dc.rights.license | Atribución-NoComercial 4.0 Internacional |
dc.contributor.advisor | Niño Vásquez, Luis Fernando |
dc.contributor.author | Eyrolle-Cellier, Samuel |
dc.date.accessioned | 2024-02-27T19:13:28Z |
dc.date.available | 2024-02-27T19:13:28Z |
dc.date.issued | 2023-11-03 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85731 |
dc.description | ilustraciones, diagramas |
dc.description.abstract | El cáncer de mama y el cáncer de endometrio son enfermedades complejas que presentan mucha heterogeneidad a nivel molecular e histológico. Ciertos pacientes de estos dos tipos de cáncer comparten tanto mecanismos moleculares y celulares, como factores causales, como lo es el hiperestrogenismo. Este proyecto de investigación buscó identificar biomarcadores tumorales compartidos entre ambas enfermedades. 565 pacientes con cáncer de mama y 348 con cáncer de endometrio de la plataforma The Cancer Genome Atlas fueron seleccionados según sus características histológicas, hormonales e inmunológicas. Sus datos ómicos fueron analizados de manera separada e integrada mediante el uso del algoritmo de aprendizaje multi-vista Deep Generalized Canonical Correlation Analysis y del método de reducción de dimensionalidad Uniform Manifold Approximation and Projection. Se extrajeron biomarcadores de cada grupo (cluster) a través del cálculo del puntaje de información mutua entre las variables iniciales y las variables sintéticas UMAP1 y UMAP2. El análisis de los biomarcadores reveló que varios de estos genes tienen un rol en la proliferación celular, la apoptosis y la angiogénesis. Así mismo, el análisis reveló que la ausencia de metilación en las regiones promotoras de CLTC, importante en la organización del huso mitótico, y SON, involucrado en el empalme del ARN, es una característica compartida entre muchos pacientes de la cohorte. Por otro lado, FBXO11 y PTPN11 se caracterizan por niveles altos de expresión génica en ambos tipos de cáncer. FBXO11 codifica para una ubiquitina ligasa necesaria para la degradación proteica; mientras que PTPN11 codifica para una tirosina fosfatasa que actúa en la transducción de señales mediante una regulación positiva de la vía de señalización RAS/RAF/MAPK. En conclusión, la estrategia de integración multi-ómica permitió descubrir biomarcadores que no aparecen en el análisis de datos ómicos de un solo tipo. Se inscribe como una prueba de concepto de integración de distintos tipos de datos provenientes de diferentes contextos patológicos en el campo de la oncología. (Texto tomado de la fuente). |
dc.description.abstract | Breast cancer and endometrial cancer are complex diseases that show a high degree of molecular and histological heterogeneity. Certain patients with these two types of cancer share both molecular and cellular mechanisms, as well as causal factors such as hyperestrogenism. This research project aimed to identify shared tumor biomarkers between both diseases. 565 breast cancer patients and 348 endometrial cancer patients from The Cancer Genome Atlas platform were selected based on their histological, hormonal, and immunological characteristics. Their omics data was analyzed separately and integratively using the multi-view learning algorithm Deep Generalized Canonical Correlation Analysis and the dimensionality reduction method Uniform Manifold Approximation and Projection. Biomarkers were extracted from each cluster by calculating the mutual information score between the initial variables and the UMAP1 and UMAP2 synthetic variables. The analysis of the biomarkers revealed that several of these genes play a role in cell proliferation, apoptosis, and angiogenesis. Additionally, the analysis showed that the absence of methylation in the promoter regions of CLTC, which is important in the organization of the mitotic spindle, and SON, involved in RNA splicing, is a shared characteristic among many patients in the cohort. On the other hand, FBXO11 and PTPN11 are characterized by high levels of gene expression in both types of cancer. FBXO11 encodes for a ubiquitin ligase necessary for protein degradation, while PTPN11 encodes for a tyrosine phosphatase that acts in signal transduction by positively regulating the RAS/RAF/MAPK signaling pathway. In conclusion, the multi-omic integration strategy allowed the discovery of biomarkers that have not been identified in the omics data analysis of a single type. It serves as a proof of concept for integrating different types of data from different pathological contexts in the field of oncology. |
dc.format.extent | 145 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores |
dc.title | Modelo de aprendizaje automático de integración de datos genómicos, epigenómicos, transcriptómicos y clínicos provenientes de estudios de cáncer de endometrio y de cáncer de mama |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Bioinformática |
dc.contributor.researchgroup | laboratorio de Investigación en Sistemas Inteligentes Lisi |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magíster en Bioinformática |
dc.description.methods | La primera fase del proyecto corresponde a la selección de los datos y está asociada al primer objetivo específico de selección de los conjuntos de datos genómicos, epigenómicos, transcriptómicos y clínicos de pacientes con cáncer de endometrio y con cáncer de mama susceptibles de compartir tanto mecanismos moleculares, celulares e inmunológicos como factores causales en la plataforma TCGA. Esta fase tiene tres actividades:
• Selección preliminar de los pacientes de interés mediante la explotación de los datos clínicos: se busca seleccionar los pacientes mujeres con cáncer ductal o lobulillar infiltrante positivos para los receptores de estrógenos y progesterona (cáncer de mama) y los pacientes con adenocarcinoma endometrioide (cáncer de endometrio).
• Selección de los pacientes con un perfil hormonal de interés mediante la explotación de los datos transcriptómicos: primero, se determina la distribución del nivel de expresión de los receptores de estrógenos y progesterona en los pacientes; luego, se seleccionan los pacientes cuyo tumor tiene una expresión de ambos receptores de hormonas superior al umbral de positividad establecido.
• Selección de los pacientes con una composición tumoral similar a nivel inmunológico mediante el uso de la herramienta Cibersort: se caracteriza el microentorno tumoral y el fenómeno de infiltración inmune en los pacientes.
El entregable de esta fase es un listado de los pacientes seleccionados.
La segunda fase del proyecto es el análisis exploratorio de los datos y busca cumplir con el segundo objetivo específico: determinar el tipo de modelo de aprendizaje automático más adecuado recurriendo a una exploración de los datos seleccionados. Esta fase también está divida en tres actividades:
• Análisis de datos ómicos de un solo tipo mediante el uso de algoritmos existentes: se busca agrupar los pacientes seleccionados según su perfil genómico, epigenómico, o transcriptómico e identificar los patrones moleculares que rigen las agrupaciones obtenidas.
• Análisis correlacional entre los distintos tipos de datos ómicos: se busca establecer una relación matemática entre el número de copias de los genes o la metilación del ADN y la expresión génica.
• Análisis exploratorio de los datos clínicos: se identifican las variables clínicas completas para el conjunto de pacientes y se busca caracterizar los grupos de pacientes obtenidos durante el análisis de datos ómicos de un solo tipo por sus características clínicas.
Los entregables de esta fase son: un reporte del análisis exploratorio para cada tipo de datos y tres listados de biomarcadores resultantes de los análisis de datos ómicos de un solo tipo.
La tercera fase del proyecto es la integración de los datos. Es la fase crítica del proyecto y está asociada al tercer objetivo específico: desarrollar un modelo de aprendizaje automático de integración de los datos ómicos seleccionados. Esta fase contiene tres actividades:
• Recolección y preparación de los datos: primero, se establece un consenso sobre el nombre de las características (genes, regiones metiladas y transcritos) para poder relacionarlas posteriormente; luego, se da el formato adecuado a los datos para la implementación del modelo de aprendizaje automático.
• Desarrollo del modelo de aprendizaje automático: es un proceso cíclico, compuesto por tres etapas recurrentes, destinado a optimizar el modelo. La primera etapa es el entrenamiento del modelo. La segunda etapa corresponde a la prueba del modelo de aprendizaje automático, se evalúa el desempeño del modelo a través del cálculo de las métricas adecuadas. En la tercera etapa se lleva a cabo el ajuste del modelo, es decir, la optimización de los hiperparámetros del modelo (configuraciones utilizadas durante la etapa de entrenamiento).
• Identificación de los biomarcadores compartidos mediante el uso del modelo optimizado y análisis clínico de los grupos de pacientes obtenidos en el proceso.
Los entregables de la tercera fase son: un reporte de evaluación del modelo desarrollado y un listado de biomarcadores resultantes del uso del modelo.
La cuarta fase de este estudio es la caracterización de los resultados obtenidos. Busca cumplir con el cuarto objetivo específico: caracterizar los biomarcadores compartidos identificados mediante el uso del método Gene Ontology. Esta fase admite dos actividades:
• Caracterización biológica de los biomarcadores resultantes de los análisis de datos ómicos de un solo tipo y de los biomarcadores resultantes del uso del modelo de aprendizaje automático de integración de datos: se buscan los términos ontológicos (de la categoría proceso biológico) asociados con los biomarcadores identificados mediante el uso del método Gene Ontology.
• Comparación de los biomarcadores identificados con las dos metodologías (análisis de datos ómicos de un solo tipo y uso del modelo): se profundiza el análisis de los biomarcadores encontrados tanto en el análisis de datos ómicos de un solo tipo como con el uso del modelo.
El entregable de esta última fase es un reporte de la caracterización biológica de los biomarcadores identificados previamente (en la segunda y la tercera fase). |
dc.description.researcharea | Tecnologías computacionales en bioinformática |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ingeniería |
dc.publisher.place | Bogotá, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.indexed | Bireme |
dc.relation.references | Abeel, T., Helleputte, T., Van de Peer, Y., Dupont, P., & Saeys, Y. (2010). Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics, 26(3), 392–398. https://doi.org/10.1093/bioinformatics/btp630 |
dc.relation.references | Aceto, N., Sausgruber, N., Brinkhaus, H., Gaidatzis, D., Martiny-Baron, G., Mazzarol, G., Confalonieri, S., Quarto, M., Hu, G., Balwierz, P. J., Pachkov, M., Elledge, S. J., Van Nimwegen, E., Stadler, M. B., & Bentires-Alj, M. (2012). Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop. Nature Medicine, 18(4), 529–537. https://doi.org/10.1038/nm.2645 |
dc.relation.references | Andrew, G., Arora, R., Bilmes, J., & Livescu, K. (2013). Deep Canonical Correlation Analysis. In S. Dasgupta & D. McAllester (Eds.), Proceedings of the 30th International Conference on Machine Learning (Vol. 28, Issue 3, pp. 1247–1255). PMLR. https://proceedings.mlr.press/v28/andrew13.html |
dc.relation.references | Bagger, S. O., Hopkinson, B. M., Pandey, D. P., Bak, M., Brydholm, A. V., Villadsen, R., Helin, K., Rønnov-Jessen, L., Petersen, O. W., & Kim, J. (2018). Aggressiveness of non- EMT breast cancer cells relies on FBXO11 activity. Molecular Cancer, 17(1), 171. https://doi.org/10.1186/s12943-018-0918-6 |
dc.relation.references | Baltimore, D. (1970). Viral RNA-dependent DNA Polymerase: RNA-dependent DNA Polymerase in Virions of RNA Tumour Viruses. Nature, 226(5252), 1209–1211. https://doi.org/10.1038/2261209a0 |
dc.relation.references | Banno, K., Kisu, I., Yanokura, M., Tsuji, K., Masuda, K., Ueki, A., Kobayashi, Y., Yamagami, W., Nomura, H., Tominaga, E., Susumu, N., & Aoki, D. (2012). Biomarkers in endometrial cancer: Possible clinical applications (Review). Oncology Letters, 3(6), 1175–1180. https://doi.org/10.3892/ol.2012.654 |
dc.relation.references | Benton, A., Khayrallah, H., Gujral, B., Reisinger, D. A., Zhang, S., & Arora, R. (2019). Deep Generalized Canonical Correlation Analysis. Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), 1–6. https://doi.org/10.18653/v1/W19-4301 |
dc.relation.references | Berger, A. C., Korkut, A., Kanchi, R. S., Hegde, A. M., Lenoir, W., Liu, W., Liu, Y., Fan, H., Shen, H., Ravikumar, V., Rao, A., Schultz, A., Li, X., Sumazin, P., Williams, C., Mestdagh, P., Gunaratne, P. H., Yau, C., Bowlby, R., ... Mariamidze, A. (2018). A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. Cancer Cell, 33(4), 690- 705.e9. https://doi.org/10.1016/j.ccell.2018.03.014 |
dc.relation.references | Bian, J., Xu, Y., Wu, F., Pan, Q., & Liu, Y. (2020). Identification of a five‐gene signature for predicting the progression and prognosis of stage I endometrial carcinoma. Oncology Letters, 20(3), 2396–2410. https://doi.org/10.3892/ol.2020.11798 |
dc.relation.references | Bray, F., Ferlay, J., Laversanne, M., Brewster, D. H., Gombe Mbalawa, C., Kohler, B., Piñeros, M., Steliarova-Foucher, E., Swaminathan, R., Antoni, S., Soerjomataram, I., & Forman, D. (2015). Cancer Incidence in Five Continents: Inclusion criteria, highlights from Volume X and the global status of cancer registration: Cancer Incidence in Five Continents Volume X. International Journal of Cancer, 137(9), 2060–2071. https://doi.org/10.1002/ijc.29670 |
dc.relation.references | Breast Cancer Overview: Causes, Symptoms, Signs, Stages & Types. (n.d.). Cleveland Clinic. Retrieved March 25, 2022, from https://my.clevelandclinic.org/health/diseases/3986- breast-cancer |
dc.relation.references | Brewer, H. R., Jones, M. E., Schoemaker, M. J., Ashworth, A., & Swerdlow, A. J. (2017). Family history and risk of breast cancer: An analysis accounting for family structure. Breast Cancer Research and Treatment, 165(1), 193–200. https://doi.org/10.1007/s10549-017- 4325-2 |
dc.relation.references | Cancer of the Endometrium—Cancer Stat Facts. (n.d.). SEER. Retrieved March 25, 2022, from https://seer.cancer.gov/statfacts/html/corp.html |
dc.relation.references | Carmeliet, P. (2005). VEGF as a Key Mediator of Angiogenesis in Cancer. Oncology, 69(Suppl. 3), 4–10. https://doi.org/10.1159/000088478 |
dc.relation.references | Chatterjee, S., Gupta, D., Caputo, T. A., & Holcomb, K. (2016). Disparities in Gynecological Malignancies. Frontiers in Oncology, 6. https://doi.org/10.3389/fonc.2016.00036 |
dc.relation.references | Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M., & Alizadeh, A. A. (2018). Profiling Tumor Infiltrating Immune Cells with CIBERSORT. In L. von Stechow (Ed.), Cancer Systems Biology (Vol. 1711, pp. 243–259). Springer New York. https://doi.org/10.1007/978- 1-4939-7493-1_12 |
dc.relation.references | Colombo, N., Creutzberg, C., Amant, F., Bosse, T., González-Martín, A., Ledermann, J., Marth, C., Nout, R., Querleu, D., Mirza, M. R., Sessa, C., Abal, M., Altundag, O., Amant, F., van Leeuwenhoek, A., Banerjee, S., Bosse, T., Casado, A., de Agustín, L. C., ... Zeimet, A. G. (2016). ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: Diagnosis, treatment and follow-up. Annals of Oncology, 27(1), 16–41. https://doi.org/10.1093/annonc/mdv484 |
dc.relation.references | Crick, F. (1970). Central Dogma of Molecular Biology. Nature, 227(5258), 561–563. https://doi.org/10.1038/227561a0 |
dc.relation.references | Danaei, G., Vander Hoorn, S., Lopez, A. D., Murray, C. J., & Ezzati, M. (2005). Causes of cancer in the world: Comparative risk assessment of nine behavioural and environmental risk factors. The Lancet, 366(9499), 1784–1793. https://doi.org/10.1016/S0140- 6736(05)67725-2 |
dc.relation.references | Das, T., Andrieux, G., Ahmed, M., & Chakraborty, S. (2020). Integration of Online Omics- Data Resources for Cancer Research. Frontiers in Genetics, 11, 578345–578345. https://doi.org/10.3389/fgene.2020.578345 |
dc.relation.references | Duan, S., Cermak, L., Pagan, J. K., Rossi, M., Martinengo, C., Di Celle, P. F., Chapuy, B., Shipp, M., Chiarle, R., & Pagano, M. (2012). FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature, 481(7379), 90–93. https://doi.org/10.1038/nature10688 |
dc.relation.references | Eisenberg, E., & Levanon, E. Y. (2013). Human housekeeping genes, revisited. Trends in Genetics, 29(10), 569–574. https://doi.org/10.1016/j.tig.2013.05.010 |
dc.relation.references | Female Breast Cancer—Cancer Stat Facts. (n.d.). Retrieved March 25, 2022, from https://seer.cancer.gov/statfacts/html/breast.html |
dc.relation.references | Gao, Y., Lin, P., Lydon, J. P., & Li, Q. (2017). Conditional abrogation of transforming growth factor-β receptor 1 in PTEN-inactivated endometrium promotes endometrial cancer progression in mice: TGFBR1 in endometrial cancer progression. The Journal of Pathology, 243(1), 89–99. https://doi.org/10.1002/path.4930 |
dc.relation.references | García Ayala, E., Cárdenas Mastrascusa, L., Sandoval Martínez, D., & Mayorga Anaya, H. (2010). HIPERPLASIA ENDOMETRIAL: ANÁLISIS DE SERIE DE CASOS DIAGNOSTICADOS EN BIOPSIA ENDOMETRIAL. Revista Chilena de Obstetricia y Ginecología, 75(3). https://doi.org/10.4067/S0717-75262010000300002 |
dc.relation.references | Greenhalf, W., Lee, J., & Chaudhuri, B. (1999). A selection system for human apoptosis inhibitors using yeast. Yeast (Chichester, England), 15(13), 1307–1321. https://doi.org/10.1002/(SICI)1097-0061(19990930)15:13<1307::AID-YEA455>3.0.CO;2-3 |
dc.relation.references | GTEx Consortium. (2017). Genetic effects on gene expression across human tissues. Nature, 550(7675), 204–213. https://doi.org/10.1038/nature24277 |
dc.relation.references | Gu, J., Wang, Z., Wang, B. O., & Ma, X. (2023). ImmuneScore of eight-gene signature predicts prognosis and survival in patients with endometrial cancer. Frontiers in Oncology, 13, 1097015. https://doi.org/10.3389/fonc.2023.1097015 |
dc.relation.references | Harbeck, N., Penault-Llorca, F., Cortes, J., Gnant, M., Houssami, N., Poortmans, P., Ruddy, K., Tsang, J., & Cardoso, F. (2019). Breast cancer. Nature Reviews Disease Primers, 5(1), 66. https://doi.org/10.1038/s41572-019-0111-2 |
dc.relation.references | Hasin, Y., Seldin, M., & Lusis, A. (2017). Multi-omics approaches to disease. Genome Biology, 18(1), 83. https://doi.org/10.1186/s13059-017-1215-1 |
dc.relation.references | Heo, H., Kim, J.-H., Lim, H. J., Kim, J.-H., Kim, M., Koh, J., Im, J.-Y., Kim, B.-K., Won, M., Park, J.-H., Shin, Y.-J., Yun, M. R., Cho, B. C., Kim, Y. S., Kim, S.-Y., & Kim, M. (2022). DNA methylome and single-cell transcriptome analyses reveal CDA as a potential druggable target for ALK inhibitor–resistant lung cancer therapy. Experimental & Molecular Medicine, 54(8), 1236–1249. https://doi.org/10.1038/s12276-022-00836-7 |
dc.relation.references | Huang, S., Murphy, L., & Xu, W. (2018). Genes and functions from breast cancer
signatures. BMC Cancer, 18(1), 473. https://doi.org/10.1186/s12885-018-4388-4 |
dc.relation.references | Huang, S., Pang, L., & Wei, C. (2021). Identification of a Four-Gene Signature With Prognostic Significance in Endometrial Cancer Using Weighted-Gene Correlation Network Analysis. Frontiers in Genetics, 12, 678780. https://doi.org/10.3389/fgene.2021.678780 |
dc.relation.references | Huen, M. S. Y., Sy, S. M. H., & Chen, J. (2010). BRCA1 and its toolbox for the maintenance of genome integrity. Nature Reviews Molecular Cell Biology, 11(2), 138–148. https://doi.org/10.1038/nrm2831 |
dc.relation.references | Hwang, J., Moon, S., & Lee, H. (2022). SDGCCA: Supervised Deep Generalized Canonical Correlation Analysis for Multi-omics Integration. https://doi.org/10.48550/ARXIV.2204.09045 |
dc.relation.references | Jin, Y., Shenoy, A. K., Doernberg, S., Chen, H., Luo, H., Shen, H., Lin, T., Tarrash, M., Cai, Q., Hu, X., Fiske, R., Chen, T., Wu, L., Mohammed, K. A., Rottiers, V., Lee, S. S., & Lu, J. (2015). FBXO11 promotes ubiquitination of the Snail family of transcription factors in cancer progression and epidermal development. Cancer Letters, 362(1), 70–82. https://doi.org/10.1016/j.canlet.2015.03.037 |
dc.relation.references | Kotliar, D., Veres, A., Nagy, M. A., Tabrizi, S., Hodis, E., Melton, D. A., & Sabeti, P. C. (2019). Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq. ELife, 8, e43803. https://doi.org/10.7554/eLife.43803 |
dc.relation.references | Li, P., Piao, Y., Shon, H. S., & Ryu, K. H. (2015). Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data. BMC Bioinformatics, 16(1), 347. https://doi.org/10.1186/s12859-015-0778-7 |
dc.relation.references | Li, X., & Wang, C.-Y. (2021). From bulk, single-cell to spatial RNA sequencing. International Journal of Oral Science, 13(1), 36. https://doi.org/10.1038/s41368-021-00146-0 |
dc.relation.references | Makker, V., MacKay, H., Ray-Coquard, I., Levine, D. A., Westin, S. N., Aoki, D., & Oaknin, A. (2021). Endometrial cancer. Nature Reviews Disease Primers, 7(1), 88. https://doi.org/10.1038/s41572-021-00324-8 |
dc.relation.references | Manning, J., & Kumar, S. (2007). NEDD1: Function in microtubule nucleation, spindle assembly and beyond. The International Journal of Biochemistry & Cell Biology, 39(1), 7– 11. https://doi.org/10.1016/j.biocel.2006.08.012 |
dc.relation.references | Martinez-Ledesma, E., Verhaak, R. G. W., & Treviño, V. (2015). Identification of a multi- cancer gene expression biomarker for cancer clinical outcomes using a network-based algorithm. Scientific Reports, 5(1), 11966. https://doi.org/10.1038/srep11966 |
dc.relation.references | Mohan, S. C., Lee, T.-Y., Giuliano, A. E., & Cui, X. (2021). Current Status of Breast Organoid Models. Frontiers in Bioengineering and Biotechnology, 9, 745943. https://doi.org/10.3389/fbioe.2021.745943 |
dc.relation.references | Mørch, L. S., Skovlund, C. W., Hannaford, P. C., Iversen, L., Fielding, S., & Lidegaard, Ø. (2017). Contemporary Hormonal Contraception and the Risk of Breast Cancer. New England Journal of Medicine, 377(23), 2228–2239. https://doi.org/10.1056/NEJMoa1700732 |
dc.relation.references | Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., Hoang, C. D., Diehn, M., & Alizadeh, A. A. (2015). Robust enumeration of cell subsets from tissue expression profiles. Nature Methods, 12(5), 453–457. https://doi.org/10.1038/nmeth.3337 |
dc.relation.references | Nguyen, T., Tagett, R., Diaz, D., & Draghici, S. (2017). A novel approach for data integration and disease subtyping. Genome Research, 27(12), 2025–2039. https://doi.org/10.1101/gr.215129.116 |
dc.relation.references | Nik-Zainal, S., Davies, H., Staaf, J., Ramakrishna, M., Glodzik, D., Zou, X., Martincorena, I., Alexandrov, L. B., Martin, S., Wedge, D. C., Van Loo, P., Ju, Y. S., Smid, M., Brinkman, A. B., Morganella, S., Aure, M. R., Lingjærde, O. C., Langerød, A., Ringnér, M., ... Stratton, M. R. (2016). Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature, 534(7605), 47–54. https://doi.org/10.1038/nature17676 |
dc.relation.references | Phuong, T. K., Thuan, L. D., Thao, D. T. P., & Thuy, L. H. A. (2015). DNA Hypermethylation Signatures for Detection of Breast Cancer in Vietnamese Population. In V. V. Toi & T. H. Lien Phuong (Eds.), 5th International Conference on Biomedical Engineering in Vietnam (Vol. 46, pp. 219–222). Springer International Publishing. https://doi.org/10.1007/978-3- 319-11776-8_53 |
dc.relation.references | Rappoport, N., & Shamir, R. (2018). Multi-omic and multi-view clustering algorithms: Review and cancer benchmark. Nucleic Acids Research, 46(20), 10546–10562. https://doi.org/10.1093/nar/gky889 |
dc.relation.references | Razin, A., & Cedar, H. (1991). DNA methylation and gene expression. Microbiological Reviews, 55(3), 451–458. https://doi.org/10.1128/mr.55.3.451-458.1991 |
dc.relation.references | Reel, P. S., Reel, S., Pearson, E., Trucco, E., & Jefferson, E. (2021). Using machine learning approaches for multi-omics data analysis: A review. Biotechnology Advances, 49, 107739. https://doi.org/10.1016/j.biotechadv.2021.107739 |
dc.relation.references | Rhodes, J. M., McEwan, M., & Horsfield, J. A. (2011). Gene Regulation by Cohesin in Cancer: Is the Ring an Unexpected Party to Proliferation? Molecular Cancer Research, 9(12), 1587–1607. https://doi.org/10.1158/1541-7786.MCR-11-0382 |
dc.relation.references | Ring, K. L., Bruegl, A. S., Allen, B. A., Elkin, E. P., Singh, N., Hartman, A.-R., Daniels, M. S., & Broaddus, R. R. (2016). Germline multi-gene hereditary cancer panel testing in an unselected endometrial cancer cohort. Modern Pathology, 29(11), 1381–1389. https://doi.org/10.1038/modpathol.2016.135 |
dc.relation.references | Rodriguez, A. C., Blanchard, Z., Maurer, K. A., & Gertz, J. (2019). Estrogen Signaling in Endometrial Cancer: A Key Oncogenic Pathway with Several Open Questions. Hormones and Cancer, 10(2–3), 51–63. https://doi.org/10.1007/s12672-019-0358-9 |
dc.relation.references | Royle, S. J. (2012). The role of clathrin in mitotic spindle organisation. Journal of Cell Science, 125(1), 19–28. https://doi.org/10.1242/jcs.094607 |
dc.relation.references | Ryan, N. A. J., Glaire, M. A., Blake, D., Cabrera-Dandy, M., Evans, D. G., & Crosbie, E. J. (2019). The proportion of endometrial cancers associated with Lynch syndrome: A systematic review of the literature and meta-analysis. Genetics in Medicine, 21(10), 2167– 2180. https://doi.org/10.1038/s41436-019-0536-8 |
dc.relation.references | Sakamoto, K., Schmidt, J. W., & Wagner, K.-U. (2015). Mouse Models of Breast Cancer. In R. Eferl & E. Casanova (Eds.), Mouse Models of Cancer (Vol. 1267, pp. 47–71). Springer New York. https://doi.org/10.1007/978-1-4939-2297-0_3 |
dc.relation.references | Shammas, M. A. (2011). Telomeres, lifestyle, cancer, and aging: Current Opinion in Clinical Nutrition and Metabolic Care, 14(1), 28–34. https://doi.org/10.1097/MCO.0b013e32834121b1 |
dc.relation.references | Shao, X., Lv, N., Liao, J., Long, J., Xue, R., Ai, N., Xu, D., & Fan, X. (2019). Copy number variation is highly correlated with differential gene expression: A pan-cancer study. BMC Medical Genetics, 20(1), 175. https://doi.org/10.1186/s12881-019-0909-5 |
dc.relation.references | Shen, F., Gao, Y., Ding, J., & Chen, Q. (2017). Is the positivity of estrogen receptor or progesterone receptor different between type 1 and type 2 endometrial cancer? Oncotarget, 8(1), 506–511. https://doi.org/10.18632/oncotarget.13471 |
dc.relation.references | Spainhour, J. C., Lim, H. S., Yi, S. V., & Qiu, P. (2019). Correlation Patterns Between DNA Methylation and Gene Expression in The Cancer Genome Atlas. Cancer Informatics, 18, 117693511982877. https://doi.org/10.1177/1176935119828776 |
dc.relation.references | Speicher, N. K., & Pfeifer, N. (2015). Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery. Bioinformatics, 31(12), i268–i275. https://doi.org/10.1093/bioinformatics/btv244 |
dc.relation.references | Steele, C. D., Abbasi, A., Islam, S. M. A., Bowes, A. L., Khandekar, A., Haase, K., Hames- Fathi, S., Ajayi, D., Verfaillie, A., Dhami, P., McLatchie, A., Lechner, M., Light, N., Shlien, A., Malkin, D., Feber, A., Proszek, P., Lesluyes, T., Mertens, F., ... Pillay, N. (2022). Signatures of copy number alterations in human cancer. Nature, 606(7916), 984–991. https://doi.org/10.1038/s41586-022-04738-6 |
dc.relation.references | Suryo Rahmanto, Y., Shen, W., Shi, X., Chen, X., Yu, Y., Yu, Z.-C., Miyamoto, T., Lee, M.- H., Singh, V., Asaka, R., Shimberg, G., Vitolo, M. I., Martin, S. S., Wirtz, D., Drapkin, R., Xuan, J., Wang, T.-L., & Shih, I.-M. (2020). Inactivation of Arid1a in the endometrium is associated with endometrioid tumorigenesis through transcriptional reprogramming. Nature Communications, 11(1), 2717. https://doi.org/10.1038/s41467-020-16416-0 |
dc.relation.references | Tao, M. H., & Freudenheim, J. L. (2010). DNA methylation in endometrial cancer. Epigenetics, 5(6), 491–498. https://doi.org/10.4161/epi.5.6.12431 |
dc.relation.references | Tartaglia, M., Kalidas, K., Shaw, A., Song, X., Musat, D. L., Van Der Burgt, I., Brunner, H. G., Bertola, D. R., Crosby, A., Ion, A., Kucherlapati, R. S., Jeffery, S., Patton, M. A., & Gelb, B. D. (2002). PTPN11 Mutations in Noonan Syndrome: Molecular Spectrum, Genotype- Phenotype Correlation, and Phenotypic Heterogeneity. The American Journal of Human Genetics, 70(6), 1555–1563. https://doi.org/10.1086/340847 |
dc.relation.references | Temin, H. M., & Mizutani, S. (1970). Viral RNA-dependent DNA Polymerase: RNA- dependent DNA Polymerase in Virions of Rous Sarcoma Virus. Nature, 226(5252), 1211– 1213. https://doi.org/10.1038/2261211a0 |
dc.relation.references | The Cancer Genome Atlas Research Network, & Levine, D. A. (2013). Integrated genomic characterization of endometrial carcinoma. Nature, 497(7447), 67–73. https://doi.org/10.1038/nature12113 |
dc.relation.references | Tillement, V., Haren, L., Roullet, N., Etievant, C., & Merdes, A. (2009). The centrosome protein NEDD1 as a potential pharmacological target to induce cell cycle arrest. Molecular Cancer, 8(1), 10. https://doi.org/10.1186/1476-4598-8-10 |
dc.relation.references | Van Nyen, T., Moiola, C. P., Colas, E., Annibali, D., & Amant, F. (2018). Modeling Endometrial Cancer: Past, Present, and Future. International Journal of Molecular Sciences, 19(8), 2348. https://doi.org/10.3390/ijms19082348 |
dc.relation.references | Wang, Y., Ren, F., Chen, P., Liu, S., Song, Z., & Ma, X. (2018). Identification of a six-gene signature with prognostic value for patients with endometrial carcinoma. Cancer Medicine, 7(11), 5632–5642. https://doi.org/10.1002/cam4.1806 |
dc.relation.references | Xu. (2010). The role of VIT1/FBXO11 in the regulation of apoptosis and tyrosinase export from endoplasmic reticulum in cultured melanocytes. International Journal of Molecular Medicine, 26(1). https://doi.org/10.3892/ijmm_00000435 |
dc.relation.references | Yaghmaie, F., Saeed, O., Garan, S. A., Freitag, W., Timiras, P. S., & Sternberg, H. (2005). Caloric restriction reduces cell loss and maintains estrogen receptor-alpha immunoreactivity in the pre-optic hypothalamus of female B6D2F1 mice. Neuro Endocrinology Letters, 26(3), 197–203. |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.decs | Biología Computacional |
dc.subject.decs | Computational Biology |
dc.subject.decs | Aprendizaje Automático |
dc.subject.decs | Machine Learning |
dc.subject.decs | Neoplasias |
dc.subject.decs | Neoplasms |
dc.subject.proposal | Cáncer de mama |
dc.subject.proposal | Cáncer de endometrio |
dc.subject.proposal | Integración Multi-ómica |
dc.subject.proposal | Aprendizaje multi-vista |
dc.subject.proposal | Biomarcadores |
dc.subject.proposal | Breast Cancer |
dc.subject.proposal | Endometrial Cancer |
dc.subject.proposal | Multi-Omics Integration |
dc.subject.proposal | Multi-view Learning |
dc.subject.proposal | Clustering |
dc.subject.proposal | Biomarkers |
dc.title.translated | Machine learning model for integrating genomic, epigenomic, transcriptomic and clinical data from endometrial cancer and breast cancer studies |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Estudiantes |
dcterms.audience.professionaldevelopment | Investigadores |
dcterms.audience.professionaldevelopment | Medios de comunicación |
dcterms.audience.professionaldevelopment | Público general |