dc.rights.license | Atribución-NoComercial 4.0 Internacional |
dc.contributor.advisor | Ríos Motta, Jaime Alberto |
dc.contributor.author | Bohórquez Villamil, Daniel Eduardo |
dc.date.accessioned | 2024-10-24T00:43:41Z |
dc.date.available | 2024-10-24T00:43:41Z |
dc.date.issued | 2024 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87036 |
dc.description | ilustraciones, diagramas, tablas |
dc.description.abstract | En este trabajo fueron descritas en primer lugar las características generales que definen un puente de hidrógeno, parámetros, clasificación, incidencia en las propiedades fisicoquímicas y su relación con el efecto anomérico a través de la inferencia que en algunas ocasiones ejercen los puentes de hidrógeno sobre la conformación de las moléculas, en especial en los sistemas heterocíclicos del tipo bis-bencilimidazolidina a través del análisis de sus datos espectroscópicos. (Texto tomado de la fuente) |
dc.description.abstract | In this paper, the general characteristics that define a hydrogen bond, parameters,
classification, influence on the physicochemical properties and its relationship with the
anomeric effect were first described through the inference that hydrogen bonds sometimes
exert on the conformation of molecules, especially in heterocyclic systems of the bisbenzylimidazolidine type through the analysis of their spectroscopic data. |
dc.format.extent | xiv, 67 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ |
dc.subject.ddc | 540 - Química y ciencias afines |
dc.title | Incidencia de los puentes de hidrógeno intramoleculares sobre el efecto anomérico en sistemas heterocíclicos del tipo bis-bencilimidazolidinas [BISBIAs] |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.contributor.researchgroup | Síntesis de Heterociclos |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magíster en Ciencias - Química |
dc.description.researcharea | Síntesis orgánica |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ciencias |
dc.publisher.place | Bogotá, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Cipcigan F, Sokhan V, Martyna G, Crain J. Structure and hydrogen bonding at the limits of liquid water stability. Sci Rep [Internet]. el 29 de enero de 2018;8(1):1718. Disponible en: https://www.nature.com/articles/s41598-017-18975-7 |
dc.relation.references | Desiraju GR. Crystal Engineering: From Molecule to Crystal. J Am Chem Soc [Internet]. el 10 de julio de 2013;135(27):9952–67. Disponible en: https://pubs.acs.org/doi/10.1021/ja403264c |
dc.relation.references | Bernstein J, Davis RE, Shimoni L, Chang N. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angewandte Chemie International Edition in English [Internet]. el 18 de agosto de 1995;34(15):1555–73. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/anie.199515551 |
dc.relation.references | Aakeröy. C.B., Sinha. A.S. Co-crystals [Internet]. Aakeröy CB, Sinha AS, editores. Cambridge: Royal Society of Chemistry; 2018. (Monographs in Supramolecular Chemistry). Disponible en: http://ebook.rsc.org/?DOI=10.1039/9781788012874 |
dc.relation.references | SHAHI A, ARUNAN E. Why are Hydrogen Bonds Directional? Journal of Chemical Sciences [Internet]. el 13 de octubre de 2016;128(10):1571–7. Disponible en: http://link.springer.com/10.1007/s12039-016-1156-3 |
dc.relation.references | Brini E, Fennell CJ, Fernandez-Serra M, Hribar-Lee B, Lukšič M, Dill KA. How Water’s Properties Are Encoded in Its Molecular Structure and Energies. Chem Rev [Internet]. el 11 de octubre de 2017;117(19):12385–414. Disponible en: https://pubs.acs.org/doi/10.1021/acs.chemrev.7b00259 |
dc.relation.references | Duarte CJ, Freitas MP. Hydrogen bonding and stereoelectronic effects in the conformational isomerism of trans-2-bromocyclohexanol. J Mol Struct [Internet]. el 30 de julio de 2009;930(1–3):135–9. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0022286009002762 |
dc.relation.references | Lađarević J, Božić B, Matović L, Nedeljković BB, Mijin D. Role of the bifurcated intramolecular hydrogen bond on the physico-chemical profile of the novel azo pyridone dyes. Dyes and Pigments [Internet]. el 1 de marzo de 2019;162:562–72. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0143720818313421 |
dc.relation.references | Imani Z, Mundlapati VR, Goldsztejn G, Brenner V, Gloaguen E, Guillot R, et al. Conformation control through concurrent N–H⋯S and N–H⋯OC hydrogen bonding and hyperconjugation effects. Chem Sci [Internet]. el 14 de septiembre de 2020;11(34):9191–7. Disponible en: http://xlink.rsc.org/?DOI=D0SC03339A |
dc.relation.references | Alder RW, Carniero TMG, Mowlam RW, Orpen AG, Petillo PA, Vachon DJ, et al. Evidence for hydrogen-bond enhanced structural anomeric effects from the protonation of two aminals, 5-methyl-1,5,9-triazabicyclo[7.3.1]tridecane and 1,4,8,11-tetraazatricyclo[9.3.1.1 4,8]hexadecane. Journal of the Chemical Society, Perkin Transactions 2 [Internet]. 1999;(3):1–12. Disponible en: http://xlink.rsc.org/?DOI=a807954d |
dc.relation.references | Rivera A, Osorio HJ, Uribe JM, Ríos-Motta J, Bolte M. Crystal structure of the 1,3,6,8-tetraazatricyclo[4.3.1.1 3,8 ]undecane (TATU)–4-nitrophenol (1/2) adduct: the role of anomeric effect in the formation of a second hydrogen-bond interaction. Acta Crystallogr E Crystallogr Commun [Internet]. el 1 de noviembre de 2015;71(11):1356–60. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S2056989015019659 |
dc.relation.references | Chang Raymond. Chemistry - Quimica (Séptima Edición). Vol. 1. México D.F: Mc Graw-Hill; 2005. |
dc.relation.references | Latimer WM, Rodebush WH. POLARITY AND IONIZATION FROM THE STANDPOINT OF THE LEWIS THEORY OF VALENCE. J Am Chem Soc [Internet]. el 1 de julio de 1920;42(7):1419–33. Disponible en: https://pubs.acs.org/doi/abs/10.1021/ja01452a015 |
dc.relation.references | George C. Pimentel and A.L. McClellan. The Hydrogen Bond. San Francisco: Freeman; 1960. |
dc.relation.references | Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, et al. Defining the hydrogen bond: An account (IUPAC Technical Report). Pure and Applied Chemistry [Internet]. el 8 de julio de 2011;83(8):1619–36. Disponible en: https://www.degruyter.com/document/doi/10.1351/PAC-REP-10-01-01/html |
dc.relation.references | Triptow J, Meijer G, Fielicke A, Dopfer O, Green M. Comparison of Conventional and Nonconventional Hydrogen Bond Donors in Au – Complexes. J Phys Chem A [Internet]. el 23 de junio de 2022;126(24):3880–92. Disponible en: https://pubs.acs.org/doi/10.1021/acs.jpca.2c02725 |
dc.relation.references | Tsuzuki S, Fujii A. Nature and physical origin of CH/π interaction: significant difference from conventional hydrogen bonds. Physical Chemistry Chemical Physics [Internet]. 2008;10(19):2584. Disponible en: http://xlink.rsc.org/?DOI=b718656h |
dc.relation.references | Jabłoński M. Binding of X–H to the lone-pair vacancy: Charge-inverted hydrogen bond. Chem Phys Lett [Internet]. agosto de 2009;477(4–6):374–6. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0009261409008161 |
dc.relation.references | Jabłoński M. Ten years of charge-inverted hydrogen bonds. Struct Chem [Internet]. el 18 de febrero de 2020;31(1):61–80. Disponible en: http://link.springer.com/10.1007/s11224-019-01454-2 |
dc.relation.references | Desiraju GR (Gautam R), Steiner T. The weak hydrogen bond : in structural chemistry and biology. Oxford University Press; 1999. 507 p. |
dc.relation.references | Shi X, Bao W. Hydrogen-Bonded Conjugated Materials and Their Application in Organic Field-Effect Transistors. Front Chem [Internet]. el 24 de agosto de 2021;9. Disponible en: https://www.frontiersin.org/articles/10.3389/fchem.2021.723718/full |
dc.relation.references | Gilli G, Gilli P. The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory (Iuc’s Monographs on Crystallography). New York: Oxford; 2009. |
dc.relation.references | Etter MC. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res [Internet]. el 1 de abril de 1990;23(4):120–6. Disponible en: https://pubs.acs.org/doi/abs/10.1021/ar00172a005 |
dc.relation.references | Etter MC. Hydrogen bonds as design elements in organic chemistry. J Phys Chem [Internet]. el 1 de junio de 1991;95(12):4601–10. Disponible en: https://pubs.acs.org/doi/abs/10.1021/j100165a007 |
dc.relation.references | Ton QC, Bolte M. Intra- and intermolecular proton transfer in 2,6-diaminopyridinium 4-hydroxypyridin-1-ium-2,6-dicarboxylate. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de octubre de 2012;68(10):o2860–1. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536812037580 |
dc.relation.references | Morrison. R.T., Boyd. R.N. Química Orgánica. Quinta edición. Wilmington, Delaware, E.U.A.: Addison-Wesley Iberoamericana; 1990. |
dc.relation.references | Ismi DP, Pulungan R, Afiahayati. Deep learning for protein secondary structure prediction: Pre and post-AlphaFold. Comput Struct Biotechnol J [Internet]. el 1 de enero de 2022;20:6271–86. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2001037022005062 |
dc.relation.references | WATSON JD, CRICK FHC. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature [Internet]. el 25 de abril de 1953;171(4356):737–8. Disponible en: https://www.nature.com/articles/171737a0 |
dc.relation.references | Bricogne G. Fourier transforms in crystallography: theory, algorithms and applications. En 2010. p. 24–113. Disponible en: https://xrpp.iucr.org/cgi-bin/itr?url_ver=Z39.88-2003&rft_dat=what%3Dchapter%26volid%3DBb%26chnumo%3D1o3%26chvers%3Dv0001 |
dc.relation.references | Ubic R. Crystallography and Crystal Chemistry [Internet]. Crystallography and Crystal Chemistry. Cham: Springer International Publishing; 2024. Disponible en: https://link.springer.com/10.1007/978-3-031-49752-0 |
dc.relation.references | Cooper RI, Thompson AL, Watkin DJ. CRYSTALS enhancements: dealing with hydrogen atoms in refinement. J Appl Crystallogr [Internet]. el 1 de octubre de 2010;43(5):1100–7. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S0021889810025598 |
dc.relation.references | Wendler K, Thar J, Zahn S, Kirchner B. Estimating the Hydrogen Bond Energy. J Phys Chem A [Internet]. el 9 de septiembre de 2010;114(35):9529–36. Disponible en: https://pubs.acs.org/doi/10.1021/jp103470e |
dc.relation.references | Lakshmi B, Samuelson AG, Jovan Jose K V., Gadre SR, Arunan E. Is there a hydrogen bond radius? Evidence from microwave spectroscopy, neutron scattering and X-ray diffraction results. New Journal of Chemistry [Internet]. 2005;29(2):371. Disponible en: http://xlink.rsc.org/?DOI=b411815d |
dc.relation.references | Jeffrey GA, Saenger W. Hydrogen Bonding in Biological Structures [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1991. Disponible en: http://link.springer.com/10.1007/978-3-642-85135-3 |
dc.relation.references | Brzeziński B, Radziejewski P, Olejnik J, Zundel G. An intramolecular hydrogen-bonded system with large proton polarizability — a model with regard to the proton pathway in bacteriorhodopsin and other systems with collective proton motion. J Mol Struct [Internet]. julio de 1994;323:71–8. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/0022286094079773 |
dc.relation.references | Martinez-Felipe A, Cook AG, Abberley JP, Walker R, Storey JMD, Imrie CT. An FT-IR spectroscopic study of the role of hydrogen bonding in the formation of liquid crystallinity for mixtures containing bipyridines and 4-pentoxybenzoic acid. RSC Adv [Internet]. 2016;6(110):108164–79. Disponible en: http://xlink.rsc.org/?DOI=C6RA17819G |
dc.relation.references | Li G, Zhang YY, Li Q, Wang C, Yu Y, Zhang B, et al. Infrared spectroscopic study of hydrogen bonding topologies in the smallest ice cube. Nat Commun [Internet]. el 28 de octubre de 2020;11(1):5449. Disponible en: https://www.nature.com/articles/s41467-020-19226-6 |
dc.relation.references | Iogansen A V. Direct proportionality of the hydrogen bonding energy and the intensification of the stretching w(XH) vibration in infrared spectra. Vol. 55, Spectrochimica Acta Part A. 1999. |
dc.relation.references | Egorochkin AN, Skobeleva SE. Infrared Spectroscopy of the Hydrogen Bond as a Method for the Investigation of Intramolecular Interactions. Russian Chemical Reviews [Internet]. el 31 de diciembre de 1979;48(12):1198–211. Disponible en: https://iopscience.iop.org/article/10.1070/RC1979v048n12ABEH002438 |
dc.relation.references | Gilbert AS. Hydrogen Bonding and Other Physicochemical Interactions Studied by IR and Raman Spectroscopy. En: Encyclopedia of Spectroscopy and Spectrometry [Internet]. Elsevier; 1999. p. 957–62. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/B9780123744135003390 |
dc.relation.references | Silverstein RM and BGC. Spectrometric Identification of Organic Compunds [Internet]. 7a ed. Hoboken, New Jersey: John Wiley & Sons; 2005 [citado el 10 de enero de 2024]. Disponible en: https://bcs.wiley.com/he-bcs/Books?action=index&itemId=0471393622&itemTypeId=BKS&bcsId=2174 |
dc.relation.references | Rowlands LJ, Marks A, Sanderson JM, Law R V. 17 O NMR spectroscopy as a tool to study hydrogen bonding of cholesterol in lipid bilayers. Chemical Communications [Internet]. el 28 de noviembre de 2020;56(92):14499–502. Disponible en: http://xlink.rsc.org/?DOI=D0CC05466F |
dc.relation.references | Günther Harald. NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry [Internet]. 3rd Ed. Weinheim, Germany: John Wiley & Sons; 2013 [citado el 5 de noviembre de 2023]. Disponible en: https://www.wiley.com/en-br/NMR+Spectroscopy%3A+Basic+Principles%2C+Concepts+and+Applications+in+Chemistry%2C+3rd+Edition-p-9783527330003 |
dc.relation.references | Aliev AE, Harris KDM. Probing Hydrogen Bonding in Solids Using Solid State NMR Spectroscopy. En 2003. p. 1–53. Disponible en: http://link.springer.com/10.1007/b14136 |
dc.relation.references | Pretsch E, Bühlmann P, Badertscher M. Structure Determination of Organic Compounds [Internet]. Structure Determination of Organic Compounds: Tables of Spectral Data. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. 1–433 p. Disponible en: https://link.springer.com/10.1007/978-3-540-93810-1 |
dc.relation.references | Schmuck C, Rehm T, Gröhn F, Klein K, Reinhold F. Ion pair driven self-assembly of a flexible bis-zwitterion in polar solution: Formation of discrete nanometer-sized cyclic dimers. J Am Chem Soc. el 8 de febrero de 2006;128(5):1430–1. |
dc.relation.references | Desiraju GR. The C−H···O Hydrogen Bond: Structural Implications and Supramolecular Design. Acc Chem Res [Internet]. el 11 de septiembre de 1996;29(9):441–9. Disponible en: https://pubs.acs.org/doi/10.1021/ar950135n |
dc.relation.references | Rivera A, Quiroga D, Ríos-Motta J, Fejfarová K, Dušek M. 1,1′-[Imidazolidine-1,3-diylbis(methylene)]bis(1 H -benzotriazole). Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de febrero de 2012;68(2):o312–3. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536812000232 |
dc.relation.references | Morrison LJ, Chai W, Rosenberg JA, Henkelman G, Brodbelt JS. Characterization of hydrogen bonding motifs in proteins: hydrogen elimination monitoring by ultraviolet photodissociation mass spectrometry. Physical Chemistry Chemical Physics [Internet]. 2017;19(30):20057–74. Disponible en: http://xlink.rsc.org/?DOI=C7CP04073C |
dc.relation.references | Marcsisin SR, Engen JR. Hydrogen exchange mass spectrometry: what is it and what can it tell us? Anal Bioanal Chem [Internet]. el 1 de junio de 2010;397(3):967–72. Disponible en: http://link.springer.com/10.1007/s00216-010-3556-4 |
dc.relation.references | Dannhauser W, Bahe LW. Dielectric Constant of Hydrogen Bonded Liquids. III. Superheated Alcohols. J Chem Phys [Internet]. el 15 de mayo de 1964;40(10):3058–66. Disponible en: https://pubs.aip.org/jcp/article/40/10/3058/78335/Dielectric-Constant-of-Hydrogen-Bonded-Liquids-III |
dc.relation.references | Suresh SJ, Naik VM. Hydrogen bond thermodynamic properties of water from dielectric constant data. J Chem Phys [Internet]. el 1 de diciembre de 2000;113(21):9727–32. Disponible en: https://pubs.aip.org/jcp/article/113/21/9727/148686/Hydrogen-bond-thermodynamic-properties-of-water |
dc.relation.references | Sprik M. Hydrogen bonding and the static dielectric constant in liquid water. J Chem Phys [Internet]. el 1 de noviembre de 1991;95(9):6762–9. Disponible en: https://pubs.aip.org/jcp/article/95/9/6762/94763/Hydrogen-bonding-and-the-static-dielectric |
dc.relation.references | Cañadas O, Casals C. Differential Scanning Calorimetry of Protein–Lipid Interactions. En: Methods in Molecular Biology [Internet]. Humana Press Inc.; 2019. p. 91–106. Disponible en: http://link.springer.com/10.1007/978-1-4939-9512-7_5 |
dc.relation.references | Zhou J, Lin S, Zeng H, Liu J, Li B, Xu Y, et al. Dynamic intermolecular interactions through hydrogen bonding of water promote heat conduction in hydrogels. Mater Horiz [Internet]. el 1 de noviembre de 2020;7(11):2936–43. Disponible en: http://xlink.rsc.org/?DOI=D0MH00735H |
dc.relation.references | Leyva-Porras C, Cruz-Alcantar P, Espinosa-Solís V, Martínez-Guerra E, Piñón-Balderrama CI, Compean Martínez I, et al. Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries. Polymers (Basel) [Internet]. el 18 de diciembre de 2019;12(1):5. Disponible en: https://www.mdpi.com/2073-4360/12/1/5 |
dc.relation.references | Fillaux F, Cousson A, Archilla JFR, Tomkinson J. A neutron scattering study of strong-symmetric hydrogen bonds in potassium and cesium hydrogen bistrifluoroacetates: Determination of the crystal structures and of the single-well potentials for protons. J Chem Phys [Internet]. el 28 de mayo de 2008;128(20). Disponible en: https://pubs.aip.org/jcp/article/128/20/204502/1003567/A-neutron-scattering-study-of-strong-symmetric |
dc.relation.references | Kono F, Tamada T. Neutron crystallography for the elucidation of enzyme catalysis. Curr Opin Struct Biol [Internet]. el 1 de diciembre de 2021;71:36–42. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0959440X21000762 |
dc.relation.references | Nelson DL, Nelson RD, Cox MM. Lehninger Principles of Biochemistry, Fourth Edition [Internet]. W.H. Freeman; 2004. Disponible en: https://books.google.com.co/books?id=3DvrAQAACAAJ |
dc.relation.references | Neuheuser T, Hess BA, Reutel C, Weber E. Ab Initio Calculations of Supramolecular Recognition Modes. Cyclic versus Noncyclic Hydrogen Bonding in the Formic Acid/Formamide System. J Phys Chem [Internet]. el 1 de junio de 1994;98(26):6459–67. Disponible en: https://pubs.acs.org/doi/abs/10.1021/j100077a007 |
dc.relation.references | Ni J, Pignatello JJ. Charge-assisted hydrogen bonding as a cohesive force in soil organic matter: water solubility enhancement by addition of simple carboxylic acids. Environ Sci Process Impacts [Internet]. el 1 de septiembre de 2018;20(9):1225–33. Disponible en: http://xlink.rsc.org/?DOI=C8EM00255J |
dc.relation.references | Garcia-Viloca M, González-Lafont A, Lluch JM. Theoretical Study of the Low-Barrier Hydrogen Bond in the Hydrogen Maleate Anion in the Gas Phase. Comparison with Normal Hydrogen Bonds. J Am Chem Soc [Internet]. el 1 de febrero de 1997;119(5):1081–6. Disponible en: https://pubs.acs.org/doi/10.1021/ja962662n |
dc.relation.references | Huyskens P, Zeegers-Huyskens T. Associations moléculaires et équilibres acide-base. Journal de Chimie Physique [Internet]. el 28 de mayo de 1964;61:81–6. Disponible en: http://jcp.edpsciences.org/10.1051/jcp/1964610081 |
dc.relation.references | Zeegers-Huyskens Th, Huyskens P. Intermolecular Forces. En: Intermolecular Forces [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1991. p. 1–30. Disponible en: http://link.springer.com/10.1007/978-3-642-76260-4_1 |
dc.relation.references | Gilli P, Pretto L, Gilli G. PA/pKa equalization and the prediction of the hydrogen-bond strength: A synergism of classical thermodynamics and structural crystallography. J Mol Struct [Internet]. el 12 de noviembre de 2007;844–845:328–39. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0022286007003717 |
dc.relation.references | Gronert S. Theoretical studies of proton transfers. 1. The potential energy surfaces of the identity reactions of the first- and second-row non-metal hydrides with their conjugate bases. J Am Chem Soc [Internet]. el 1 de noviembre de 1993;115(22):10258–66. Disponible en: https://pubs.acs.org/doi/abs/10.1021/ja00075a047 |
dc.relation.references | Balevicius V, Aidas K, Svoboda I, Fuess H. Hydrogen Bonding in Pyridine N -Oxide/Acid Systems: Proton Transfer and Fine Details Revealed by FTIR, NMR, and X-ray Diffraction. J Phys Chem A [Internet]. el 30 de agosto de 2012;116(34):8753–61. Disponible en: https://pubs.acs.org/doi/10.1021/jp305446n |
dc.relation.references | Gilli G, Gilli P. Towards an unified hydrogen-bond theory. J Mol Struct [Internet]. septiembre de 2000;552(1–3):1–15. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0022286000004543 |
dc.relation.references | Rivera A, Uribe JM, Ríos-Motta J, Bolte M. Effect of protonation on the structure of 1,3,6,8-tetraazatricyclo[4.4.1.13,8] dodecane (TATD) adamanzane: Crystal structure and DFT analysis of 3,6,8-triaza-1-azoniatricyclo[4.4.1.13,8]dodecane 4-nitrophenolate 4-nitrophenol. Journal of Structural Chemistry [Internet]. el 15 de julio de 2017;58(4):789–96. Disponible en: http://link.springer.com/10.1134/S0022476617040217 |
dc.relation.references | Tahir MN, Khan AH, Shad HA. Crystal structure of ( E )-2-[(4-hydroxybenzylidene)azaniumyl]benzoate. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 1 de septiembre de 2014;70(9):o1008–o1008. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536814018273 |
dc.relation.references | Pakiari AH, Eskandari K. The chemical nature of very strong hydrogen bonds in some categories of compounds. Journal of Molecular Structure: THEOCHEM [Internet]. el 14 de febrero de 2006;759(1–3):51–60. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0166128005007499 |
dc.relation.references | Góra RW, Maj M, Grabowski SJ. Resonance-assisted hydrogen bonds revisited. Resonance stabilization vs. charge delocalization. Physical Chemistry Chemical Physics [Internet]. el 21 de febrero de 2013;15(7):2514. Disponible en: http://xlink.rsc.org/?DOI=c2cp43562d |
dc.relation.references | Heydar A. Theoretical Study of Heteroatom Resonance-Assisted Hydrogen Bond: Effect of Substituent on-delocalization. J Chem Chem Eng [Internet]. 2010 [citado el 5 de noviembre de 2023];29(4). Disponible en: https://doaj.org/article/673ac4dae5914ae096467e5ef8468c24 |
dc.relation.references | Ferguson G, Marsh WC, Restivo RJ, Lloyd D. Conformational studies of 2,3-diacyl-5-nitrocyclopentadienes: delocalized systems with very short intramolecular O ⋯ H ⋯ O hydrogen bonds. Crystal and molecular structures of 2,3-diacetyl- and 2,3-dibenzoyl-5-nitrocyclopentadiene. Journal of the Chemical Society, Perkin Transactions 2 [Internet]. 1975;45(10):998. Disponible en: http://xlink.rsc.org/?DOI=p29750000998 |
dc.relation.references | Jönsson PG, Hamilton WC. Hydrogen Bond Studies. LX.* A Single Crystal Neutron Diffraction Study of Trichloroacetic Acid Dimer. J Chem Phys [Internet]. el 1 de mayo de 1972;56(9):4433–9. Disponible en: https://pubs.aip.org/jcp/article/56/9/4433/84285/Hydrogen-Bond-Studies-LX-A-Single-Crystal-Neutron |
dc.relation.references | Gilli G, Bertolasi V, Ferretti V, Gilli P. Resonance-assisted hydrogen bonding. III. Formation of intermolecular hydrogen-bonded chains in crystals of β-diketone enols and its relevance to molecular association. Acta Crystallogr B [Internet]. el 1 de junio de 1993;49(3):564–76. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S0108768192012278 |
dc.relation.references | Wahl M. C-H···O hydrogen bonding in biology. Trends Biochem Sci [Internet]. marzo de 1997;22(3):97–102. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0968000497010049 |
dc.relation.references | Horowitz S, Trievel RC. Carbon-Oxygen Hydrogen Bonding in Biological Structure and Function. Journal of Biological Chemistry [Internet]. el 7 de diciembre de 2012;287(50):41576–82. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0021925820438086 |
dc.relation.references | Ferstandig LL. Carbon as a Hydrogen Bonding Base and Carbon-Hydrogen-Carbon Bonding. J Am Chem Soc [Internet]. el 1 de septiembre de 1962;84(18):3553–7. Disponible en: https://pubs.acs.org/doi/abs/10.1021/ja00877a027 |
dc.relation.references | Krebs B, Henkel G. Untersuchungen über S-H … S‐Wasserstoffbrücken Die Kristallstruktur der Diphenyldithiophosphinsäure bei 140 und 293 K. Z Anorg Allg Chem [Internet]. el 9 de abril de 1981;475(4):143–55. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/zaac.19814750417 |
dc.relation.references | Webber AL, Yates JR, Zilka M, Sturniolo S, Uldry AC, Corlett EK, et al. Weak Intermolecular CH···N Hydrogen Bonding: Determination of 13 CH– 15 N Hydrogen-Bond Mediated J Couplings by Solid-State NMR Spectroscopy and First-Principles Calculations. J Phys Chem A [Internet]. el 23 de enero de 2020;124(3):560–72. Disponible en: https://pubs.acs.org/doi/10.1021/acs.jpca.9b10726 |
dc.relation.references | Brammer L. Metals and hydrogen bonds. Dalton Transactions [Internet]. el 21 de agosto de 2003;(16):3145. Disponible en: http://xlink.rsc.org/?DOI=b303006g |
dc.relation.references | Brammer L, Zhao D, Ladipo FT, Braddock-Wilking J. Hydrogen bonds involving transition metal centres – a brief review. Acta Crystallogr B [Internet]. el 1 de agosto de 1995;51(4):632–40. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S0108768195003673 |
dc.relation.references | Fatima S, Mehrafrooz B, Boggs DG, Ali N, Singh S, Thielges MC, et al. Conformation-Dependent Hydrogen-Bonding Interactions in a Switchable Artificial Metalloprotein. Biochemistry [Internet]. el 20 de agosto de 2024;63(16):2040–50. Disponible en: https://pubs.acs.org/doi/10.1021/acs.biochem.4c00209 |
dc.relation.references | Gámiz-Hernández AP, Galstyan AS, Knapp EW. Understanding Rubredoxin Redox Potentials: Role of H-Bonds on Model Complexes. J Chem Theory Comput [Internet]. el 13 de octubre de 2009;5(10):2898–908. Disponible en: https://pubs.acs.org/doi/10.1021/ct900328c |
dc.relation.references | Husberg C, Ryde U. How are hydrogen bonds modified by metal binding? JBIC Journal of Biological Inorganic Chemistry [Internet]. el 31 de junio de 2013;18(5):499–522. Disponible en: http://link.springer.com/10.1007/s00775-013-0996-2 |
dc.relation.references | Schmiedekamp A, Nanda V. Metal-activated histidine carbon donor hydrogen bonds contribute to metalloprotein folding and function. J Inorg Biochem [Internet]. julio de 2009;103(7):1054–60. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S016201340900097X |
dc.relation.references | Smith JN, Shirin Z, Carrano CJ. Control of Thiolate Nucleophilicity and Specificity in Zinc Metalloproteins by Hydrogen Bonding: Lessons from Model Compound Studies. J Am Chem Soc [Internet]. el 1 de enero de 2003;125(4):868–9. Disponible en: https://pubs.acs.org/doi/10.1021/ja029418i |
dc.relation.references | Lipscomb WN. Structures of the Boron Hydrides. J Chem Phys [Internet]. el 1 de junio de 1954;22(6):985–8. Disponible en: https://pubs.aip.org/jcp/article/22/6/985/204318/Structures-of-the-Boron-Hydrides |
dc.relation.references | Brookhart M, Green MLH, Parkin G. Agostic interactions in transition metal compounds. Proceedings of the National Academy of Sciences [Internet]. el 24 de abril de 2007;104(17):6908–14. Disponible en: https://pnas.org/doi/full/10.1073/pnas.0610747104 |
dc.relation.references | Yadav VK. Steric and Stereoelectronic Effects in Organic Chemistry [Internet]. Cham: Springer International Publishing; 2021. Disponible en: https://link.springer.com/10.1007/978-3-030-75622-2 |
dc.relation.references | Alabugin I V. Stereoelectronic effects : a bridge between structure and reactivity. 2016. |
dc.relation.references | Kirby AJ. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1983. (Reactivity and Structure Concepts in Organic Chemistry; vol. 15). Disponible en: http://link.springer.com/10.1007/978-3-642-68676-4 |
dc.relation.references | Sovers OJ, Kern CW, Pitzer RM, Karplus M. Bond-Function Analysis of Rotational Barriers: Ethane. J Chem Phys [Internet]. el 15 de septiembre de 1968;49(6):2592–9. Disponible en: https://pubs.aip.org/jcp/article/49/6/2592/84697/Bond-Function-Analysis-of-Rotational-Barriers |
dc.relation.references | Díaz Pérez VM, García Moreno MI, Ortiz Mellet C, Fuentes J, Díaz Arribas JC, Cañada FJ, et al. Generalized Anomeric Effect in Action: Synthesis and Evaluation of Stable Reducing Indolizidine Glycomimetics as Glycosidase Inhibitors. J Org Chem [Internet]. el 1 de enero de 2000;65(1):136–43. Disponible en: https://pubs.acs.org/doi/10.1021/jo991242o |
dc.relation.references | Sánchez-Fernández EM, Rísquez-Cuadro R, Aguilar-Moncayo M, García-Moreno MI, Mellet CO, García Fernández JM. Generalized Anomeric Effect in gem -Diamines: Stereoselective Synthesis of α- N -Linked Disaccharide Mimics. Org Lett [Internet]. el 6 de agosto de 2009;11(15):3306–9. Disponible en: https://pubs.acs.org/doi/10.1021/ol901125n |
dc.relation.references | Mo Y, Gao J. Theoretical Analysis of the Rotational Barrier of Ethane. Acc Chem Res [Internet]. el 1 de febrero de 2007;40(2):113–9. Disponible en: https://pubs.acs.org/doi/10.1021/ar068073w |
dc.relation.references | Grossel Martin. Alicyclic Chemistry. 1st Ed. Oxford, New York: Oxford University Press; 1997 |
dc.relation.references | Mo Y. A Critical Analysis on the Rotation Barriers in Butane. J Org Chem [Internet]. el 16 de abril de 2010;75(8):2733–6. Disponible en: https://pubs.acs.org/doi/10.1021/jo1001164 |
dc.relation.references | Cormanich RA, Freitas MP. A Theoretical View on the Conformer Stabilization of Butane. J Org Chem [Internet]. el 6 de noviembre de 2009;74(21):8384–7. Disponible en: https://pubs.acs.org/doi/10.1021/jo901705p |
dc.relation.references | Dragojlovic V. Conformational analysis of cycloalkanes. ChemTexts [Internet]. el 12 de septiembre de 2015;1(3):14. Disponible en: http://link.springer.com/10.1007/s40828-015-0014-0 |
dc.relation.references | Lemieux RU. Effects of unshared pairs of electrons and their solvation on conformational equilibria. Pure and Applied Chemistry [Internet]. el 1 de enero de 1971 [citado el 6 de noviembre de 2023];25(3):527–48. Disponible en: https://www.degruyter.com/document/doi/10.1351/pac197125030527/html |
dc.relation.references | Booth H, Lemieux RU. The Anomeric Effect: The Conformational Equilibria of Tetrahydro-1,3-oxazines and 1-Methyl-1,3-diazane. Can J Chem [Internet]. el 1 de marzo de 1971;49(5):777–88. Disponible en: http://www.nrcresearchpress.com/doi/10.1139/v71-129 |
dc.relation.references | Thatcher GRJ. Anomeric and Associated Stereoelectronic Effects. En 1993. p. 6–25. Disponible en: https://pubs.acs.org/doi/abs/10.1021/bk-1993-0539.ch002 |
dc.relation.references | Edward JT. Stability of glycosides to acid hydrolysis. Chem Ind. 1955;1102–4. |
dc.relation.references | E. Juaristi and G. Cuevas. The Anomeric Effect. Boca Ratón: CRC Press; 1995. |
dc.relation.references | Alabugin I V., dos Passos Gomes G, Abdo MA. Hyperconjugation. WIREs Computational Molecular Science [Internet]. el 6 de marzo de 2019;9(2). Disponible en: https://wires.onlinelibrary.wiley.com/doi/10.1002/wcms.1389 |
dc.relation.references | Deslongchamps G, Deslongchamps P. Bent bonds, the antiperiplanar hypothesis and the theory of resonance. A simple model to understand reactivity in organic chemistry. Org Biomol Chem [Internet]. el 7 de agosto de 2011;9(15):5321. Disponible en: http://xlink.rsc.org/?DOI=c1ob05393k |
dc.relation.references | Wang C, Ying F, Wu W, Mo Y. Sensing or No Sensing: Can the Anomeric Effect Be Probed by a Sensing Molecule? J Am Chem Soc [Internet]. el 31 de agosto de 2011;133(34):13731–6. Disponible en: https://pubs.acs.org/doi/10.1021/ja205613x |
dc.relation.references | Bertolasi V, Ferretti V, Gilli G, Marchetti P, D’Angeli F. Evidence for the exo-anomeric stereoelectronic effect in cyclic orthoester aminals from X-ray structural data. Crystal structures of three 2-amino-1,3-oxazolidin-4-one derivatives. Journal of the Chemical Society, Perkin Transactions 2 [Internet]. 1990;2(12):2135. Disponible en: http://xlink.rsc.org/?DOI=p29900002135 |
dc.relation.references | Takahashi O, Yamasaki K, Kohno Y, Ohtaki R, Ueda K, Suezawa H, et al. The anomeric effect revisited. A possible role of the CH/n hydrogen bond. Carbohydr Res [Internet]. el 2 de julio de 2007;342(9):1202–9. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0008621507001243 |
dc.relation.references | Takahashi O, Yamasaki K, Kohno Y, Ueda K, Suezawa H, Nishio M. The Origin of the Relative Stability of Axial Conformers of Cyclohexane and Cyclohexanone Derivatives: Importance of the CH/n and CH/π Hydrogen Bonds. Bull Chem Soc Jpn [Internet]. el 15 de febrero de 2009;82(2):272–6. Disponible en: http://www.journal.csj.jp/doi/10.1246/bcsj.82.272 |
dc.relation.references | Takahashi O, Yamasaki K, Kohno Y, Ueda K, Suezawa H, Nishio M. The origin of the generalized anomeric effect: possibility of CH/n and CH/π hydrogen bonds. Carbohydr Res [Internet]. el 6 de julio de 2009;344(10):1225–9. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0008621509001670 |
dc.relation.references | Wolfe S, Schlegel HB, Whangbo MH, Bernardi F. On the Origin of the Bohlmann Bands. Can J Chem. el 15 de noviembre de 1974;52(22):3787–92. |
dc.relation.references | Perrin CL. Reverse anomeric effect: fact or fiction? Tetrahedron [Internet]. octubre de 1995;51(44):11901–35. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/004040209500560U |
dc.relation.references | Perrin CL, Armstrong KB. Conformational analysis of glucopyranosylammonium ions: does the reverse anomeric effect exist? J Am Chem Soc [Internet]. el 1 de julio de 1993;115(15):6825–34. Disponible en: https://pubs.acs.org/doi/abs/10.1021/ja00068a046 |
dc.relation.references | Jones PG, Komarov I V., Wothers PD. A test for the reverse anomeric effect. Chemical Communications [Internet]. 1998;(16):1695–6. Disponible en: http://xlink.rsc.org/?DOI=a804354j |
dc.relation.references | Matamoros E, Pérez EMS, Light ME, Cintas P, Martínez RF, Palacios JC. A True Reverse Anomeric Effect Does Exist After All: A Hydrogen Bonding Stereocontrolling Effect in 2-Iminoaldoses. J Org Chem [Internet]. el 7 de junio de 2024;89(11):7877–98. Disponible en: https://pubs.acs.org/doi/10.1021/acs.joc.4c00562 |
dc.relation.references | Rivera A, Ríos-Motta J, Quevedo R, Joseph-Nathan P. NUEVOS ASPECTOS DE LA REACCIÓN TIPO MANNICH EN MEDIO BÁSICO DE 1,3,6,8-TETRAZATRICICLO[4.4.1.13,8] DODECANO (TATD) CON FENOLES. Revista Colombiana de Química [Internet]. 2005 [citado el 12 de noviembre de 2023];34(105). Disponible en: https://repositorio.unal.edu.co/handle/unal/22259 |
dc.relation.references | Fedorowicz A, Mavri J, Bala P, Koll A. Molecular dynamics study of the tautomeric equilibrium in the Mannich base. Chem Phys Lett [Internet]. junio de 1998;289(5–6):457–62. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0009261498004229 |
dc.relation.references | MINOR WF, JOHNSON DA, CHENEY LC. A Crystalline Imidazolidine Derivative of Streptomycin. J Org Chem [Internet]. el 1 de mayo de 1956;21(5):528–9. Disponible en: https://pubs.acs.org/doi/abs/10.1021/jo01111a011 |
dc.relation.references | Husain A, Bhutani R, Kumar D, Shin DS. Synthesis and Biological Evaluation of Novel Substituted-Imidazolidine Derivatives. Journal of the Korean Chemical Society [Internet]. el 20 de abril de 2013;57(2):227–33. Disponible en: http://koreascience.or.kr/journal/view.jsp?kj=JCGMDC&py=2013&vnc=v57n2&sp=227 |
dc.relation.references | Joullie MM, Slusarczuk GMJ, Dey AS, Venuto PB, Yocum RH. Synthesis and properties of fluorine-containing heterocyclic compounds. IV. N,N-Unsubstituted imidazolidine. J Org Chem [Internet]. el 1 de diciembre de 1967;32(12):4103–5. Disponible en: https://pubs.acs.org/doi/abs/10.1021/jo01287a100 |
dc.relation.references | Ferm RJ, Riebsomer JL. The Chemistry of the 2-Imidazolines and Imidazolidines. Chem Rev [Internet]. el 1 de agosto de 1954;54(4):593–613. Disponible en: https://pubs.acs.org/doi/abs/10.1021/cr60170a002 |
dc.relation.references | Lambert JB, Huseland DE, Wang G tai. Synthesis of 1,3-Disubstituted Diazolidines. Synthesis (Stuttg) [Internet]. 1986;1986(08):657–8. Disponible en: http://www.thieme-connect.de/DOI/DOI?10.1055/s-1986-31737 |
dc.relation.references | A. Perillo I, de los Santos C, Salerno A. <sup>1<sup/>H NMR Spectroscopy and Conformational Analysis of N-Benzylimidazolidines. Heterocycles [Internet]. 2003;60(1):89. Disponible en: http://www.heterocycles.jp/newlibrary/libraries/abst/00824 |
dc.relation.references | Garcías-Morales C, Martínez-Salas SH, Ariza-Castolo A. The effect of the nitrogen non-bonding electron pair on the NMR and X-ray in 1,3-diazaheterocycles. Tetrahedron Lett [Internet]. el 27 de junio de 2012;53(26):3310–5. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0040403912006740 |
dc.relation.references | Rivera A, Nerio LS, Ríos-Motta J, Fejfarová K, Dušek M. 2,2′-[Imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de enero de 2012;68(1):o170–1. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536811053748 |
dc.relation.references | Rivera A, Nerio LS, Ríos-Motta J, Kučeraková M, Dušek M. 4,4′-Dimethyl-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de noviembre de 2012;68(11):o3172–o3172. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536812042808 |
dc.relation.references | Rivera A, Nerio LS, Bolte M. 6,6′-Dimethyl-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 1 de marzo de 2014;70(3):o243–o243. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536814002128 |
dc.relation.references | Rivera A, Sadat-Bernal J, Ríos-Motta J, Pojarová M, Dušek M. 4,4′-Dichloro-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de octubre de 2011;67(10):o2581–o2581. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536811035677 |
dc.relation.references | Rivera A, Nerio LS, Ríos-Motta J, Kučeráková M, Dušek M. 4,4′-Difluoro-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de octubre de 2012;68(10):o3043–4. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536812040329 |
dc.relation.references | Rivera A, Nerio LS, Bolte M. 4,4′-Di- tert -butyl-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr Sect E Struct Rep Online [Internet]. el 15 de julio de 2013;69(7):o1166–o1166. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S1600536813017157 |
dc.relation.references | Rivera A, Nerio LS, Bolte M. Crystal structure of the di-Mannich base 4,4′-dichloro-3,3′,5,5′-tetramethyl-2,2′-[imidazolidine-1,3-diylbis(methylene)]diphenol. Acta Crystallogr E Crystallogr Commun [Internet]. el 1 de marzo de 2015;71(3):312–4. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S2056989015002212 |
dc.relation.references | Rivera A, Inés Gallo G, Elena Gayón Ma, Joseph-Nathan P. A Novel Manich Type Reaction Using Aminals in Alkaline Medium. Synth Commun [Internet]. noviembre de 1993;23(20):2921–9. Disponible en: http://www.tandfonline.com/doi/abs/10.1080/00397919308012614 |
dc.relation.references | Rivera A, Rojas JJ, Ríos-Motta J, Bolte M. Crystal structure of 1,1′-[imidazolidine-1,3-diylbis(methylene)]bis(naphthalen-2-ol). Acta Crystallogr E Crystallogr Commun [Internet]. el 1 de marzo de 2015;71(3):258–60. Disponible en: https://scripts.iucr.org/cgi-bin/paper?S2056989015002078 |
dc.relation.references | Rivera A, Inés Gallo G, Elena Gayón Ma, Joseph-Nathan P. 1,3- bis (2’-Hydroxybenzyl)imidazolidines as Novel Precursors of 3,3′-Ethylene- bis (3,4-dihydro-2H-1,3-benzoxazine). Synth Commun [Internet]. julio de 1994;24(14):2081–9. Disponible en: http://www.tandfonline.com/doi/abs/10.1080/00397919408010219 |
dc.relation.references | Roy K, Popelier PLA. Predictive QSPR modeling of the acidic dissociation constant (pKa) of phenols in different solvents. J Phys Org Chem [Internet]. el 21 de marzo de 2009;22(3):186–96. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/poc.1447 |
dc.relation.references | Moss GP. Basic terminology of stereochemistry (IUPAC Recommendations 1996). Pure and Applied Chemistry [Internet]. el 1 de enero de 1996;68(12):2193–222. Disponible en: https://www.degruyter.com/document/doi/10.1351/pac199668122193/html |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.lemb | COMPUESTOS HETEROCICLICOS |
dc.subject.lemb | Heterocyclic compounds |
dc.subject.lemb | ENLACES DE HIDROGENO |
dc.subject.lemb | Hydrogen bonding |
dc.subject.proposal | Puente de hidrógeno |
dc.subject.proposal | Efecto anomérico |
dc.subject.proposal | Hydrogen bond |
dc.subject.proposal | Anomeric effect |
dc.subject.proposal | BISBIAs |
dc.title.translated | Incidence of intramolecular hydrogen bonds on the anomeric effect in heterocyclic systems of the bis-benzylimidazolidines [BISBIAs] type |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Estudiantes |