measurements using bicycle to obtain spatial distribution and high temporal resolution in and around the city center of Stuttgart. Atmospheric Environment, 244, 117915. https://doi.org/10.1016/j.atmosenv.2020.117915
dc.relation.referencesSayahi, T., Kaufman, D., Becnel, T., Kaur, K., Butterfield, A. E., Collingwood, S., Zhang, Y., Gaillardon, P.-E., & Kelly, K. E. (2019). Development of a calibration chamber to evaluate the performance of low-cost particulate matter sensors. Environmental Pollution, 255, 113131. https://doi.org/10.1016/j.envpol.2019.113131
dc.relation.referencesSchaefer, T., Kieslinger, B., & Fabian, C. M. (2020). Citizen-Based Air Quality Monitoring: The Impact on Individual Citizen Scientists and How to Leverage the Benefits to Affect Whole Regions. Citizen Science: Theory and Practice, 5(1), 6. https://doi.org/10.5334/cstp.245
dc.relation.referencesScience, R. L. (2020). Transforming air quality monitoring through a microscopic lens. https://shaktifoundation.in/wp-content/uploads/2020/01/Impacts_Respirer.pdf
dc.relation.referencesSemple, S., Sweeting, H., Demou, E., Logan, G., O’Donnell, R., Hunt, K., & on behalf of the Tobacco in Prisons (TIPs) Research Team. (2017). Characterising the Exposure of Prison Staff to Second-Hand Tobacco Smoke. Annals of Work Exposures and Health, 61(7), 809–821. https://doi.org/10.1093/annweh/wxx058
dc.relation.referencesSensirion. (2021). SPS30—PM2.5 Sensor for HVAC and air quality applications SPS30. https://sensirion.com/products/catalog/SPS30/
dc.relation.referencesSensors.Africa. (2021). Citizen science initiative that uses sensors to monitor air, water and sound pollution. https://sensors.africa/
dc.relation.referencesShah, A. S., Langrish, J. P., Nair, H., McAllister, D. A., Hunter, A. L., Donaldson, K., Newby, D. E., & Mills, N. L. (2013). Global association of air pollution and heart failure: A systematic review and meta-analysis. The Lancet, 382(9897), 1039–1048. https://doi.org/10.1016/S0140-6736(13)60898-3
dc.relation.referencesSi, M., Xiong, Y., Du, S., & Du, K. (2020). Evaluation and calibration of a low-cost particle sensor in ambient conditions using machine-learning methods. Atmospheric Measurement Techniques, 13(4), 1693–1707. https://doi.org/10.5194/amt-13-1693-2020
dc.relation.referencesSiata. (2017). Monitoreo de la calidad del aire. https://siata.gov.co/sitio_web/index.php/calidad_aire
dc.relation.referencesSpinelle, L., Gerboles, M., Kok, G., Persijn, S., & Sauerwald, T. (2017). Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds. Sensors, 17(7), 1520. https://doi.org/10.3390/s17071520
dc.relation.referencesSun, J., Zhang, N., Yan, X., Wang, M., & Wang, J. (2020). The effect of ambient fine particulate matter (PM2.5) on respiratory diseases in China: A systematic review and meta-analysis. Stochastic Environmental Research and Risk Assessment, 34(3–4), 593–610. https://doi.org/10.1007/s00477-020-01786-0
dc.relation.referencesSupasri, T., & Sampattagul, S. (2019). Haze Problem in the North of Thailand and DustBoy PM 2.5 Monitoring Systems.
dc.relation.referencesTagle, M., Rojas, F., Reyes, F., Vásquez, Y., Hallgren, F., Lindén, J., Kolev, D., Watne, Å. K., & Oyola, P. (2020). Field performance of a low-cost sensor in the monitoring of particulate matter in Santiago, Chile. Environmental Monitoring and Assessment, 192(3), 171. https://doi.org/10.1007/s10661-020-8118-4
dc.relation.referencesThiel, M., Penna-Díaz, M. A., Luna-Jorquera, G., Salas, S., Sellanes, J., & Stotz, W. (2014). Citizen scientists and marine research: Volunteer participants, their contributions, and projection for the future. Oceanography and Marine Biology: An Annual Review, 52, 257–314. Scopus. https://doi.org/10.1201/b17143
dc.relation.referencesUPB & AMVA. (2018). Actualización inventario de emisiones atmosféricas del Valle de Aburrá, 2016. Informe final. https://www.metropol.gov.co/ambiental/calidad-del-aire/Documents/Inventario-de-emisiones/Inventario_FuentesM%C3%B3viles2016.pdf
dc.relation.referencesU.S. Environmental Protection Agency (EPA). (2009). Metabolically Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates (EPA/600/R-06/129F). National Center for Environmental Assessment. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=202543
dc.relation.referencesUS EPA. (2016a). List of Designated Reference and Equivalent Methods. https://www.epa.gov/system/files/documents/2021-12/designated-referene-and-equivalent-methods-12152021.pdf
dc.relation.referencesUS EPA. (2016b). Technical Assistance Document for the Reporting of Daily Air Quality | AirNow.gov. https://www.airnow.gov/publications/air-quality-index/technical-assistance-document-for-reporting-the-daily-aqi/
dc.relation.referencesUS EPA. (2021). The National Ambient Air Quality Standards for Particulate Matter. https://www.epa.gov/sites/default/files/2020-04/documents/fact_sheet_pm_naaqs_proposal.pdf
dc.relation.referencesUS EPA, O. (2018, January 23). Instruction Guide and Macro Analysis Tool: Evaluating Air Sensors by Collocation with Federal Reference Monitors [Data and Tools]. https://www.epa.gov/air-research/instruction-guide-and-macro-analysis-tool-evaluating-air-sensors-collocation-federal
dc.relation.referencesValencia, J.-C., & Fonseca, O. (2019). AIR POLLUTION, CITIZEN DATA COLLECTIVES AND COMMUNICATION AGENDA SETTING IN COLOMBIA. 33–43. https://doi.org/10.2495/AIR190041
dc.relation.referencesVaraden, D., Leidland, E., Lim, S., & Barratt, B. (2021). “I am an air quality scientist”– Using citizen science to characterise school children’s exposure to air pollution. Environmental Research, 201, 111536. https://doi.org/10.1016/j.envres.2021.111536
dc.relation.referencesvon Gönner, J., Bowler, D. E., Gröning, J., Klauer, A.-K., Liess, M., Neuer, L., & Bonn, A. (2023). Citizen science for assessing pesticide impacts in agricultural streams. Science of the Total Environment, 857. Scopus. https://doi.org/10.1016/j.scitotenv.2022.159607
dc.relation.referencesWang, W.-C. V., Lung, S.-C. C., & Liu, C.-H. (2020). Application of Machine Learning for the in-Field Correction of a PM2.5 Low-Cost Sensor Network. Sensors, 20(17), 5002. https://doi.org/10.3390/s20175002
dc.relation.referencesWang, W.-C. V., Lung, S.-C. C., Liu, C.-H., Wen, T.-Y. J., Hu, S.-C., & Chen, L.-J. (2021). Evaluation and Application of a Novel Low-Cost Wearable Sensing Device in Assessing Real-Time PM2.5 Exposure in Major Asian Transportation Modes. Atmosphere, 12(2), Article 2. https://doi.org/10.3390/atmos12020270
dc.relation.referencesWang, Y., Li, J., Jing, H., Zhang, Q., Jiang, J., & Biswas, P. (2015). Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement. Aerosol Science and Technology, 49(11), 1063–1077. https://doi.org/10.1080/02786826.2015.1100710
dc.relation.referencesWesseling, J., de Ruiter, H., Blokhuis, C., Drukker, D., Weijers, E., Volten, H., Vonk, J., Gast, L., Voogt, M., Zandveld, P., van Ratingen, S., & Tielemans, E. (2019). Development and Implementation of a Platform for Public Information on Air Quality, Sensor Measurements, and Citizen Science. Atmosphere, 10(8), Article 8. https://doi.org/10.3390/atmos10080445
dc.relation.referencesWesseling, J., Hendricx, W., de Ruiter, H., van Ratingen, S., Drukker, D., Huitema, M., Schouwenaar, C., Janssen, G., van Aken, S., Smeenk, J., Hof, A., & Tielemans, E. (2021). Assessment of PM2.5 Exposure during Cycle Trips in The Netherlands Using Low-Cost Sensors. International Journal of Environmental Research and Public Health, 18(11), 6007. https://doi.org/10.3390/ijerph18116007
dc.relation.referencesWilliams, R., Kilaru, V., Snyder, E., Kaufman, A., Dye, T., Rutter, A., Russell, A., & Hafner, H. (2014). Air Sensor Guidebook (EPA/600/R-14/159). United States Environmental Protection Agency. file:///C:/Users/SVS13115FLS/Downloads/GUIDEBOOK%20-%20FINAL.PDF
dc.relation.referencesWorld Health Organization. (2006). WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. Summary of risk assessment (Occupational and Environmental Health Team). World Health Organization. http://apps.who.int/iris/bitstream/10665/69477/1/WHO_SDE_PHE_OEH_06.02_eng.pdf
dc.relation.referencesWorld Health Organization. (2021). WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. https://apps.who.int/iris/handle/10665/345329
dc.relation.referencesXing, Y. F., Xu, Y. H., Shi, M. H., & Lian, Y. X. (2016). The impact of PM2.5 on the human respiratory system. Journal of Thoracic Disease, 8(1). https://doi.org/10.3978/j.issn.2072-1439.2016.01.19
dc.relation.referencesYatkin, S., Gerboles, M., Belis, C. A., Karagulian, F., Lagler, F., Barbiere, M., & Borowiak, A. (2020). Representativeness of an air quality monitoring station for PM2.5 and source apportionment over a small urban domain. Atmospheric Pollution Research, 11(2), 225–233. https://doi.org/10.1016/j.apr.2019.10.004
dc.relation.referencesZamora, M. L., Rice, J., & Koehler, K. (2020). One year evaluation of three low-cost PM2.5 monitors. Atmospheric Environment, 235, 117615. https://doi.org/10.1016/j.atmosenv.2020.117615
dc.relation.referencesZikova, N., Masiol, M., Chalupa, D., Rich, D., Ferro, A., & Hopke, P. (2017). Estimating Hourly Concentrations of PM2.5 across a Metropolitan Area Using Low-Cost Particle Monitors. Sensors, 17(8), 1922. https://doi.org/10.3390/s17081922
dc.relation.referencesZimmerman, N., Presto, A. A., Kumar, S. P. N., Gu, J., Hauryliuk, A., Robinson, E. S., Robinson, A. L., & R. Subramanian. (2018). A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring. Atmospheric Measurement Techniques, 11(1), 291–313. https://doi.org/10.5194/amt-11-291-2018
dc.relation.referencesMalings, C., Tanzer, R., Hauryliuk, A., Kumar, S. P. N., Zimmerman, N., Kara, L. B., Presto, A. A., & Subramanian, R. (2019). Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring. Atmospheric Measurement Techniques, 12(2), 903–920. https://doi.org/10.5194/amt-12-903-2019
dc.relation.referencesSnyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W., Hagler, G. S. W., Shelow, D., Hindin, D. A., Kilaru, V. J., & Preuss, P. W. (2013). The Changing Paradigm of Air Pollution Monitoring. Environmental Science & Technology, 47(20), 11369–11377. https://doi.org/10.1021/es4022602
dc.relation.referencesSpinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., & Bonavitacola, F. (2015). Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide. Sensors and Actuators B: Chemical, 215, 249–257. https://doi.org/10.1016/j.snb.2015.03.031
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembContaminación del aire
dc.subject.lembMinería de datos
dc.subject.proposalContaminación de aire
dc.subject.proposalAprendizaje de máquinas
dc.subject.proposalSensores de bajo costo
dc.subject.proposalCalibración de sensores
dc.subject.proposalAir pollution
dc.subject.proposalParticulate matter
dc.subject.proposalLow-cost sensors
dc.subject.proposalSensor calibration
dc.subject.proposalMachine learning
dc.subject.proposalData mining
dc.title.translatedMonitoreo de la contaminación del aire urbano utilizando dispositivos sensores de bajo costo
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameColciencias
dcterms.audience.professionaldevelopmentEstudiantes
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informática
dc.subject.wikidataSensores


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit