Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorRíos Motta, Jaime Alberto
dc.contributor.authorBohórquez Villamil, Daniel Eduardo
dc.date.accessioned2024-10-24T00:43:41Z
dc.date.available2024-10-24T00:43:41Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87036
dc.descriptionilustraciones, diagramas, tablas
dc.description.abstractEn este trabajo fueron descritas en primer lugar las características generales que definen un puente de hidrógeno, parámetros, clasificación, incidencia en las propiedades fisicoquímicas y su relación con el efecto anomérico a través de la inferencia que en algunas ocasiones ejercen los puentes de hidrógeno sobre la conformación de las moléculas, en especial en los sistemas heterocíclicos del tipo bis-bencilimidazolidina a través del análisis de sus datos espectroscópicos. (Texto tomado de la fuente)
dc.description.abstractIn this paper, the general characteristics that define a hydrogen bond, parameters, classification, influence on the physicochemical properties and its relationship with the anomeric effect were first described through the inference that hydrogen bonds sometimes exert on the conformation of molecules, especially in heterocyclic systems of the bisbenzylimidazolidine type through the analysis of their spectroscopic data.
dc.format.extentxiv, 67 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.titleIncidencia de los puentes de hidrógeno intramoleculares sobre el efecto anomérico en sistemas heterocíclicos del tipo bis-bencilimidazolidinas [BISBIAs]
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.contributor.researchgroupSíntesis de Heterociclos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Química
dc.description.researchareaSíntesis orgánica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesCipcigan F, Sokhan V, Martyna G, Crain J. Structure and hydrogen bonding at the limits of liquid water stability. Sci Rep [Internet]. el 29 de enero de 2018;8(1):1718. Disponible en: https://www.nature.com/articles/s41598-017-18975-7
dc.relation.referencesDesiraju GR. Crystal Engineering: From Molecule to Crystal. J Am Chem Soc [Internet]. el 10 de julio de 2013;135(27):9952–67. Disponible en: https://pubs.acs.org/doi/10.1021/ja403264c
dc.relation.referencesBernstein J, Davis RE, Shimoni L, Chang N. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angewandte Chemie International Edition in English [Internet]. el 18 de agosto de 1995;34(15):1555–73. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/anie.199515551
dc.relation.referencesAakeröy. C.B., Sinha. A.S. Co-crystals [Internet]. Aakeröy CB, Sinha AS, editores. Cambridge: Royal Society of Chemistry; 2018. (Monographs in Supramolecular Chemistry). Disponible en: http://ebook.rsc.org/?DOI=10.1039/9781788012874
dc.relation.referencesSHAHI A, ARUNAN E. Why are Hydrogen Bonds Directional? Journal of Chemical Sciences [Internet]. el 13 de octubre de 2016;128(10):1571–7. Disponible en: http://link.springer.com/10.1007/s12039-016-1156-3
dc.relation.referencesBrini E, Fennell CJ, Fernandez-Serra M, Hribar-Lee B, Lukšič M, Dill KA. How Water’s Properties Are Encoded in Its Molecular Structure and Energies. Chem Rev [Internet]. el 11 de octubre de 2017;117(19):12385–414. Disponible en: https://pubs.acs.org/doi/10.1021/acs.chemrev.7b00259
dc.relation.referencesDuarte CJ, Freitas MP. Hydrogen bonding and stereoelectronic effects in the conformational isomerism of trans-2-bromocyclohexanol. J Mol Struct [Internet]. el 30 de julio de 2009;930(1–3):135–9. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0022286009002762
dc.relation.referencesLađarević J, Božić B, Matović L, Nedeljković BB, Mijin D. Role of the bifurcated intramolecular hydrogen bond on the physico-chemical profile of the novel azo pyridone dyes. Dyes and Pigments [Internet]. el 1 de marzo de 2019;162:562–72. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0143720818313421
dc.relation.referencesImani Z, Mundlapati VR, Goldsztejn G, Brenner V, Gloaguen E, Guillot R, et al. Conformation control through concurrent N–H⋯S and N–H⋯OC hydrogen bonding and hyperconjugation effects. Chem Sci [Internet]. el 14 de septiembre de 2020;11(34):9191–7. Disponible en: http://xlink.rsc.org/?DOI=D0SC03339A
dc.relation.referencesAlder RW, Carniero TMG, Mowlam RW, Orpen AG, Petillo PA, Vachon DJ, et al. Evidence for hydrogen-bond enhanced structural anomeric effects from the protonation of two aminals, 5-methyl-1,5,9-triazabicyclo[7.3.1]tridecane and 1,4,8,11-tetraazatricyclo[9.3.1.1 4,8]hexadecane. Journal of the Chemical Society, Perkin Transactions 2 [Internet]. 1999;(3):1–12. Disponible en: http://xlink.rsc.org/?DOI=a807954d
dc.relation.referencesRivera A, Osorio HJ, Uribe JM, Ríos-Motta J, Bolte M. Crystal structure of the 1,3,6,8-tetraazatricyclo[4.3.1.1 3,8 ]undecane (TATU)–4-nitrophenol (1/2) adduct: the role of anomeric effect in the formation of a second hydrogen-bond interaction. Acta Crystallogr E Crystallogr Commun [Internet]. el 1 de noviembre de 2015;71(11):1356–60. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S2056989015019659
dc.relation.referencesChang Raymond. Chemistry - Quimica (Séptima Edición). Vol. 1. México D.F: Mc Graw-Hill; 2005.
dc.relation.referencesLatimer WM, Rodebush WH. POLARITY AND IONIZATION FROM THE STANDPOINT OF THE LEWIS THEORY OF VALENCE. J Am Chem Soc [Internet]. el 1 de julio de 1920;42(7):1419–33. Disponible en: https://pubs.acs.org/doi/abs/10.1021/ja01452a015
dc.relation.referencesGeorge C. Pimentel and A.L. McClellan. The Hydrogen Bond. San Francisco: Freeman; 1960.
dc.relation.referencesArunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, et al. Defining the hydrogen bond: An account (IUPAC Technical Report). Pure and Applied Chemistry [Internet]. el 8 de julio de 2011;83(8):1619–36. Disponible en: https://www.degruyter.com/document/doi/10.1351/PAC-REP-10-01-01/html
dc.relation.referencesTriptow J, Meijer G, Fielicke A, Dopfer O, Green M. Comparison of Conventional and Nonconventional Hydrogen Bond Donors in Au – Complexes. J Phys Chem A [Internet]. el 23 de junio de 2022;126(24):3880–92. Disponible en: https://pubs.acs.org/doi/10.1021/acs.jpca.2c02725
dc.relation.referencesTsuzuki S, Fujii A. Nature and physical origin of CH/π interaction: significant difference from conventional hydrogen bonds. Physical Chemistry Chemical Physics [Internet]. 2008;10(19):2584. Disponible en: http://xlink.rsc.org/?DOI=b718656h
dc.relation.referencesJabłoński M. Binding of X–H to the lone-pair vacancy: Charge-inverted hydrogen bond. Chem Phys Lett [Internet]. agosto de 2009;477(4–6):374–6. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0009261409008161
dc.relation.referencesJabłoński M. Ten years of charge-inverted hydrogen bonds. Struct Chem [Internet]. el 18 de febrero de 2020;31(1):61–80. Disponible en: http://link.springer.com/10.1007/s11224-019-01454-2
dc.relation.referencesDesiraju GR (Gautam R), Steiner T. The weak hydrogen bond : in structural chemistry and biology. Oxford University Press; 1999. 507 p.
dc.relation.referencesShi X, Bao W. Hydrogen-Bonded Conjugated Materials and Their Application in Organic Field-Effect Transistors. Front Chem [Internet]. el 24 de agosto de 2021;9. Disponible en: https://www.frontiersin.org/articles/10.3389/fchem.2021.723718/full
dc.relation.referencesGilli G, Gilli P. The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory (Iuc’s Monographs on Crystallography). New York: Oxford; 2009.
dc.relation.referencesEtter MC. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res [Internet]. el 1 de abril de 1990;23(4):120–6. Disponible en: https://pubs.acs.org/doi/abs/10.1021/ar00172a005
dc.relation.referencesEtter MC. Hydrogen bonds as design elements in organic chemistry. J Phys Chem [Internet]. el 1 de junio de 1991;95(12):4601–10. Disponible en: https://pubs.acs.org/doi/abs/10.1021/j100165a007
dc.relation.referencesTon QC, Bolte M. Intra- and intermolecular proton transfer in 2,6-diaminopyridinium 4-hydroxypyridin-1-ium-2,6-dicarboxylate. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de octubre de 2012;68(10):o2860–1. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536812037580
dc.relation.referencesMorrison. R.T., Boyd. R.N. Química Orgánica. Quinta edición. Wilmington, Delaware, E.U.A.: Addison-Wesley Iberoamericana; 1990.
dc.relation.referencesIsmi DP, Pulungan R, Afiahayati. Deep learning for protein secondary structure prediction: Pre and post-AlphaFold. Comput Struct Biotechnol J [Internet]. el 1 de enero de 2022;20:6271–86. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2001037022005062
dc.relation.referencesWATSON JD, CRICK FHC. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature [Internet]. el 25 de abril de 1953;171(4356):737–8. Disponible en: https://www.nature.com/articles/171737a0
dc.relation.referencesBricogne G. Fourier transforms in crystallography: theory, algorithms and applications. En 2010. p. 24–113. Disponible en: https://xrpp.iucr.org/cgi-bin/itr?url_ver=Z39.88-2003&rft_dat=what%3Dchapter%26volid%3DBb%26chnumo%3D1o3%26chvers%3Dv0001
dc.relation.referencesUbic R. Crystallography and Crystal Chemistry [Internet]. Crystallography and Crystal Chemistry. Cham: Springer International Publishing; 2024. Disponible en: https://link.springer.com/10.1007/978-3-031-49752-0
dc.relation.referencesCooper RI, Thompson AL, Watkin DJ. CRYSTALS enhancements: dealing with hydrogen atoms in refinement. J Appl Crystallogr [Internet]. el 1 de octubre de 2010;43(5):1100–7. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S0021889810025598
dc.relation.referencesWendler K, Thar J, Zahn S, Kirchner B. Estimating the Hydrogen Bond Energy. J Phys Chem A [Internet]. el 9 de septiembre de 2010;114(35):9529–36. Disponible en: https://pubs.acs.org/doi/10.1021/jp103470e
dc.relation.referencesLakshmi B, Samuelson AG, Jovan Jose K V., Gadre SR, Arunan E. Is there a hydrogen bond radius? Evidence from microwave spectroscopy, neutron scattering and X-ray diffraction results. New Journal of Chemistry [Internet]. 2005;29(2):371. Disponible en: http://xlink.rsc.org/?DOI=b411815d
dc.relation.referencesJeffrey GA, Saenger W. Hydrogen Bonding in Biological Structures [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1991. Disponible en: http://link.springer.com/10.1007/978-3-642-85135-3
dc.relation.referencesBrzeziński B, Radziejewski P, Olejnik J, Zundel G. An intramolecular hydrogen-bonded system with large proton polarizability — a model with regard to the proton pathway in bacteriorhodopsin and other systems with collective proton motion. J Mol Struct [Internet]. julio de 1994;323:71–8. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/0022286094079773
dc.relation.referencesMartinez-Felipe A, Cook AG, Abberley JP, Walker R, Storey JMD, Imrie CT. An FT-IR spectroscopic study of the role of hydrogen bonding in the formation of liquid crystallinity for mixtures containing bipyridines and 4-pentoxybenzoic acid. RSC Adv [Internet]. 2016;6(110):108164–79. Disponible en: http://xlink.rsc.org/?DOI=C6RA17819G
dc.relation.referencesLi G, Zhang YY, Li Q, Wang C, Yu Y, Zhang B, et al. Infrared spectroscopic study of hydrogen bonding topologies in the smallest ice cube. Nat Commun [Internet]. el 28 de octubre de 2020;11(1):5449. Disponible en: https://www.nature.com/articles/s41467-020-19226-6
dc.relation.referencesIogansen A V. Direct proportionality of the hydrogen bonding energy and the intensification of the stretching w(XH) vibration in infrared spectra. Vol. 55, Spectrochimica Acta Part A. 1999.
dc.relation.referencesEgorochkin AN, Skobeleva SE. Infrared Spectroscopy of the Hydrogen Bond as a Method for the Investigation of Intramolecular Interactions. Russian Chemical Reviews [Internet]. el 31 de diciembre de 1979;48(12):1198–211. Disponible en: https://iopscience.iop.org/article/10.1070/RC1979v048n12ABEH002438
dc.relation.referencesGilbert AS. Hydrogen Bonding and Other Physicochemical Interactions Studied by IR and Raman Spectroscopy. En: Encyclopedia of Spectroscopy and Spectrometry [Internet]. Elsevier; 1999. p. 957–62. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/B9780123744135003390
dc.relation.referencesSilverstein RM and BGC. Spectrometric Identification of Organic Compunds [Internet]. 7a ed. Hoboken, New Jersey: John Wiley & Sons; 2005 [citado el 10 de enero de 2024]. Disponible en: https://bcs.wiley.com/he-bcs/Books?action=index&itemId=0471393622&itemTypeId=BKS&bcsId=2174
dc.relation.referencesRowlands LJ, Marks A, Sanderson JM, Law R V. 17 O NMR spectroscopy as a tool to study hydrogen bonding of cholesterol in lipid bilayers. Chemical Communications [Internet]. el 28 de noviembre de 2020;56(92):14499–502. Disponible en: http://xlink.rsc.org/?DOI=D0CC05466F
dc.relation.referencesGünther Harald. NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry [Internet]. 3rd Ed. Weinheim, Germany: John Wiley & Sons; 2013 [citado el 5 de noviembre de 2023]. Disponible en: https://www.wiley.com/en-br/NMR+Spectroscopy%3A+Basic+Principles%2C+Concepts+and+Applications+in+Chemistry%2C+3rd+Edition-p-9783527330003
dc.relation.referencesAliev AE, Harris KDM. Probing Hydrogen Bonding in Solids Using Solid State NMR Spectroscopy. En 2003. p. 1–53. Disponible en: http://link.springer.com/10.1007/b14136
dc.relation.referencesPretsch E, Bühlmann P, Badertscher M. Structure Determination of Organic Compounds [Internet]. Structure Determination of Organic Compounds: Tables of Spectral Data. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. 1–433 p. Disponible en: https://link.springer.com/10.1007/978-3-540-93810-1
dc.relation.referencesSchmuck C, Rehm T, Gröhn F, Klein K, Reinhold F. Ion pair driven self-assembly of a flexible bis-zwitterion in polar solution: Formation of discrete nanometer-sized cyclic dimers. J Am Chem Soc. el 8 de febrero de 2006;128(5):1430–1.
dc.relation.referencesDesiraju GR. The C−H···O Hydrogen Bond: Structural Implications and Supramolecular Design. Acc Chem Res [Internet]. el 11 de septiembre de 1996;29(9):441–9. Disponible en: https://pubs.acs.org/doi/10.1021/ar950135n
dc.relation.referencesRivera A, Quiroga D, Ríos-Motta J, Fejfarová K, Dušek M. 1,1′-[Imidazolidine-1,3-diylbis(methylene)]bis(1 H -benzotriazole). Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de febrero de 2012;68(2):o312–3. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536812000232
dc.relation.referencesMorrison LJ, Chai W, Rosenberg JA, Henkelman G, Brodbelt JS. Characterization of hydrogen bonding motifs in proteins: hydrogen elimination monitoring by ultraviolet photodissociation mass spectrometry. Physical Chemistry Chemical Physics [Internet]. 2017;19(30):20057–74. Disponible en: http://xlink.rsc.org/?DOI=C7CP04073C
dc.relation.referencesMarcsisin SR, Engen JR. Hydrogen exchange mass spectrometry: what is it and what can it tell us? Anal Bioanal Chem [Internet]. el 1 de junio de 2010;397(3):967–72. Disponible en: http://link.springer.com/10.1007/s00216-010-3556-4
dc.relation.referencesDannhauser W, Bahe LW. Dielectric Constant of Hydrogen Bonded Liquids. III. Superheated Alcohols. J Chem Phys [Internet]. el 15 de mayo de 1964;40(10):3058–66. Disponible en: https://pubs.aip.org/jcp/article/40/10/3058/78335/Dielectric-Constant-of-Hydrogen-Bonded-Liquids-III
dc.relation.referencesSuresh SJ, Naik VM. Hydrogen bond thermodynamic properties of water from dielectric constant data. J Chem Phys [Internet]. el 1 de diciembre de 2000;113(21):9727–32. Disponible en: https://pubs.aip.org/jcp/article/113/21/9727/148686/Hydrogen-bond-thermodynamic-properties-of-water
dc.relation.referencesSprik M. Hydrogen bonding and the static dielectric constant in liquid water. J Chem Phys [Internet]. el 1 de noviembre de 1991;95(9):6762–9. Disponible en: https://pubs.aip.org/jcp/article/95/9/6762/94763/Hydrogen-bonding-and-the-static-dielectric
dc.relation.referencesCañadas O, Casals C. Differential Scanning Calorimetry of Protein–Lipid Interactions. En: Methods in Molecular Biology [Internet]. Humana Press Inc.; 2019. p. 91–106. Disponible en: http://link.springer.com/10.1007/978-1-4939-9512-7_5
dc.relation.referencesZhou J, Lin S, Zeng H, Liu J, Li B, Xu Y, et al. Dynamic intermolecular interactions through hydrogen bonding of water promote heat conduction in hydrogels. Mater Horiz [Internet]. el 1 de noviembre de 2020;7(11):2936–43. Disponible en: http://xlink.rsc.org/?DOI=D0MH00735H
dc.relation.referencesLeyva-Porras C, Cruz-Alcantar P, Espinosa-Solís V, Martínez-Guerra E, Piñón-Balderrama CI, Compean Martínez I, et al. Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries. Polymers (Basel) [Internet]. el 18 de diciembre de 2019;12(1):5. Disponible en: https://www.mdpi.com/2073-4360/12/1/5
dc.relation.referencesFillaux F, Cousson A, Archilla JFR, Tomkinson J. A neutron scattering study of strong-symmetric hydrogen bonds in potassium and cesium hydrogen bistrifluoroacetates: Determination of the crystal structures and of the single-well potentials for protons. J Chem Phys [Internet]. el 28 de mayo de 2008;128(20). Disponible en: https://pubs.aip.org/jcp/article/128/20/204502/1003567/A-neutron-scattering-study-of-strong-symmetric
dc.relation.referencesKono F, Tamada T. Neutron crystallography for the elucidation of enzyme catalysis. Curr Opin Struct Biol [Internet]. el 1 de diciembre de 2021;71:36–42. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0959440X21000762
dc.relation.referencesNelson DL, Nelson RD, Cox MM. Lehninger Principles of Biochemistry, Fourth Edition [Internet]. W.H. Freeman; 2004. Disponible en: https://books.google.com.co/books?id=3DvrAQAACAAJ
dc.relation.referencesNeuheuser T, Hess BA, Reutel C, Weber E. Ab Initio Calculations of Supramolecular Recognition Modes. Cyclic versus Noncyclic Hydrogen Bonding in the Formic Acid/Formamide System. J Phys Chem [Internet]. el 1 de junio de 1994;98(26):6459–67. Disponible en: https://pubs.acs.org/doi/abs/10.1021/j100077a007
dc.relation.referencesNi J, Pignatello JJ. Charge-assisted hydrogen bonding as a cohesive force in soil organic matter: water solubility enhancement by addition of simple carboxylic acids. Environ Sci Process Impacts [Internet]. el 1 de septiembre de 2018;20(9):1225–33. Disponible en: http://xlink.rsc.org/?DOI=C8EM00255J
dc.relation.referencesGarcia-Viloca M, González-Lafont A, Lluch JM. Theoretical Study of the Low-Barrier Hydrogen Bond in the Hydrogen Maleate Anion in the Gas Phase. Comparison with Normal Hydrogen Bonds. J Am Chem Soc [Internet]. el 1 de febrero de 1997;119(5):1081–6. Disponible en: https://pubs.acs.org/doi/10.1021/ja962662n
dc.relation.referencesHuyskens P, Zeegers-Huyskens T. Associations moléculaires et équilibres acide-base. Journal de Chimie Physique [Internet]. el 28 de mayo de 1964;61:81–6. Disponible en: http://jcp.edpsciences.org/10.1051/jcp/1964610081
dc.relation.referencesZeegers-Huyskens Th, Huyskens P. Intermolecular Forces. En: Intermolecular Forces [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1991. p. 1–30. Disponible en: http://link.springer.com/10.1007/978-3-642-76260-4_1
dc.relation.referencesGilli P, Pretto L, Gilli G. PA/pKa equalization and the prediction of the hydrogen-bond strength: A synergism of classical thermodynamics and structural crystallography. J Mol Struct [Internet]. el 12 de noviembre de 2007;844–845:328–39. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0022286007003717
dc.relation.referencesGronert S. Theoretical studies of proton transfers. 1. The potential energy surfaces of the identity reactions of the first- and second-row non-metal hydrides with their conjugate bases. J Am Chem Soc [Internet]. el 1 de noviembre de 1993;115(22):10258–66. Disponible en: https://pubs.acs.org/doi/abs/10.1021/ja00075a047
dc.relation.referencesBalevicius V, Aidas K, Svoboda I, Fuess H. Hydrogen Bonding in Pyridine N -Oxide/Acid Systems: Proton Transfer and Fine Details Revealed by FTIR, NMR, and X-ray Diffraction. J Phys Chem A [Internet]. el 30 de agosto de 2012;116(34):8753–61. Disponible en: https://pubs.acs.org/doi/10.1021/jp305446n
dc.relation.referencesGilli G, Gilli P. Towards an unified hydrogen-bond theory. J Mol Struct [Internet]. septiembre de 2000;552(1–3):1–15. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0022286000004543
dc.relation.referencesRivera A, Uribe JM, Ríos-Motta J, Bolte M. Effect of protonation on the structure of 1,3,6,8-tetraazatricyclo[4.4.1.13,8] dodecane (TATD) adamanzane: Crystal structure and DFT analysis of 3,6,8-triaza-1-azoniatricyclo[4.4.1.13,8]dodecane 4-nitrophenolate 4-nitrophenol. Journal of Structural Chemistry [Internet]. el 15 de julio de 2017;58(4):789–96. Disponible en: http://link.springer.com/10.1134/S0022476617040217
dc.relation.referencesTahir MN, Khan AH, Shad HA. Crystal structure of ( E )-2-[(4-hydroxybenzylidene)azaniumyl]benzoate. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 1 de septiembre de 2014;70(9):o1008–o1008. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536814018273
dc.relation.referencesPakiari AH, Eskandari K. The chemical nature of very strong hydrogen bonds in some categories of compounds. Journal of Molecular Structure: THEOCHEM [Internet]. el 14 de febrero de 2006;759(1–3):51–60. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0166128005007499
dc.relation.referencesGóra RW, Maj M, Grabowski SJ. Resonance-assisted hydrogen bonds revisited. Resonance stabilization vs. charge delocalization. Physical Chemistry Chemical Physics [Internet]. el 21 de febrero de 2013;15(7):2514. Disponible en: http://xlink.rsc.org/?DOI=c2cp43562d
dc.relation.referencesHeydar A. Theoretical Study of Heteroatom Resonance-Assisted Hydrogen Bond: Effect of Substituent on-delocalization. J Chem Chem Eng [Internet]. 2010 [citado el 5 de noviembre de 2023];29(4). Disponible en: https://doaj.org/article/673ac4dae5914ae096467e5ef8468c24
dc.relation.referencesFerguson G, Marsh WC, Restivo RJ, Lloyd D. Conformational studies of 2,3-diacyl-5-nitrocyclopentadienes: delocalized systems with very short intramolecular O ⋯ H ⋯ O hydrogen bonds. Crystal and molecular structures of 2,3-diacetyl- and 2,3-dibenzoyl-5-nitrocyclopentadiene. Journal of the Chemical Society, Perkin Transactions 2 [Internet]. 1975;45(10):998. Disponible en: http://xlink.rsc.org/?DOI=p29750000998
dc.relation.referencesJönsson PG, Hamilton WC. Hydrogen Bond Studies. LX.* A Single Crystal Neutron Diffraction Study of Trichloroacetic Acid Dimer. J Chem Phys [Internet]. el 1 de mayo de 1972;56(9):4433–9. Disponible en: https://pubs.aip.org/jcp/article/56/9/4433/84285/Hydrogen-Bond-Studies-LX-A-Single-Crystal-Neutron
dc.relation.referencesGilli G, Bertolasi V, Ferretti V, Gilli P. Resonance-assisted hydrogen bonding. III. Formation of intermolecular hydrogen-bonded chains in crystals of β-diketone enols and its relevance to molecular association. Acta Crystallogr B [Internet]. el 1 de junio de 1993;49(3):564–76. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S0108768192012278
dc.relation.referencesWahl M. C-H···O hydrogen bonding in biology. Trends Biochem Sci [Internet]. marzo de 1997;22(3):97–102. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0968000497010049
dc.relation.referencesHorowitz S, Trievel RC. Carbon-Oxygen Hydrogen Bonding in Biological Structure and Function. Journal of Biological Chemistry [Internet]. el 7 de diciembre de 2012;287(50):41576–82. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0021925820438086
dc.relation.referencesFerstandig LL. Carbon as a Hydrogen Bonding Base and Carbon-Hydrogen-Carbon Bonding. J Am Chem Soc [Internet]. el 1 de septiembre de 1962;84(18):3553–7. Disponible en: https://pubs.acs.org/doi/abs/10.1021/ja00877a027
dc.relation.referencesKrebs B, Henkel G. Untersuchungen über S-H … S‐Wasserstoffbrücken Die Kristallstruktur der Diphenyldithiophosphinsäure bei 140 und 293 K. Z Anorg Allg Chem [Internet]. el 9 de abril de 1981;475(4):143–55. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/zaac.19814750417
dc.relation.referencesWebber AL, Yates JR, Zilka M, Sturniolo S, Uldry AC, Corlett EK, et al. Weak Intermolecular CH···N Hydrogen Bonding: Determination of 13 CH– 15 N Hydrogen-Bond Mediated J Couplings by Solid-State NMR Spectroscopy and First-Principles Calculations. J Phys Chem A [Internet]. el 23 de enero de 2020;124(3):560–72. Disponible en: https://pubs.acs.org/doi/10.1021/acs.jpca.9b10726
dc.relation.referencesBrammer L. Metals and hydrogen bonds. Dalton Transactions [Internet]. el 21 de agosto de 2003;(16):3145. Disponible en: http://xlink.rsc.org/?DOI=b303006g
dc.relation.referencesBrammer L, Zhao D, Ladipo FT, Braddock-Wilking J. Hydrogen bonds involving transition metal centres – a brief review. Acta Crystallogr B [Internet]. el 1 de agosto de 1995;51(4):632–40. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S0108768195003673
dc.relation.referencesFatima S, Mehrafrooz B, Boggs DG, Ali N, Singh S, Thielges MC, et al. Conformation-Dependent Hydrogen-Bonding Interactions in a Switchable Artificial Metalloprotein. Biochemistry [Internet]. el 20 de agosto de 2024;63(16):2040–50. Disponible en: https://pubs.acs.org/doi/10.1021/acs.biochem.4c00209
dc.relation.referencesGámiz-Hernández AP, Galstyan AS, Knapp EW. Understanding Rubredoxin Redox Potentials: Role of H-Bonds on Model Complexes. J Chem Theory Comput [Internet]. el 13 de octubre de 2009;5(10):2898–908. Disponible en: https://pubs.acs.org/doi/10.1021/ct900328c
dc.relation.referencesHusberg C, Ryde U. How are hydrogen bonds modified by metal binding? JBIC Journal of Biological Inorganic Chemistry [Internet]. el 31 de junio de 2013;18(5):499–522. Disponible en: http://link.springer.com/10.1007/s00775-013-0996-2
dc.relation.referencesSchmiedekamp A, Nanda V. Metal-activated histidine carbon donor hydrogen bonds contribute to metalloprotein folding and function. J Inorg Biochem [Internet]. julio de 2009;103(7):1054–60. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S016201340900097X
dc.relation.referencesSmith JN, Shirin Z, Carrano CJ. Control of Thiolate Nucleophilicity and Specificity in Zinc Metalloproteins by Hydrogen Bonding: Lessons from Model Compound Studies. J Am Chem Soc [Internet]. el 1 de enero de 2003;125(4):868–9. Disponible en: https://pubs.acs.org/doi/10.1021/ja029418i
dc.relation.referencesLipscomb WN. Structures of the Boron Hydrides. J Chem Phys [Internet]. el 1 de junio de 1954;22(6):985–8. Disponible en: https://pubs.aip.org/jcp/article/22/6/985/204318/Structures-of-the-Boron-Hydrides
dc.relation.referencesBrookhart M, Green MLH, Parkin G. Agostic interactions in transition metal compounds. Proceedings of the National Academy of Sciences [Internet]. el 24 de abril de 2007;104(17):6908–14. Disponible en: https://pnas.org/doi/full/10.1073/pnas.0610747104
dc.relation.referencesYadav VK. Steric and Stereoelectronic Effects in Organic Chemistry [Internet]. Cham: Springer International Publishing; 2021. Disponible en: https://link.springer.com/10.1007/978-3-030-75622-2
dc.relation.referencesAlabugin I V. Stereoelectronic effects : a bridge between structure and reactivity. 2016.
dc.relation.referencesKirby AJ. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1983. (Reactivity and Structure Concepts in Organic Chemistry; vol. 15). Disponible en: http://link.springer.com/10.1007/978-3-642-68676-4
dc.relation.referencesSovers OJ, Kern CW, Pitzer RM, Karplus M. Bond-Function Analysis of Rotational Barriers: Ethane. J Chem Phys [Internet]. el 15 de septiembre de 1968;49(6):2592–9. Disponible en: https://pubs.aip.org/jcp/article/49/6/2592/84697/Bond-Function-Analysis-of-Rotational-Barriers
dc.relation.referencesDíaz Pérez VM, García Moreno MI, Ortiz Mellet C, Fuentes J, Díaz Arribas JC, Cañada FJ, et al. Generalized Anomeric Effect in Action: Synthesis and Evaluation of Stable Reducing Indolizidine Glycomimetics as Glycosidase Inhibitors. J Org Chem [Internet]. el 1 de enero de 2000;65(1):136–43. Disponible en: https://pubs.acs.org/doi/10.1021/jo991242o
dc.relation.referencesSánchez-Fernández EM, Rísquez-Cuadro R, Aguilar-Moncayo M, García-Moreno MI, Mellet CO, García Fernández JM. Generalized Anomeric Effect in gem -Diamines: Stereoselective Synthesis of α- N -Linked Disaccharide Mimics. Org Lett [Internet]. el 6 de agosto de 2009;11(15):3306–9. Disponible en: https://pubs.acs.org/doi/10.1021/ol901125n
dc.relation.referencesMo Y, Gao J. Theoretical Analysis of the Rotational Barrier of Ethane. Acc Chem Res [Internet]. el 1 de febrero de 2007;40(2):113–9. Disponible en: https://pubs.acs.org/doi/10.1021/ar068073w
dc.relation.referencesGrossel Martin. Alicyclic Chemistry. 1st Ed. Oxford, New York: Oxford University Press; 1997
dc.relation.referencesMo Y. A Critical Analysis on the Rotation Barriers in Butane. J Org Chem [Internet]. el 16 de abril de 2010;75(8):2733–6. Disponible en: https://pubs.acs.org/doi/10.1021/jo1001164
dc.relation.referencesCormanich RA, Freitas MP. A Theoretical View on the Conformer Stabilization of Butane. J Org Chem [Internet]. el 6 de noviembre de 2009;74(21):8384–7. Disponible en: https://pubs.acs.org/doi/10.1021/jo901705p
dc.relation.referencesDragojlovic V. Conformational analysis of cycloalkanes. ChemTexts [Internet]. el 12 de septiembre de 2015;1(3):14. Disponible en: http://link.springer.com/10.1007/s40828-015-0014-0
dc.relation.referencesLemieux RU. Effects of unshared pairs of electrons and their solvation on conformational equilibria. Pure and Applied Chemistry [Internet]. el 1 de enero de 1971 [citado el 6 de noviembre de 2023];25(3):527–48. Disponible en: https://www.degruyter.com/document/doi/10.1351/pac197125030527/html
dc.relation.referencesBooth H, Lemieux RU. The Anomeric Effect: The Conformational Equilibria of Tetrahydro-1,3-oxazines and 1-Methyl-1,3-diazane. Can J Chem [Internet]. el 1 de marzo de 1971;49(5):777–88. Disponible en: http://www.nrcresearchpress.com/doi/10.1139/v71-129
dc.relation.referencesThatcher GRJ. Anomeric and Associated Stereoelectronic Effects. En 1993. p. 6–25. Disponible en: https://pubs.acs.org/doi/abs/10.1021/bk-1993-0539.ch002
dc.relation.referencesEdward JT. Stability of glycosides to acid hydrolysis. Chem Ind. 1955;1102–4.
dc.relation.referencesE. Juaristi and G. Cuevas. The Anomeric Effect. Boca Ratón: CRC Press; 1995.
dc.relation.referencesAlabugin I V., dos Passos Gomes G, Abdo MA. Hyperconjugation. WIREs Computational Molecular Science [Internet]. el 6 de marzo de 2019;9(2). Disponible en: https://wires.onlinelibrary.wiley.com/doi/10.1002/wcms.1389
dc.relation.referencesDeslongchamps G, Deslongchamps P. Bent bonds, the antiperiplanar hypothesis and the theory of resonance. A simple model to understand reactivity in organic chemistry. Org Biomol Chem [Internet]. el 7 de agosto de 2011;9(15):5321. Disponible en: http://xlink.rsc.org/?DOI=c1ob05393k
dc.relation.referencesWang C, Ying F, Wu W, Mo Y. Sensing or No Sensing: Can the Anomeric Effect Be Probed by a Sensing Molecule? J Am Chem Soc [Internet]. el 31 de agosto de 2011;133(34):13731–6. Disponible en: https://pubs.acs.org/doi/10.1021/ja205613x
dc.relation.referencesBertolasi V, Ferretti V, Gilli G, Marchetti P, D’Angeli F. Evidence for the exo-anomeric stereoelectronic effect in cyclic orthoester aminals from X-ray structural data. Crystal structures of three 2-amino-1,3-oxazolidin-4-one derivatives. Journal of the Chemical Society, Perkin Transactions 2 [Internet]. 1990;2(12):2135. Disponible en: http://xlink.rsc.org/?DOI=p29900002135
dc.relation.referencesTakahashi O, Yamasaki K, Kohno Y, Ohtaki R, Ueda K, Suezawa H, et al. The anomeric effect revisited. A possible role of the CH/n hydrogen bond. Carbohydr Res [Internet]. el 2 de julio de 2007;342(9):1202–9. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0008621507001243
dc.relation.referencesTakahashi O, Yamasaki K, Kohno Y, Ueda K, Suezawa H, Nishio M. The Origin of the Relative Stability of Axial Conformers of Cyclohexane and Cyclohexanone Derivatives: Importance of the CH/n and CH/π Hydrogen Bonds. Bull Chem Soc Jpn [Internet]. el 15 de febrero de 2009;82(2):272–6. Disponible en: http://www.journal.csj.jp/doi/10.1246/bcsj.82.272
dc.relation.referencesTakahashi O, Yamasaki K, Kohno Y, Ueda K, Suezawa H, Nishio M. The origin of the generalized anomeric effect: possibility of CH/n and CH/π hydrogen bonds. Carbohydr Res [Internet]. el 6 de julio de 2009;344(10):1225–9. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0008621509001670
dc.relation.referencesWolfe S, Schlegel HB, Whangbo MH, Bernardi F. On the Origin of the Bohlmann Bands. Can J Chem. el 15 de noviembre de 1974;52(22):3787–92.
dc.relation.referencesPerrin CL. Reverse anomeric effect: fact or fiction? Tetrahedron [Internet]. octubre de 1995;51(44):11901–35. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/004040209500560U
dc.relation.referencesPerrin CL, Armstrong KB. Conformational analysis of glucopyranosylammonium ions: does the reverse anomeric effect exist? J Am Chem Soc [Internet]. el 1 de julio de 1993;115(15):6825–34. Disponible en: https://pubs.acs.org/doi/abs/10.1021/ja00068a046
dc.relation.referencesJones PG, Komarov I V., Wothers PD. A test for the reverse anomeric effect. Chemical Communications [Internet]. 1998;(16):1695–6. Disponible en: http://xlink.rsc.org/?DOI=a804354j
dc.relation.referencesMatamoros E, Pérez EMS, Light ME, Cintas P, Martínez RF, Palacios JC. A True Reverse Anomeric Effect Does Exist After All: A Hydrogen Bonding Stereocontrolling Effect in 2-Iminoaldoses. J Org Chem [Internet]. el 7 de junio de 2024;89(11):7877–98. Disponible en: https://pubs.acs.org/doi/10.1021/acs.joc.4c00562
dc.relation.referencesRivera A, Ríos-Motta J, Quevedo R, Joseph-Nathan P. NUEVOS ASPECTOS DE LA REACCIÓN TIPO MANNICH EN MEDIO BÁSICO DE 1,3,6,8-TETRAZATRICICLO[4.4.1.13,8] DODECANO (TATD) CON FENOLES. Revista Colombiana de Química [Internet]. 2005 [citado el 12 de noviembre de 2023];34(105). Disponible en: https://repositorio.unal.edu.co/handle/unal/22259
dc.relation.referencesFedorowicz A, Mavri J, Bala P, Koll A. Molecular dynamics study of the tautomeric equilibrium in the Mannich base. Chem Phys Lett [Internet]. junio de 1998;289(5–6):457–62. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0009261498004229
dc.relation.referencesMINOR WF, JOHNSON DA, CHENEY LC. A Crystalline Imidazolidine Derivative of Streptomycin. J Org Chem [Internet]. el 1 de mayo de 1956;21(5):528–9. Disponible en: https://pubs.acs.org/doi/abs/10.1021/jo01111a011
dc.relation.referencesHusain A, Bhutani R, Kumar D, Shin DS. Synthesis and Biological Evaluation of Novel Substituted-Imidazolidine Derivatives. Journal of the Korean Chemical Society [Internet]. el 20 de abril de 2013;57(2):227–33. Disponible en: http://koreascience.or.kr/journal/view.jsp?kj=JCGMDC&py=2013&vnc=v57n2&sp=227
dc.relation.referencesJoullie MM, Slusarczuk GMJ, Dey AS, Venuto PB, Yocum RH. Synthesis and properties of fluorine-containing heterocyclic compounds. IV. N,N-Unsubstituted imidazolidine. J Org Chem [Internet]. el 1 de diciembre de 1967;32(12):4103–5. Disponible en: https://pubs.acs.org/doi/abs/10.1021/jo01287a100
dc.relation.referencesFerm RJ, Riebsomer JL. The Chemistry of the 2-Imidazolines and Imidazolidines. Chem Rev [Internet]. el 1 de agosto de 1954;54(4):593–613. Disponible en: https://pubs.acs.org/doi/abs/10.1021/cr60170a002
dc.relation.referencesLambert JB, Huseland DE, Wang G tai. Synthesis of 1,3-Disubstituted Diazolidines. Synthesis (Stuttg) [Internet]. 1986;1986(08):657–8. Disponible en: http://www.thieme-connect.de/DOI/DOI?10.1055/s-1986-31737
dc.relation.referencesA. Perillo I, de los Santos C, Salerno A. <sup>1<sup/>H NMR Spectroscopy and Conformational Analysis of N-Benzylimidazolidines. Heterocycles [Internet]. 2003;60(1):89. Disponible en: http://www.heterocycles.jp/newlibrary/libraries/abst/00824
dc.relation.referencesGarcías-Morales C, Martínez-Salas SH, Ariza-Castolo A. The effect of the nitrogen non-bonding electron pair on the NMR and X-ray in 1,3-diazaheterocycles. Tetrahedron Lett [Internet]. el 27 de junio de 2012;53(26):3310–5. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0040403912006740
dc.relation.referencesRivera A, Nerio LS, Ríos-Motta J, Fejfarová K, Dušek M. 2,2′-[Imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de enero de 2012;68(1):o170–1. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536811053748
dc.relation.referencesRivera A, Nerio LS, Ríos-Motta J, Kučeraková M, Dušek M. 4,4′-Dimethyl-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de noviembre de 2012;68(11):o3172–o3172. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536812042808
dc.relation.referencesRivera A, Nerio LS, Bolte M. 6,6′-Dimethyl-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 1 de marzo de 2014;70(3):o243–o243. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536814002128
dc.relation.referencesRivera A, Sadat-Bernal J, Ríos-Motta J, Pojarová M, Dušek M. 4,4′-Dichloro-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de octubre de 2011;67(10):o2581–o2581. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536811035677
dc.relation.referencesRivera A, Nerio LS, Ríos-Motta J, Kučeráková M, Dušek M. 4,4′-Difluoro-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de octubre de 2012;68(10):o3043–4. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536812040329
dc.relation.referencesRivera A, Nerio LS, Bolte M. 4,4′-Di- tert -butyl-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de julio de 2013;69(7):o1166–o1166. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536813017157
dc.relation.referencesRivera A, Nerio LS, Bolte M. Crystal structure of the di-Mannich base 4,4′-dichloro-3,3′,5,5′-tetramethyl-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr E Crystallogr Commun [Internet]. el 1 de marzo de 2015;71(3):312–4. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S2056989015002212
dc.relation.referencesRivera A, Inés Gallo G, Elena Gayón Ma, Joseph-Nathan P. A Novel Manich Type Reaction Using Aminals in Alkaline Medium. Synth Commun [Internet]. noviembre de 1993;23(20):2921–9. Disponible en: http://www.tandfonline.com/doi/abs/10.1080/00397919308012614
dc.relation.referencesRivera A, Rojas JJ, Ríos-Motta J, Bolte M. Crystal structure of 1,1′-[imidazolidine-1,3-diylbis(methylene)]bis(naphthalen-2-ol). Acta Crystallogr E Crystallogr Commun [Internet]. el 1 de marzo de 2015;71(3):258–60. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S2056989015002078
dc.relation.referencesRivera A, Inés Gallo G, Elena Gayón Ma, Joseph-Nathan P. 1,3- bis (2’-Hydroxybenzyl)imidazolidines as Novel Precursors of 3,3′-Ethylene- bis (3,4-dihydro-2H-1,3-benzoxazine). Synth Commun [Internet]. julio de 1994;24(14):2081–9. Disponible en: http://www.tandfonline.com/doi/abs/10.1080/00397919408010219
dc.relation.referencesRoy K, Popelier PLA. Predictive QSPR modeling of the acidic dissociation constant (pKa) of phenols in different solvents. J Phys Org Chem [Internet]. el 21 de marzo de 2009;22(3):186–96. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/poc.1447
dc.relation.referencesMoss GP. Basic terminology of stereochemistry (IUPAC Recommendations 1996). Pure and Applied Chemistry [Internet]. el 1 de enero de 1996;68(12):2193–222. Disponible en: https://www.degruyter.com/document/doi/10.1351/pac199668122193/html
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCOMPUESTOS HETEROCICLICOS
dc.subject.lembHeterocyclic compounds
dc.subject.lembENLACES DE HIDROGENO
dc.subject.lembHydrogen bonding
dc.subject.proposalPuente de hidrógeno
dc.subject.proposalEfecto anomérico
dc.subject.proposalHydrogen bond
dc.subject.proposalAnomeric effect
dc.subject.proposalBISBIAs
dc.title.translatedIncidence of intramolecular hydrogen bonds on the anomeric effect in heterocyclic systems of the bis-benzylimidazolidines [BISBIAs] type
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit