Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorNiño Vásquez, Luis Fernando
dc.contributor.authorEyrolle-Cellier, Samuel
dc.date.accessioned2024-02-27T19:13:28Z
dc.date.available2024-02-27T19:13:28Z
dc.date.issued2023-11-03
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85731
dc.descriptionilustraciones, diagramas
dc.description.abstractEl cáncer de mama y el cáncer de endometrio son enfermedades complejas que presentan mucha heterogeneidad a nivel molecular e histológico. Ciertos pacientes de estos dos tipos de cáncer comparten tanto mecanismos moleculares y celulares, como factores causales, como lo es el hiperestrogenismo. Este proyecto de investigación buscó identificar biomarcadores tumorales compartidos entre ambas enfermedades. 565 pacientes con cáncer de mama y 348 con cáncer de endometrio de la plataforma The Cancer Genome Atlas fueron seleccionados según sus características histológicas, hormonales e inmunológicas. Sus datos ómicos fueron analizados de manera separada e integrada mediante el uso del algoritmo de aprendizaje multi-vista Deep Generalized Canonical Correlation Analysis y del método de reducción de dimensionalidad Uniform Manifold Approximation and Projection. Se extrajeron biomarcadores de cada grupo (cluster) a través del cálculo del puntaje de información mutua entre las variables iniciales y las variables sintéticas UMAP1 y UMAP2. El análisis de los biomarcadores reveló que varios de estos genes tienen un rol en la proliferación celular, la apoptosis y la angiogénesis. Así mismo, el análisis reveló que la ausencia de metilación en las regiones promotoras de CLTC, importante en la organización del huso mitótico, y SON, involucrado en el empalme del ARN, es una característica compartida entre muchos pacientes de la cohorte. Por otro lado, FBXO11 y PTPN11 se caracterizan por niveles altos de expresión génica en ambos tipos de cáncer. FBXO11 codifica para una ubiquitina ligasa necesaria para la degradación proteica; mientras que PTPN11 codifica para una tirosina fosfatasa que actúa en la transducción de señales mediante una regulación positiva de la vía de señalización RAS/RAF/MAPK. En conclusión, la estrategia de integración multi-ómica permitió descubrir biomarcadores que no aparecen en el análisis de datos ómicos de un solo tipo. Se inscribe como una prueba de concepto de integración de distintos tipos de datos provenientes de diferentes contextos patológicos en el campo de la oncología. (Texto tomado de la fuente).
dc.description.abstractBreast cancer and endometrial cancer are complex diseases that show a high degree of molecular and histological heterogeneity. Certain patients with these two types of cancer share both molecular and cellular mechanisms, as well as causal factors such as hyperestrogenism. This research project aimed to identify shared tumor biomarkers between both diseases. 565 breast cancer patients and 348 endometrial cancer patients from The Cancer Genome Atlas platform were selected based on their histological, hormonal, and immunological characteristics. Their omics data was analyzed separately and integratively using the multi-view learning algorithm Deep Generalized Canonical Correlation Analysis and the dimensionality reduction method Uniform Manifold Approximation and Projection. Biomarkers were extracted from each cluster by calculating the mutual information score between the initial variables and the UMAP1 and UMAP2 synthetic variables. The analysis of the biomarkers revealed that several of these genes play a role in cell proliferation, apoptosis, and angiogenesis. Additionally, the analysis showed that the absence of methylation in the promoter regions of CLTC, which is important in the organization of the mitotic spindle, and SON, involved in RNA splicing, is a shared characteristic among many patients in the cohort. On the other hand, FBXO11 and PTPN11 are characterized by high levels of gene expression in both types of cancer. FBXO11 encodes for a ubiquitin ligase necessary for protein degradation, while PTPN11 encodes for a tyrosine phosphatase that acts in signal transduction by positively regulating the RAS/RAF/MAPK signaling pathway. In conclusion, the multi-omic integration strategy allowed the discovery of biomarkers that have not been identified in the omics data analysis of a single type. It serves as a proof of concept for integrating different types of data from different pathological contexts in the field of oncology.
dc.format.extent145 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
dc.titleModelo de aprendizaje automático de integración de datos genómicos, epigenómicos, transcriptómicos y clínicos provenientes de estudios de cáncer de endometrio y de cáncer de mama
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Bioinformática
dc.contributor.researchgrouplaboratorio de Investigación en Sistemas Inteligentes Lisi
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Bioinformática
dc.description.methodsLa primera fase del proyecto corresponde a la selección de los datos y está asociada al primer objetivo específico de selección de los conjuntos de datos genómicos, epigenómicos, transcriptómicos y clínicos de pacientes con cáncer de endometrio y con cáncer de mama susceptibles de compartir tanto mecanismos moleculares, celulares e inmunológicos como factores causales en la plataforma TCGA. Esta fase tiene tres actividades: • Selección preliminar de los pacientes de interés mediante la explotación de los datos clínicos: se busca seleccionar los pacientes mujeres con cáncer ductal o lobulillar infiltrante positivos para los receptores de estrógenos y progesterona (cáncer de mama) y los pacientes con adenocarcinoma endometrioide (cáncer de endometrio). • Selección de los pacientes con un perfil hormonal de interés mediante la explotación de los datos transcriptómicos: primero, se determina la distribución del nivel de expresión de los receptores de estrógenos y progesterona en los pacientes; luego, se seleccionan los pacientes cuyo tumor tiene una expresión de ambos receptores de hormonas superior al umbral de positividad establecido. • Selección de los pacientes con una composición tumoral similar a nivel inmunológico mediante el uso de la herramienta Cibersort: se caracteriza el microentorno tumoral y el fenómeno de infiltración inmune en los pacientes. El entregable de esta fase es un listado de los pacientes seleccionados. La segunda fase del proyecto es el análisis exploratorio de los datos y busca cumplir con el segundo objetivo específico: determinar el tipo de modelo de aprendizaje automático más adecuado recurriendo a una exploración de los datos seleccionados. Esta fase también está divida en tres actividades: • Análisis de datos ómicos de un solo tipo mediante el uso de algoritmos existentes: se busca agrupar los pacientes seleccionados según su perfil genómico, epigenómico, o transcriptómico e identificar los patrones moleculares que rigen las agrupaciones obtenidas. • Análisis correlacional entre los distintos tipos de datos ómicos: se busca establecer una relación matemática entre el número de copias de los genes o la metilación del ADN y la expresión génica. • Análisis exploratorio de los datos clínicos: se identifican las variables clínicas completas para el conjunto de pacientes y se busca caracterizar los grupos de pacientes obtenidos durante el análisis de datos ómicos de un solo tipo por sus características clínicas. Los entregables de esta fase son: un reporte del análisis exploratorio para cada tipo de datos y tres listados de biomarcadores resultantes de los análisis de datos ómicos de un solo tipo. La tercera fase del proyecto es la integración de los datos. Es la fase crítica del proyecto y está asociada al tercer objetivo específico: desarrollar un modelo de aprendizaje automático de integración de los datos ómicos seleccionados. Esta fase contiene tres actividades: • Recolección y preparación de los datos: primero, se establece un consenso sobre el nombre de las características (genes, regiones metiladas y transcritos) para poder relacionarlas posteriormente; luego, se da el formato adecuado a los datos para la implementación del modelo de aprendizaje automático. • Desarrollo del modelo de aprendizaje automático: es un proceso cíclico, compuesto por tres etapas recurrentes, destinado a optimizar el modelo. La primera etapa es el entrenamiento del modelo. La segunda etapa corresponde a la prueba del modelo de aprendizaje automático, se evalúa el desempeño del modelo a través del cálculo de las métricas adecuadas. En la tercera etapa se lleva a cabo el ajuste del modelo, es decir, la optimización de los hiperparámetros del modelo (configuraciones utilizadas durante la etapa de entrenamiento). • Identificación de los biomarcadores compartidos mediante el uso del modelo optimizado y análisis clínico de los grupos de pacientes obtenidos en el proceso. Los entregables de la tercera fase son: un reporte de evaluación del modelo desarrollado y un listado de biomarcadores resultantes del uso del modelo. La cuarta fase de este estudio es la caracterización de los resultados obtenidos. Busca cumplir con el cuarto objetivo específico: caracterizar los biomarcadores compartidos identificados mediante el uso del método Gene Ontology. Esta fase admite dos actividades: • Caracterización biológica de los biomarcadores resultantes de los análisis de datos ómicos de un solo tipo y de los biomarcadores resultantes del uso del modelo de aprendizaje automático de integración de datos: se buscan los términos ontológicos (de la categoría proceso biológico) asociados con los biomarcadores identificados mediante el uso del método Gene Ontology. • Comparación de los biomarcadores identificados con las dos metodologías (análisis de datos ómicos de un solo tipo y uso del modelo): se profundiza el análisis de los biomarcadores encontrados tanto en el análisis de datos ómicos de un solo tipo como con el uso del modelo. El entregable de esta última fase es un reporte de la caracterización biológica de los biomarcadores identificados previamente (en la segunda y la tercera fase).
dc.description.researchareaTecnologías computacionales en bioinformática
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedBireme
dc.relation.referencesAbeel, T., Helleputte, T., Van de Peer, Y., Dupont, P., & Saeys, Y. (2010). Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics, 26(3), 392–398. https://doi.org/10.1093/bioinformatics/btp630
dc.relation.referencesAceto, N., Sausgruber, N., Brinkhaus, H., Gaidatzis, D., Martiny-Baron, G., Mazzarol, G., Confalonieri, S., Quarto, M., Hu, G., Balwierz, P. J., Pachkov, M., Elledge, S. J., Van Nimwegen, E., Stadler, M. B., & Bentires-Alj, M. (2012). Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop. Nature Medicine, 18(4), 529–537. https://doi.org/10.1038/nm.2645
dc.relation.referencesAndrew, G., Arora, R., Bilmes, J., & Livescu, K. (2013). Deep Canonical Correlation Analysis. In S. Dasgupta & D. McAllester (Eds.), Proceedings of the 30th International Conference on Machine Learning (Vol. 28, Issue 3, pp. 1247–1255). PMLR. https://proceedings.mlr.press/v28/andrew13.html
dc.relation.referencesBagger, S. O., Hopkinson, B. M., Pandey, D. P., Bak, M., Brydholm, A. V., Villadsen, R., Helin, K., Rønnov-Jessen, L., Petersen, O. W., & Kim, J. (2018). Aggressiveness of non- EMT breast cancer cells relies on FBXO11 activity. Molecular Cancer, 17(1), 171. https://doi.org/10.1186/s12943-018-0918-6
dc.relation.referencesBaltimore, D. (1970). Viral RNA-dependent DNA Polymerase: RNA-dependent DNA Polymerase in Virions of RNA Tumour Viruses. Nature, 226(5252), 1209–1211. https://doi.org/10.1038/2261209a0
dc.relation.referencesBanno, K., Kisu, I., Yanokura, M., Tsuji, K., Masuda, K., Ueki, A., Kobayashi, Y., Yamagami, W., Nomura, H., Tominaga, E., Susumu, N., & Aoki, D. (2012). Biomarkers in endometrial cancer: Possible clinical applications (Review). Oncology Letters, 3(6), 1175–1180. https://doi.org/10.3892/ol.2012.654
dc.relation.referencesBenton, A., Khayrallah, H., Gujral, B., Reisinger, D. A., Zhang, S., & Arora, R. (2019). Deep Generalized Canonical Correlation Analysis. Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), 1–6. https://doi.org/10.18653/v1/W19-4301
dc.relation.referencesBerger, A. C., Korkut, A., Kanchi, R. S., Hegde, A. M., Lenoir, W., Liu, W., Liu, Y., Fan, H., Shen, H., Ravikumar, V., Rao, A., Schultz, A., Li, X., Sumazin, P., Williams, C., Mestdagh, P., Gunaratne, P. H., Yau, C., Bowlby, R., ... Mariamidze, A. (2018). A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. Cancer Cell, 33(4), 690- 705.e9. https://doi.org/10.1016/j.ccell.2018.03.014
dc.relation.referencesBian, J., Xu, Y., Wu, F., Pan, Q., & Liu, Y. (2020). Identification of a five‐gene signature for predicting the progression and prognosis of stage I endometrial carcinoma. Oncology Letters, 20(3), 2396–2410. https://doi.org/10.3892/ol.2020.11798
dc.relation.referencesBray, F., Ferlay, J., Laversanne, M., Brewster, D. H., Gombe Mbalawa, C., Kohler, B., Piñeros, M., Steliarova-Foucher, E., Swaminathan, R., Antoni, S., Soerjomataram, I., & Forman, D. (2015). Cancer Incidence in Five Continents: Inclusion criteria, highlights from Volume X and the global status of cancer registration: Cancer Incidence in Five Continents Volume X. International Journal of Cancer, 137(9), 2060–2071. https://doi.org/10.1002/ijc.29670
dc.relation.referencesBreast Cancer Overview: Causes, Symptoms, Signs, Stages & Types. (n.d.). Cleveland Clinic. Retrieved March 25, 2022, from https://my.clevelandclinic.org/health/diseases/3986- breast-cancer
dc.relation.referencesBrewer, H. R., Jones, M. E., Schoemaker, M. J., Ashworth, A., & Swerdlow, A. J. (2017). Family history and risk of breast cancer: An analysis accounting for family structure. Breast Cancer Research and Treatment, 165(1), 193–200. https://doi.org/10.1007/s10549-017- 4325-2
dc.relation.referencesCancer of the Endometrium—Cancer Stat Facts. (n.d.). SEER. Retrieved March 25, 2022, from https://seer.cancer.gov/statfacts/html/corp.html
dc.relation.referencesCarmeliet, P. (2005). VEGF as a Key Mediator of Angiogenesis in Cancer. Oncology, 69(Suppl. 3), 4–10. https://doi.org/10.1159/000088478
dc.relation.referencesChatterjee, S., Gupta, D., Caputo, T. A., & Holcomb, K. (2016). Disparities in Gynecological Malignancies. Frontiers in Oncology, 6. https://doi.org/10.3389/fonc.2016.00036
dc.relation.referencesChen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M., & Alizadeh, A. A. (2018). Profiling Tumor Infiltrating Immune Cells with CIBERSORT. In L. von Stechow (Ed.), Cancer Systems Biology (Vol. 1711, pp. 243–259). Springer New York. https://doi.org/10.1007/978- 1-4939-7493-1_12
dc.relation.referencesColombo, N., Creutzberg, C., Amant, F., Bosse, T., González-Martín, A., Ledermann, J., Marth, C., Nout, R., Querleu, D., Mirza, M. R., Sessa, C., Abal, M., Altundag, O., Amant, F., van Leeuwenhoek, A., Banerjee, S., Bosse, T., Casado, A., de Agustín, L. C., ... Zeimet, A. G. (2016). ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: Diagnosis, treatment and follow-up. Annals of Oncology, 27(1), 16–41. https://doi.org/10.1093/annonc/mdv484
dc.relation.referencesCrick, F. (1970). Central Dogma of Molecular Biology. Nature, 227(5258), 561–563. https://doi.org/10.1038/227561a0
dc.relation.referencesDanaei, G., Vander Hoorn, S., Lopez, A. D., Murray, C. J., & Ezzati, M. (2005). Causes of cancer in the world: Comparative risk assessment of nine behavioural and environmental risk factors. The Lancet, 366(9499), 1784–1793. https://doi.org/10.1016/S0140- 6736(05)67725-2
dc.relation.referencesDas, T., Andrieux, G., Ahmed, M., & Chakraborty, S. (2020). Integration of Online Omics- Data Resources for Cancer Research. Frontiers in Genetics, 11, 578345–578345. https://doi.org/10.3389/fgene.2020.578345
dc.relation.referencesDuan, S., Cermak, L., Pagan, J. K., Rossi, M., Martinengo, C., Di Celle, P. F., Chapuy, B., Shipp, M., Chiarle, R., & Pagano, M. (2012). FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature, 481(7379), 90–93. https://doi.org/10.1038/nature10688
dc.relation.referencesEisenberg, E., & Levanon, E. Y. (2013). Human housekeeping genes, revisited. Trends in Genetics, 29(10), 569–574. https://doi.org/10.1016/j.tig.2013.05.010
dc.relation.referencesFemale Breast Cancer—Cancer Stat Facts. (n.d.). Retrieved March 25, 2022, from https://seer.cancer.gov/statfacts/html/breast.html
dc.relation.referencesGao, Y., Lin, P., Lydon, J. P., & Li, Q. (2017). Conditional abrogation of transforming growth factor-β receptor 1 in PTEN-inactivated endometrium promotes endometrial cancer progression in mice: TGFBR1 in endometrial cancer progression. The Journal of Pathology, 243(1), 89–99. https://doi.org/10.1002/path.4930
dc.relation.referencesGarcía Ayala, E., Cárdenas Mastrascusa, L., Sandoval Martínez, D., & Mayorga Anaya, H. (2010). HIPERPLASIA ENDOMETRIAL: ANÁLISIS DE SERIE DE CASOS DIAGNOSTICADOS EN BIOPSIA ENDOMETRIAL. Revista Chilena de Obstetricia y Ginecología, 75(3). https://doi.org/10.4067/S0717-75262010000300002
dc.relation.referencesGreenhalf, W., Lee, J., & Chaudhuri, B. (1999). A selection system for human apoptosis inhibitors using yeast. Yeast (Chichester, England), 15(13), 1307–1321. https://doi.org/10.1002/(SICI)1097-0061(19990930)15:13<1307::AID-YEA455>3.0.CO;2-3
dc.relation.referencesGTEx Consortium. (2017). Genetic effects on gene expression across human tissues. Nature, 550(7675), 204–213. https://doi.org/10.1038/nature24277
dc.relation.referencesGu, J., Wang, Z., Wang, B. O., & Ma, X. (2023). ImmuneScore of eight-gene signature predicts prognosis and survival in patients with endometrial cancer. Frontiers in Oncology, 13, 1097015. https://doi.org/10.3389/fonc.2023.1097015
dc.relation.referencesHarbeck, N., Penault-Llorca, F., Cortes, J., Gnant, M., Houssami, N., Poortmans, P., Ruddy, K., Tsang, J., & Cardoso, F. (2019). Breast cancer. Nature Reviews Disease Primers, 5(1), 66. https://doi.org/10.1038/s41572-019-0111-2
dc.relation.referencesHasin, Y., Seldin, M., & Lusis, A. (2017). Multi-omics approaches to disease. Genome Biology, 18(1), 83. https://doi.org/10.1186/s13059-017-1215-1
dc.relation.referencesHeo, H., Kim, J.-H., Lim, H. J., Kim, J.-H., Kim, M., Koh, J., Im, J.-Y., Kim, B.-K., Won, M., Park, J.-H., Shin, Y.-J., Yun, M. R., Cho, B. C., Kim, Y. S., Kim, S.-Y., & Kim, M. (2022). DNA methylome and single-cell transcriptome analyses reveal CDA as a potential druggable target for ALK inhibitor–resistant lung cancer therapy. Experimental & Molecular Medicine, 54(8), 1236–1249. https://doi.org/10.1038/s12276-022-00836-7
dc.relation.referencesHuang, S., Murphy, L., & Xu, W. (2018). Genes and functions from breast cancer signatures. BMC Cancer, 18(1), 473. https://doi.org/10.1186/s12885-018-4388-4
dc.relation.referencesHuang, S., Pang, L., & Wei, C. (2021). Identification of a Four-Gene Signature With Prognostic Significance in Endometrial Cancer Using Weighted-Gene Correlation Network Analysis. Frontiers in Genetics, 12, 678780. https://doi.org/10.3389/fgene.2021.678780
dc.relation.referencesHuen, M. S. Y., Sy, S. M. H., & Chen, J. (2010). BRCA1 and its toolbox for the maintenance of genome integrity. Nature Reviews Molecular Cell Biology, 11(2), 138–148. https://doi.org/10.1038/nrm2831
dc.relation.referencesHwang, J., Moon, S., & Lee, H. (2022). SDGCCA: Supervised Deep Generalized Canonical Correlation Analysis for Multi-omics Integration. https://doi.org/10.48550/ARXIV.2204.09045
dc.relation.referencesJin, Y., Shenoy, A. K., Doernberg, S., Chen, H., Luo, H., Shen, H., Lin, T., Tarrash, M., Cai, Q., Hu, X., Fiske, R., Chen, T., Wu, L., Mohammed, K. A., Rottiers, V., Lee, S. S., & Lu, J. (2015). FBXO11 promotes ubiquitination of the Snail family of transcription factors in cancer progression and epidermal development. Cancer Letters, 362(1), 70–82. https://doi.org/10.1016/j.canlet.2015.03.037
dc.relation.referencesKotliar, D., Veres, A., Nagy, M. A., Tabrizi, S., Hodis, E., Melton, D. A., & Sabeti, P. C. (2019). Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq. ELife, 8, e43803. https://doi.org/10.7554/eLife.43803
dc.relation.referencesLi, P., Piao, Y., Shon, H. S., & Ryu, K. H. (2015). Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data. BMC Bioinformatics, 16(1), 347. https://doi.org/10.1186/s12859-015-0778-7
dc.relation.referencesLi, X., & Wang, C.-Y. (2021). From bulk, single-cell to spatial RNA sequencing. International Journal of Oral Science, 13(1), 36. https://doi.org/10.1038/s41368-021-00146-0
dc.relation.referencesMakker, V., MacKay, H., Ray-Coquard, I., Levine, D. A., Westin, S. N., Aoki, D., & Oaknin, A. (2021). Endometrial cancer. Nature Reviews Disease Primers, 7(1), 88. https://doi.org/10.1038/s41572-021-00324-8
dc.relation.referencesManning, J., & Kumar, S. (2007). NEDD1: Function in microtubule nucleation, spindle assembly and beyond. The International Journal of Biochemistry & Cell Biology, 39(1), 7– 11. https://doi.org/10.1016/j.biocel.2006.08.012
dc.relation.referencesMartinez-Ledesma, E., Verhaak, R. G. W., & Treviño, V. (2015). Identification of a multi- cancer gene expression biomarker for cancer clinical outcomes using a network-based algorithm. Scientific Reports, 5(1), 11966. https://doi.org/10.1038/srep11966
dc.relation.referencesMohan, S. C., Lee, T.-Y., Giuliano, A. E., & Cui, X. (2021). Current Status of Breast Organoid Models. Frontiers in Bioengineering and Biotechnology, 9, 745943. https://doi.org/10.3389/fbioe.2021.745943
dc.relation.referencesMørch, L. S., Skovlund, C. W., Hannaford, P. C., Iversen, L., Fielding, S., & Lidegaard, Ø. (2017). Contemporary Hormonal Contraception and the Risk of Breast Cancer. New England Journal of Medicine, 377(23), 2228–2239. https://doi.org/10.1056/NEJMoa1700732
dc.relation.referencesNewman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., Hoang, C. D., Diehn, M., & Alizadeh, A. A. (2015). Robust enumeration of cell subsets from tissue expression profiles. Nature Methods, 12(5), 453–457. https://doi.org/10.1038/nmeth.3337
dc.relation.referencesNguyen, T., Tagett, R., Diaz, D., & Draghici, S. (2017). A novel approach for data integration and disease subtyping. Genome Research, 27(12), 2025–2039. https://doi.org/10.1101/gr.215129.116
dc.relation.referencesNik-Zainal, S., Davies, H., Staaf, J., Ramakrishna, M., Glodzik, D., Zou, X., Martincorena, I., Alexandrov, L. B., Martin, S., Wedge, D. C., Van Loo, P., Ju, Y. S., Smid, M., Brinkman, A. B., Morganella, S., Aure, M. R., Lingjærde, O. C., Langerød, A., Ringnér, M., ... Stratton, M. R. (2016). Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature, 534(7605), 47–54. https://doi.org/10.1038/nature17676
dc.relation.referencesPhuong, T. K., Thuan, L. D., Thao, D. T. P., & Thuy, L. H. A. (2015). DNA Hypermethylation Signatures for Detection of Breast Cancer in Vietnamese Population. In V. V. Toi & T. H. Lien Phuong (Eds.), 5th International Conference on Biomedical Engineering in Vietnam (Vol. 46, pp. 219–222). Springer International Publishing. https://doi.org/10.1007/978-3- 319-11776-8_53
dc.relation.referencesRappoport, N., & Shamir, R. (2018). Multi-omic and multi-view clustering algorithms: Review and cancer benchmark. Nucleic Acids Research, 46(20), 10546–10562. https://doi.org/10.1093/nar/gky889
dc.relation.referencesRazin, A., & Cedar, H. (1991). DNA methylation and gene expression. Microbiological Reviews, 55(3), 451–458. https://doi.org/10.1128/mr.55.3.451-458.1991
dc.relation.referencesReel, P. S., Reel, S., Pearson, E., Trucco, E., & Jefferson, E. (2021). Using machine learning approaches for multi-omics data analysis: A review. Biotechnology Advances, 49, 107739. https://doi.org/10.1016/j.biotechadv.2021.107739
dc.relation.referencesRhodes, J. M., McEwan, M., & Horsfield, J. A. (2011). Gene Regulation by Cohesin in Cancer: Is the Ring an Unexpected Party to Proliferation? Molecular Cancer Research, 9(12), 1587–1607. https://doi.org/10.1158/1541-7786.MCR-11-0382
dc.relation.referencesRing, K. L., Bruegl, A. S., Allen, B. A., Elkin, E. P., Singh, N., Hartman, A.-R., Daniels, M. S., & Broaddus, R. R. (2016). Germline multi-gene hereditary cancer panel testing in an unselected endometrial cancer cohort. Modern Pathology, 29(11), 1381–1389. https://doi.org/10.1038/modpathol.2016.135
dc.relation.referencesRodriguez, A. C., Blanchard, Z., Maurer, K. A., & Gertz, J. (2019). Estrogen Signaling in Endometrial Cancer: A Key Oncogenic Pathway with Several Open Questions. Hormones and Cancer, 10(2–3), 51–63. https://doi.org/10.1007/s12672-019-0358-9
dc.relation.referencesRoyle, S. J. (2012). The role of clathrin in mitotic spindle organisation. Journal of Cell Science, 125(1), 19–28. https://doi.org/10.1242/jcs.094607
dc.relation.referencesRyan, N. A. J., Glaire, M. A., Blake, D., Cabrera-Dandy, M., Evans, D. G., & Crosbie, E. J. (2019). The proportion of endometrial cancers associated with Lynch syndrome: A systematic review of the literature and meta-analysis. Genetics in Medicine, 21(10), 2167– 2180. https://doi.org/10.1038/s41436-019-0536-8
dc.relation.referencesSakamoto, K., Schmidt, J. W., & Wagner, K.-U. (2015). Mouse Models of Breast Cancer. In R. Eferl & E. Casanova (Eds.), Mouse Models of Cancer (Vol. 1267, pp. 47–71). Springer New York. https://doi.org/10.1007/978-1-4939-2297-0_3
dc.relation.referencesShammas, M. A. (2011). Telomeres, lifestyle, cancer, and aging: Current Opinion in Clinical Nutrition and Metabolic Care, 14(1), 28–34. https://doi.org/10.1097/MCO.0b013e32834121b1
dc.relation.referencesShao, X., Lv, N., Liao, J., Long, J., Xue, R., Ai, N., Xu, D., & Fan, X. (2019). Copy number variation is highly correlated with differential gene expression: A pan-cancer study. BMC Medical Genetics, 20(1), 175. https://doi.org/10.1186/s12881-019-0909-5
dc.relation.referencesShen, F., Gao, Y., Ding, J., & Chen, Q. (2017). Is the positivity of estrogen receptor or progesterone receptor different between type 1 and type 2 endometrial cancer? Oncotarget, 8(1), 506–511. https://doi.org/10.18632/oncotarget.13471
dc.relation.referencesSpainhour, J. C., Lim, H. S., Yi, S. V., & Qiu, P. (2019). Correlation Patterns Between DNA Methylation and Gene Expression in The Cancer Genome Atlas. Cancer Informatics, 18, 117693511982877. https://doi.org/10.1177/1176935119828776
dc.relation.referencesSpeicher, N. K., & Pfeifer, N. (2015). Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery. Bioinformatics, 31(12), i268–i275. https://doi.org/10.1093/bioinformatics/btv244
dc.relation.referencesSteele, C. D., Abbasi, A., Islam, S. M. A., Bowes, A. L., Khandekar, A., Haase, K., Hames- Fathi, S., Ajayi, D., Verfaillie, A., Dhami, P., McLatchie, A., Lechner, M., Light, N., Shlien, A., Malkin, D., Feber, A., Proszek, P., Lesluyes, T., Mertens, F., ... Pillay, N. (2022). Signatures of copy number alterations in human cancer. Nature, 606(7916), 984–991. https://doi.org/10.1038/s41586-022-04738-6
dc.relation.referencesSuryo Rahmanto, Y., Shen, W., Shi, X., Chen, X., Yu, Y., Yu, Z.-C., Miyamoto, T., Lee, M.- H., Singh, V., Asaka, R., Shimberg, G., Vitolo, M. I., Martin, S. S., Wirtz, D., Drapkin, R., Xuan, J., Wang, T.-L., & Shih, I.-M. (2020). Inactivation of Arid1a in the endometrium is associated with endometrioid tumorigenesis through transcriptional reprogramming. Nature Communications, 11(1), 2717. https://doi.org/10.1038/s41467-020-16416-0
dc.relation.referencesTao, M. H., & Freudenheim, J. L. (2010). DNA methylation in endometrial cancer. Epigenetics, 5(6), 491–498. https://doi.org/10.4161/epi.5.6.12431
dc.relation.referencesTartaglia, M., Kalidas, K., Shaw, A., Song, X., Musat, D. L., Van Der Burgt, I., Brunner, H. G., Bertola, D. R., Crosby, A., Ion, A., Kucherlapati, R. S., Jeffery, S., Patton, M. A., & Gelb, B. D. (2002). PTPN11 Mutations in Noonan Syndrome: Molecular Spectrum, Genotype- Phenotype Correlation, and Phenotypic Heterogeneity. The American Journal of Human Genetics, 70(6), 1555–1563. https://doi.org/10.1086/340847
dc.relation.referencesTemin, H. M., & Mizutani, S. (1970). Viral RNA-dependent DNA Polymerase: RNA- dependent DNA Polymerase in Virions of Rous Sarcoma Virus. Nature, 226(5252), 1211– 1213. https://doi.org/10.1038/2261211a0
dc.relation.referencesThe Cancer Genome Atlas Research Network, & Levine, D. A. (2013). Integrated genomic characterization of endometrial carcinoma. Nature, 497(7447), 67–73. https://doi.org/10.1038/nature12113
dc.relation.referencesTillement, V., Haren, L., Roullet, N., Etievant, C., & Merdes, A. (2009). The centrosome protein NEDD1 as a potential pharmacological target to induce cell cycle arrest. Molecular Cancer, 8(1), 10. https://doi.org/10.1186/1476-4598-8-10
dc.relation.referencesVan Nyen, T., Moiola, C. P., Colas, E., Annibali, D., & Amant, F. (2018). Modeling Endometrial Cancer: Past, Present, and Future. International Journal of Molecular Sciences, 19(8), 2348. https://doi.org/10.3390/ijms19082348
dc.relation.referencesWang, Y., Ren, F., Chen, P., Liu, S., Song, Z., & Ma, X. (2018). Identification of a six-gene signature with prognostic value for patients with endometrial carcinoma. Cancer Medicine, 7(11), 5632–5642. https://doi.org/10.1002/cam4.1806
dc.relation.referencesXu. (2010). The role of VIT1/FBXO11 in the regulation of apoptosis and tyrosinase export from endoplasmic reticulum in cultured melanocytes. International Journal of Molecular Medicine, 26(1). https://doi.org/10.3892/ijmm_00000435
dc.relation.referencesYaghmaie, F., Saeed, O., Garan, S. A., Freitag, W., Timiras, P. S., & Sternberg, H. (2005). Caloric restriction reduces cell loss and maintains estrogen receptor-alpha immunoreactivity in the pre-optic hypothalamus of female B6D2F1 mice. Neuro Endocrinology Letters, 26(3), 197–203.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsBiología Computacional
dc.subject.decsComputational Biology
dc.subject.decsAprendizaje Automático
dc.subject.decsMachine Learning
dc.subject.decsNeoplasias
dc.subject.decsNeoplasms
dc.subject.proposalCáncer de mama
dc.subject.proposalCáncer de endometrio
dc.subject.proposalIntegración Multi-ómica
dc.subject.proposalAprendizaje multi-vista
dc.subject.proposalBiomarcadores
dc.subject.proposalBreast Cancer
dc.subject.proposalEndometrial Cancer
dc.subject.proposalMulti-Omics Integration
dc.subject.proposalMulti-view Learning
dc.subject.proposalClustering
dc.subject.proposalBiomarkers
dc.title.translatedMachine learning model for integrating genomic, epigenomic, transcriptomic and clinical data from endometrial cancer and breast cancer studies
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMedios de comunicación
dcterms.audience.professionaldevelopmentPúblico general


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit