Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributorPadilla León, Gabriel Ignacio
dc.contributor.authorDíaz Sepúlveda, Pablo Asdrúbal
dc.date.accessioned2019-06-24T17:34:05Z
dc.date.available2019-06-24T17:34:05Z
dc.date.issued2011-06
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/8640
dc.description.abstractEn este trabajo se realiza una introducción a las variedades de Hilbert. Se comienza con algunos preliminares relacionados con espacios de Hilbert, derivadas en espacios de Banach y fibrados tangentes sobre espacios de Banach. En seguida se dan unas breves nociones de variedad topológica, cartas, atlas y algunos resultados que conducirán a la definición de una variedad de Hilbert, además se realiza un estudio de las aplicaciones entre variedades. A continuaci ón se estudia el espacio tangente y fibrados vectoriales asociados a una variedad de Hilbert y la definición de tangencial de una aplicación entre este tipo de variedades. Se presentan además las nociones de inmsersión, submersión, embebimiento y subvariedad, que son casos particulares de aplicaciones entre variedades asociadas a su tangencial. Por último se exponen las definiciones de campos vectoriales y derivaciones sobre una variedad, y además se exhibe una relación entre ellas. / Abstract. In this work we make an introduction to Hilbert manifolds. We start giving a brief review in Hilbert spaces, derivatives in Banach spaces and tangent bundles in Banach spaces. Next, we give a summary on main results concerning topological manifolds, charts, and atlas in order to give a definition of Hilbert manifold. Later we study the tangent space and vector bundle associated with a Hilbert manifold, and also the definition of tangential of an application between Hilbert manifolds. We present some notions o immersion, submersion, embedding and submanifold, which are particular cases of applications between manifolds associated with their tangentials. Finally we expose the definitions of vector fields and derivatives on a manifold, and also the relation between them.
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Matemáticas
dc.relation.ispartofDepartamento de Matemáticas
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc51 Matemáticas / Mathematics
dc.titleIntroducción a las varidades de Hilbert / Introduction to Hilbert Manifolds
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.identifier.eprintshttp://bdigital.unal.edu.co/5310/
dc.description.degreelevelMaestría
dc.relation.referencesDíaz Sepúlveda, Pablo Asdrúbal (2011) Introducción a las varidades de Hilbert / Introduction to Hilbert Manifolds. Maestría thesis, Universidad Nacional de Colombia.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalVariedad de Hilbert
dc.subject.proposalEspacio tangente
dc.subject.proposalFibrado vectorial
dc.subject.proposalCampo vectorial / Hilbert Manifold - Tangent space
dc.subject.proposalVector bundle
dc.subject.proposalVector field
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit