Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorAristizabal Gutierrez, Fabio Ancizar
dc.contributor.authorRuano Bastidas, Githza Daniela
dc.date.accessioned2024-12-11T14:27:50Z
dc.date.available2024-12-11T14:27:50Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87289
dc.descriptionilustraciones, diagramas, tablas
dc.description.abstractPese a los recientes avances en las terapias contra cáncer, su tratamiento sigue siendo un desafío importante debido a la complejidad y heterogeneidad que presentan los tumores, por ello surge la necesidad de emplear modelos de cultivos celulares tridimensionales, concretamente esferoides tumorales, que a diferencia de los cultivos bidimensionales comúnmente utilizados, permiten investigar las características complejas de las células cancerosas y así mejorar las opciones de tratamiento clínico, por lo anterior el objetivo de este trabajo fue comparar modelos de cultivo 3D tipo esferoide generados a partir de dos líneas celulares derivadas de cáncer de cabeza y cuello y evaluar el comportamiento del potencial citotóxico del cisplatino en los mismos. Se generaron 2 cultivos tipo esferoide a partir de las líneas celulares CAL 27 y SCCO90, se trataron con diferentes concentraciones de cisplatino (5,10,20,30,40 y 50 μM). Después de 72 horas de incubación, se determinaron los parámetros morfológicos antes y después del tratamiento, y el efecto citotóxico del medicamento mediante un ensayo de resazurina. Tras establecer los cultivos tridimensionales a las condiciones seleccionadas, se encontró que los esferoides generados presentaron variaciones tanto en el comportamiento citotóxico de cisplatino, así como en los diferentes parámetros morfológicos analizados para las 2 líneas celulares. Los parámetros morfológicos calculados no se correlacionaron de manera directa con los datos de viabilidad celular. En este estudio se observó que estas líneas tumorales derivadas de cáncer de cabeza y cuello producen esferoides con distintas morfologías, tamaños y estados de compactación celular, los cuales exhiben gradientes de penetración y distribución de sustancias, por ello las diferencias encontradas (Texto tomado de la fuente).
dc.description.abstractDespite recent advances in cancer therapies, cancer treatment remains a major challenge due to the complexity and heterogeneity of tumors, thus the need to use three-dimensional cell culture models, specifically tumor spheroids, which unlike the two-dimensional cultures commonly used, allow to investigate the complex characteristics of cancer cells and thus improve clinical treatment options, Therefore, the objective of this work was to compare 3D spheroid-type culture models generated from two cell lines derived from head and neck cancer and to evaluate the behavior of the cytotoxic potential of cisplatin in them. 2 spheroid-like cultures were generated from CAL 27 and SCCO90 cell lines, treated with different concentrations of cisplatin (5,10,20,30,40 and 50 μM). After 72 hours of incubation, morphological parameters before and after treatment, and the cytotoxic effect of the drug were determined using a resazurin assay. After establishing the threedimensional cultures at the selected conditions, it was found that the generated spheroids presented variations both in the cytotoxic behavior of cisplatin, as well as in the different morphological parameters analyzed for the 2 cell lines. The calculated morphological parameters did not correlate directly with the cell viability data. In this study it was observed that these tumor lines derived from head and neck cancer produce spheroids with different morphologies, sizes and states of cellular compactness, which exhibit gradients of penetration and distribution of substances, hence the differences found.
dc.format.extentxv, 54 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.subject.ddc570 - Biología::576 - Genética y evolución
dc.titleComparación de 2 modelos de cultivo 3d tipo esferoide de células derivadas de cáncer de cabeza y cuello para valoración de potencial actividad antineoplásica
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Farmacología
dc.contributor.researchgroupFarmacogenética del Cáncer
dc.description.degreelevelMaestría
dc.description.degreenameMagister en ciencias - Farmacología
dc.description.methodsSe cultivó la línea celular epitelial CAL 27 (ATCC® CRL-2095™) proveniente de carcinoma escamo celular de lengua y la línea celular epitelial SCC090 (ATCC® CRL-3240™) proveniente de carcinoma escamo celular de base de lengua. Las células fueron propagadas en cajas de cultivo de 75cm2 y medio de cultivo DMEM (Eagle modificado por Dulbecco) suplementado con 10% de suero fetal bovino (SFB) (Gibco) y 1% de penicilina/estreptomicina/anfotericina B (Lonza), las cuales se mantuvieron en incubadora al 5% de CO2 y 98% de humedad relativa hasta que alcanzaron una confluencia entre el 80 – 90%. Para la obtención del cultivo tridimensional tipo esferoide se utilizarán placas de cultivo celular no adhesivas de 96 pozos (Corning® Costar®). De acuerdo al protocolo propuesto por Fonseca et al, 2022 (31), las células CAL 27 y SCC090 se sembraron a una densidad de 2.000 células/pozo utilizando medio de cultivo DMEM (Eagle modificado por Dulbecco) suplementado con 10% de suero fetal bovino (SFB) (Gibco) y 1% de penicilina/estreptomicina/anfotericina B (Lonza). Las células se mantuvieron en incubadora al 5% de CO2 y 98% de humedad relativa. Después de 72 horas de cultivo, la formación de los esferoides se determinó con microscopio óptico invertido, se tomaron fotomicrografías para evaluar los parámetros morfológicos de los esferoides con los programas de imágenes (sección 3.1.3).
dc.description.researchareaCáncer
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods, and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-86.
dc.relation.references2. Park SJ, Ye W, Xiao R, Silvin C, Padget M, Hodge JW, Van Waes C, Schmitt NC. Cisplatin and oxaliplatin induce similar immunogenic changes in preclinical models of head and neck cancer. Oral Oncol. 2019 Aug;95:127-135.3.
dc.relation.references3. Close DA, Johnston PA. Detection and impact of hypoxic regions in multicellular tumor spheroid cultures formed by head and neck squamous cell carcinoma cells lines. SLAS Discov. 2022;27(1):39-54.
dc.relation.references4. Perez-Ordoñez B, Beauchemin M, Jordan RC. Molecular biology of squamous cell carcinoma of the head and neck J Clin Pathol. 2006;59(5):445-53.
dc.relation.references5. Brockstein BE. Management of recurrent head and neck cancer: recent progress and future directions. Drugs. 2011;71(12):1551-9.
dc.relation.references6. Goerner M, Seiwert TY, Sudhoff H. Molecular targeted therapies in head and neck cancer--an update of recent developments-. Head Neck Oncol 2010; 14:2-8.
dc.relation.references7. Zanoni M, Pignatta S, Arienti C, Bonafè M, Tesei A. Anticancer drug discovery using multicellular tumor spheroid models. Expert opinion on drug discovery. 2019;14(3):289- 301.
dc.relation.references8. Hoarau-Véchot J, Rafii A, Touboul C, Pasquier J. Halfway between 2D and animal models: are 3D cultures the ideal tool to study cancer-microenvironment interactions?.International journal of molecular sciences. 2018 Jan;19(1):18
dc.relation.references9. McMillin D.W, Negri J, Mitsiades C.S. The role of tumour-stromal interactions in modifying drug response: Challenges and opportunities. Nat. Rev. Drug Discov. 2013;12:217–228.
dc.relation.references10. Pietras K., Ostman A. Hallmarks of cancer: Interactions with the tumor stroma. Exp. Cell Res. 2010;316:1324–1331.
dc.relation.references11. Nath S, Devi GR. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol Ther. 2016 Jul; 163:94-108.
dc.relation.references12. Świerczewska M, Sterzyńska K, Ruciński M, Andrzejewska M, Nowicki M, Januchowski R, The response and resistance to drugs in ovarian cancer cell lines in 2D monolayers and 3D spheroids, Biomedicine & Pharmacotherapy 2023;(165):115152
dc.relation.references13. Cárcamo, M. Epidemiología y generalidades del tumor de cabeza y cuello. Revista Médica Clínica Las Condes. 2018; 29(4), 388–396.
dc.relation.references14. Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020 Nov 26;6(1):92.
dc.relation.references15. IARC Publications Website- GLOBOCAN 2020 {citado 21 de junio de 2022} disponible en https://gco.iarc.fr/today/home.
dc.relation.references16. Michaud DS, Langevin SM, Eliot M, Nelson HH, Pawlita M, McClean MD, Kelsey KT. High-risk HPV types and head and neck cancer. Int J Cancer. 2014 Oct;135(7):1653-61.
dc.relation.references17. Strojan P, Hutcheson KA, Eisbruch A, Beitler JJ, Langendijk JA, Lee AWM, Corry J, Mendenhall WM, Smee R, Rinaldo A, Ferlito A. Treatment of late sequelae after radiotherapy for head and neck cancer. Cancer Treat Rev. 2017 Sep;59:79-92
dc.relation.references18. Kochanek SJ, Close DA, Camarco DP, Johnston PA. Maximizing the Value of Cancer Drug Screening in Multicellular Tumor Spheroid Cultures: A Case Study in Five Head and Neck Squamous Cell Carcinoma Cell Lines. SLAS Discov. 2020 Apr;25(4):329-349.
dc.relation.references19. Elrefaey S, Massaro MA, Chiocca S, Chiesa F, Ansarin M. HPV in oropharyngeal cancer: the basics to know in clinical practice. Acta Otorhinolaryngologica Italica. 2014 Oct;34(5):299.
dc.relation.references20. Barcellos-Hoff MH, Lyden D, Wang TC. The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer. 2013 Jul;13(7):511-8.
dc.relation.references21. Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng. 2003 Jul 20;83(2):173-80.
dc.relation.references22. Fonseca, A. Potencial antiproliferativo de un extracto de curuba Passiflora mollissima (Kunth) LH Bailey sobre un modelo de cultivo 3D tipo esferoide de células de cáncer oral. [Internet]. 2020. [citado: 2023, Julio] Disponible en: http://hdl.handle.net/20.500.12495/8471.
dc.relation.references23. Ruppen J, Cortes-Dericks L, Marconi E, Karoubi G, Schmid RA, Peng R, Marti TM, Guenat OT. A microfluidic platform for chemoresistive testing of multicellular pleural cancer spheroids. Lab Chip. 2014 Mar;14(6):1198-205.
dc.relation.references24. Hoarau-Véchot J, Rafii A, Touboul C, Pasquier J. Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer- Microenvironment Interactions? Int J Mol Sci. 2018 Jan;19(1):181
dc.relation.references25. Hsiao AY, Tung YC, Kuo CH, Mosadegh B, Bedenis R, Pienta KJ, Takayama S. Micro- ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates. Biomed Microdevices. 2012 Apr;14(2):313-23
dc.relation.references26. Corning™ Elplasia™ Microcavity Plates {citado 21 junio 2022} Disponible en https://www.fishersci.es/shop/products/elplasiamicrocavity%20plates/16445299?searchHij ack=true&searchTerm=004441&searchType=RPID&matchedCatNo=004441.
dc.relation.references27. Ivascu A, Kubbies M. Rapid generation of single-tumor spheroids for high- throughput cell function and toxicity analysis. J. Biomol. Screen. 2006;11:922– 932.
dc.relation.references28. Trédan O, Galmarini C. M, Patel K, Tannock I. F. Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute .2007;99:1441–1454.
dc.relation.references29. Matsuda Y, Ishiwata T, Kawamoto Y, Kawahara K, Peng WX, Yamamoto T, Naito Z. Morphological and cytoskeletal changes of pancreatic cancer cells in three-dimensional spheroidal culture. Med Mol Morphol. 2010 Dec;43(4):211-7.
dc.relation.references30. Zanoni, M., Piccinini, F., Arienti, C, Zamagni A, Santi S, Polico R, Bevilacqua A,Tesei A . 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep.2016; 6:19103.
dc.relation.references31. Fonseca-Benitez A, Morantes Medina SJ, Ballesteros-Vivas D, Parada-Alfonso F, Sandra J Perdomo. Passiflora mollissima Seed Extract Induced Antiproliferative and Cytotoxic Effects on CAL 27 Spheroids. Adv Pharmacol Pharm Sci. 2022 May 31;2022:4602413.
dc.relation.references32. Piccinini F. AnaSP: a software suite for automatic image analysis of multicellular spheroids. Comput Methods Programs Biomed. 2015 Apr;119(1):43-52.
dc.relation.references33. Piccinini F, Tesei A, Arienti C, Bevilacqua A. Cancer multicellular spheroids: volume assessment from a single 2D projection. Comput Methods Programs Biomed. 2015 Feb;118(2):95-106.
dc.relation.references34. Escobar, M,Rivera A, Aristizabal,F. estudio comparativo de los métodos de resazurina y mtt en estudios de citotoxicidad en líneas celulares tumorales humanas. Vitae 2010 ; 17( 1 ): 67-74.
dc.relation.references35. Hazekawa M, Nishinakagawa T, Kawakubo-Yasukochi T, & Nakashima M. Evaluation of IC50 levels immediately after treatment with anticancer reagents using a real-time cell monitoring device. Experimental and therapeutic medicine. 2019;18(4), 3197–3205.
dc.relation.references36. Martínez Ortega RM, Tuya Pendás LC, Martínez Ortega M, Pérez Abreu A, Cánovas AM. El coeficiente de correlación de los rangos de Spearman caracterización. Revista Habanera de Ciencias Médicas. 2009 Jun;8(2):0-.
dc.relation.references37. Denaro N, Russi E, Adamo V, Colantonio I, Merlano M, C: Postoperative Therapy in Head and Neck Cancer: State of the Art, Risk Subset, Prognosis and Unsolved Questions. Oncology. 2011;81:21-29.38.
dc.relation.references38. Li H, Wawrose JS, Gooding WE, Garraway LA, Lui VW, Peyser ND, Grandis JR. Genomic analysis of head and neck squamous cell carcinoma cell lines and human tumors: a rational approach to preclinical model selection. Mol Cancer Res. 2014 Apr;12(4):571-82.
dc.relation.references39. Perez-Ordonez B; Beauchemin M; Jordan RCK Molecular Biology of Squamous Cell Carcinoma of the Head and Neck. J. Clin. Pathol 2006; 59, 445–453.
dc.relation.references40. Ivanov DP, Parker TL, Walker DA, Alexander C, Ashford MB, Gellert PR, Garnett MC. Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high- throughput screening of tumour spheroids and stem cell neurospheres. PLoS One. 2014 Aug 13;9(8):e103817.
dc.relation.references41. The Cancer Genome Atlas Network. Comprehensive Genomic Characterization of Head and Neck Squamous Cell Carcinomas. Nature 2015; 517(7536):576-82.
dc.relation.references42. Grantab R; Tannock IF.Penetration of Anticancer Drugs through Tumour Tissue as a Function of Cellular Packing Density and Interstitial Fluid Pressure and Its Modification by Bortezomib. BMC Cancer 2012; 12:214.
dc.relation.references43. Grantab R; Sivananthan S; Tannock IF.The Penetration of Anticancer Drugs through Tumor Tissue as a Function of Cellular Adhesion and Packing Density of Tumor Cells. Cancer Res. 2006; 66(2):1033–1039
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsMicropartículas Derivadas de Células
dc.subject.decsCell-Derived Microparticles
dc.subject.decsAntineoplásicos Inmunológicos
dc.subject.decsAntineoplastic Agents, Immunological
dc.subject.decsNeoplasias de Cabeza y Cuello
dc.subject.decsHead and Neck Neoplasms
dc.subject.decsSistemas Microfisiológicos
dc.subject.decsMicrophysiological Systems
dc.subject.decsCélulas Tumorales Cultivadas
dc.subject.decsTumor Cells, Cultured
dc.subject.proposalCultivo celular 3D
dc.subject.proposalEsferoides
dc.subject.proposalCáncer de cabeza y cuello
dc.subject.proposalCitotoxicidad
dc.subject.proposal3D cell culture
dc.subject.proposalSpheroids
dc.subject.proposalHead and neck cancer
dc.subject.proposalCytotoxicity
dc.title.translatedComparison of 2 3d spheroid-like culture models of head and neck cancer-derived cells for assessment of potential antineoplastic activity
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001691076


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit