dc.rights.license | Atribución-NoComercial 4.0 Internacional |
dc.contributor.advisor | Aristizabal Gutierrez, Fabio Ancizar |
dc.contributor.author | Ruano Bastidas, Githza Daniela |
dc.date.accessioned | 2024-12-11T14:27:50Z |
dc.date.available | 2024-12-11T14:27:50Z |
dc.date.issued | 2023 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87289 |
dc.description | ilustraciones, diagramas, tablas |
dc.description.abstract | Pese a los recientes avances en las terapias contra cáncer, su tratamiento sigue siendo
un desafío importante debido a la complejidad y heterogeneidad que presentan los
tumores, por ello surge la necesidad de emplear modelos de cultivos celulares
tridimensionales, concretamente esferoides tumorales, que a diferencia de los cultivos
bidimensionales comúnmente utilizados, permiten investigar las características complejas
de las células cancerosas y así mejorar las opciones de tratamiento clínico, por lo anterior
el objetivo de este trabajo fue comparar modelos de cultivo 3D tipo esferoide generados a
partir de dos líneas celulares derivadas de cáncer de cabeza y cuello y evaluar el
comportamiento del potencial citotóxico del cisplatino en los mismos. Se generaron 2
cultivos tipo esferoide a partir de las líneas celulares CAL 27 y SCCO90, se trataron con
diferentes concentraciones de cisplatino (5,10,20,30,40 y 50 μM). Después de 72 horas de
incubación, se determinaron los parámetros morfológicos antes y después del tratamiento,
y el efecto citotóxico del medicamento mediante un ensayo de resazurina. Tras establecer
los cultivos tridimensionales a las condiciones seleccionadas, se encontró que los
esferoides generados presentaron variaciones tanto en el comportamiento citotóxico de
cisplatino, así como en los diferentes parámetros morfológicos analizados para las 2 líneas
celulares. Los parámetros morfológicos calculados no se correlacionaron de manera
directa con los datos de viabilidad celular. En este estudio se observó que estas líneas
tumorales derivadas de cáncer de cabeza y cuello producen esferoides con distintas
morfologías, tamaños y estados de compactación celular, los cuales exhiben gradientes
de penetración y distribución de sustancias, por ello las diferencias encontradas (Texto tomado de la fuente). |
dc.description.abstract | Despite recent advances in cancer therapies, cancer treatment remains a major challenge
due to the complexity and heterogeneity of tumors, thus the need to use three-dimensional
cell culture models, specifically tumor spheroids, which unlike the two-dimensional cultures
commonly used, allow to investigate the complex characteristics of cancer cells and thus
improve clinical treatment options, Therefore, the objective of this work was to compare
3D spheroid-type culture models generated from two cell lines derived from head and neck
cancer and to evaluate the behavior of the cytotoxic potential of cisplatin in them. 2
spheroid-like cultures were generated from CAL 27 and SCCO90 cell lines, treated with
different concentrations of cisplatin (5,10,20,30,40 and 50 μM). After 72 hours of
incubation, morphological parameters before and after treatment, and the cytotoxic effect
of the drug were determined using a resazurin assay. After establishing the threedimensional cultures at the selected conditions, it was found that the generated spheroids
presented variations both in the cytotoxic behavior of cisplatin, as well as in the different
morphological parameters analyzed for the 2 cell lines. The calculated morphological
parameters did not correlate directly with the cell viability data. In this study it was observed
that these tumor lines derived from head and neck cancer produce spheroids with different
morphologies, sizes and states of cellular compactness, which exhibit gradients of
penetration and distribution of substances, hence the differences found. |
dc.format.extent | xv, 54 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades |
dc.subject.ddc | 570 - Biología::576 - Genética y evolución |
dc.title | Comparación de 2 modelos de cultivo 3d tipo esferoide de células derivadas de cáncer de cabeza y cuello para valoración de potencial actividad antineoplásica |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Farmacología |
dc.contributor.researchgroup | Farmacogenética del Cáncer |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magister en ciencias - Farmacología |
dc.description.methods | Se cultivó la línea celular epitelial CAL 27 (ATCC® CRL-2095™) proveniente de carcinoma
escamo celular de lengua y la línea celular epitelial SCC090 (ATCC® CRL-3240™)
proveniente de carcinoma escamo celular de base de lengua. Las células fueron
propagadas en cajas de cultivo de 75cm2 y medio de cultivo DMEM (Eagle modificado por
Dulbecco) suplementado con 10% de suero fetal bovino (SFB) (Gibco) y 1% de
penicilina/estreptomicina/anfotericina B (Lonza), las cuales se mantuvieron en incubadora
al 5% de CO2 y 98% de humedad relativa hasta que alcanzaron una confluencia entre el
80 – 90%. Para la obtención del cultivo tridimensional tipo esferoide se utilizarán placas de cultivo
celular no adhesivas de 96 pozos (Corning® Costar®). De acuerdo al protocolo propuesto
por Fonseca et al, 2022 (31), las células CAL 27 y SCC090 se sembraron a una densidad
de 2.000 células/pozo utilizando medio de cultivo DMEM (Eagle modificado por Dulbecco)
suplementado con 10% de suero fetal bovino (SFB) (Gibco) y 1% de
penicilina/estreptomicina/anfotericina B (Lonza). Las células se mantuvieron en incubadora
al 5% de CO2 y 98% de humedad relativa. Después de 72 horas de cultivo, la formación
de los esferoides se determinó con microscopio óptico invertido, se tomaron fotomicrografías para evaluar los parámetros morfológicos de los esferoides con los
programas de imágenes (sección 3.1.3). |
dc.description.researcharea | Cáncer |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ciencias |
dc.publisher.place | Bogotá, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | 1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods, and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-86. |
dc.relation.references | 2. Park SJ, Ye W, Xiao R, Silvin C, Padget M, Hodge JW, Van Waes C, Schmitt NC. Cisplatin and oxaliplatin induce similar immunogenic changes in preclinical models of head and neck cancer. Oral Oncol. 2019 Aug;95:127-135.3. |
dc.relation.references | 3. Close DA, Johnston PA. Detection and impact of hypoxic regions in multicellular tumor spheroid cultures formed by head and neck squamous cell carcinoma cells lines. SLAS Discov. 2022;27(1):39-54. |
dc.relation.references | 4. Perez-Ordoñez B, Beauchemin M, Jordan RC. Molecular biology of squamous cell carcinoma of the head and neck J Clin Pathol. 2006;59(5):445-53. |
dc.relation.references | 5. Brockstein BE. Management of recurrent head and neck cancer: recent progress and future directions. Drugs. 2011;71(12):1551-9. |
dc.relation.references | 6. Goerner M, Seiwert TY, Sudhoff H. Molecular targeted therapies in head and neck cancer--an update of recent developments-. Head Neck Oncol 2010; 14:2-8. |
dc.relation.references | 7. Zanoni M, Pignatta S, Arienti C, Bonafè M, Tesei A. Anticancer drug discovery using multicellular tumor spheroid models. Expert opinion on drug discovery. 2019;14(3):289- 301. |
dc.relation.references | 8. Hoarau-Véchot J, Rafii A, Touboul C, Pasquier J. Halfway between 2D and animal models: are 3D cultures the ideal tool to study cancer-microenvironment interactions?.International journal of molecular sciences. 2018 Jan;19(1):18 |
dc.relation.references | 9. McMillin D.W, Negri J, Mitsiades C.S. The role of tumour-stromal interactions in modifying drug response: Challenges and opportunities. Nat. Rev. Drug Discov. 2013;12:217–228. |
dc.relation.references | 10. Pietras K., Ostman A. Hallmarks of cancer: Interactions with the tumor stroma. Exp. Cell Res. 2010;316:1324–1331. |
dc.relation.references | 11. Nath S, Devi GR. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol Ther. 2016 Jul; 163:94-108. |
dc.relation.references | 12. Świerczewska M, Sterzyńska K, Ruciński M, Andrzejewska M, Nowicki M, Januchowski R, The response and resistance to drugs in ovarian cancer cell lines in 2D monolayers and 3D spheroids, Biomedicine & Pharmacotherapy 2023;(165):115152 |
dc.relation.references | 13. Cárcamo, M. Epidemiología y generalidades del tumor de cabeza y cuello. Revista Médica Clínica Las Condes. 2018; 29(4), 388–396. |
dc.relation.references | 14. Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020 Nov 26;6(1):92. |
dc.relation.references | 15. IARC Publications Website- GLOBOCAN 2020 {citado 21 de junio de 2022} disponible en https://gco.iarc.fr/today/home. |
dc.relation.references | 16. Michaud DS, Langevin SM, Eliot M, Nelson HH, Pawlita M, McClean MD, Kelsey KT. High-risk HPV types and head and neck cancer. Int J Cancer. 2014 Oct;135(7):1653-61. |
dc.relation.references | 17. Strojan P, Hutcheson KA, Eisbruch A, Beitler JJ, Langendijk JA, Lee AWM, Corry J, Mendenhall WM, Smee R, Rinaldo A, Ferlito A. Treatment of late sequelae after radiotherapy for head and neck cancer. Cancer Treat Rev. 2017 Sep;59:79-92 |
dc.relation.references | 18. Kochanek SJ, Close DA, Camarco DP, Johnston PA. Maximizing the Value of Cancer Drug Screening in Multicellular Tumor Spheroid Cultures: A Case Study in Five Head and Neck Squamous Cell Carcinoma Cell Lines. SLAS Discov. 2020 Apr;25(4):329-349. |
dc.relation.references | 19. Elrefaey S, Massaro MA, Chiocca S, Chiesa F, Ansarin M. HPV in oropharyngeal cancer: the basics to know in clinical practice. Acta Otorhinolaryngologica Italica. 2014 Oct;34(5):299. |
dc.relation.references | 20. Barcellos-Hoff MH, Lyden D, Wang TC. The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer. 2013 Jul;13(7):511-8. |
dc.relation.references | 21. Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng. 2003 Jul 20;83(2):173-80. |
dc.relation.references | 22. Fonseca, A. Potencial antiproliferativo de un extracto de curuba Passiflora mollissima (Kunth) LH Bailey sobre un modelo de cultivo 3D tipo esferoide de células de cáncer oral. [Internet]. 2020. [citado: 2023, Julio] Disponible en: http://hdl.handle.net/20.500.12495/8471. |
dc.relation.references | 23. Ruppen J, Cortes-Dericks L, Marconi E, Karoubi G, Schmid RA, Peng R, Marti TM, Guenat OT. A microfluidic platform for chemoresistive testing of multicellular pleural cancer spheroids. Lab Chip. 2014 Mar;14(6):1198-205. |
dc.relation.references | 24. Hoarau-Véchot J, Rafii A, Touboul C, Pasquier J. Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer- Microenvironment Interactions? Int J Mol Sci. 2018 Jan;19(1):181 |
dc.relation.references | 25. Hsiao AY, Tung YC, Kuo CH, Mosadegh B, Bedenis R, Pienta KJ, Takayama S. Micro- ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates. Biomed Microdevices. 2012 Apr;14(2):313-23 |
dc.relation.references | 26. Corning™ Elplasia™ Microcavity Plates {citado 21 junio 2022} Disponible en https://www.fishersci.es/shop/products/elplasiamicrocavity%20plates/16445299?searchHij ack=true&searchTerm=004441&searchType=RPID&matchedCatNo=004441. |
dc.relation.references | 27. Ivascu A, Kubbies M. Rapid generation of single-tumor spheroids for high- throughput cell function and toxicity analysis. J. Biomol. Screen. 2006;11:922– 932. |
dc.relation.references | 28. Trédan O, Galmarini C. M, Patel K, Tannock I. F. Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute .2007;99:1441–1454. |
dc.relation.references | 29. Matsuda Y, Ishiwata T, Kawamoto Y, Kawahara K, Peng WX, Yamamoto T, Naito Z. Morphological and cytoskeletal changes of pancreatic cancer cells in three-dimensional spheroidal culture. Med Mol Morphol. 2010 Dec;43(4):211-7. |
dc.relation.references | 30. Zanoni, M., Piccinini, F., Arienti, C, Zamagni A, Santi S, Polico R, Bevilacqua A,Tesei A . 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep.2016; 6:19103. |
dc.relation.references | 31. Fonseca-Benitez A, Morantes Medina SJ, Ballesteros-Vivas D, Parada-Alfonso F, Sandra J Perdomo. Passiflora mollissima Seed Extract Induced Antiproliferative and Cytotoxic Effects on CAL 27 Spheroids. Adv Pharmacol Pharm Sci. 2022 May 31;2022:4602413. |
dc.relation.references | 32. Piccinini F. AnaSP: a software suite for automatic image analysis of multicellular spheroids. Comput Methods Programs Biomed. 2015 Apr;119(1):43-52. |
dc.relation.references | 33. Piccinini F, Tesei A, Arienti C, Bevilacqua A. Cancer multicellular spheroids: volume assessment from a single 2D projection. Comput Methods Programs Biomed. 2015 Feb;118(2):95-106. |
dc.relation.references | 34. Escobar, M,Rivera A, Aristizabal,F. estudio comparativo de los métodos de resazurina y mtt en estudios de citotoxicidad en líneas celulares tumorales humanas. Vitae 2010 ; 17( 1 ): 67-74. |
dc.relation.references | 35. Hazekawa M, Nishinakagawa T, Kawakubo-Yasukochi T, & Nakashima M. Evaluation of IC50 levels immediately after treatment with anticancer reagents using a real-time cell monitoring device. Experimental and therapeutic medicine. 2019;18(4), 3197–3205. |
dc.relation.references | 36. Martínez Ortega RM, Tuya Pendás LC, Martínez Ortega M, Pérez Abreu A, Cánovas AM. El coeficiente de correlación de los rangos de Spearman caracterización. Revista Habanera de Ciencias Médicas. 2009 Jun;8(2):0-. |
dc.relation.references | 37. Denaro N, Russi E, Adamo V, Colantonio I, Merlano M, C: Postoperative Therapy in Head and Neck Cancer: State of the Art, Risk Subset, Prognosis and Unsolved Questions. Oncology. 2011;81:21-29.38. |
dc.relation.references | 38. Li H, Wawrose JS, Gooding WE, Garraway LA, Lui VW, Peyser ND, Grandis JR. Genomic analysis of head and neck squamous cell carcinoma cell lines and human tumors: a rational approach to preclinical model selection. Mol Cancer Res. 2014 Apr;12(4):571-82. |
dc.relation.references | 39. Perez-Ordonez B; Beauchemin M; Jordan RCK Molecular Biology of Squamous Cell Carcinoma of the Head and Neck. J. Clin. Pathol 2006; 59, 445–453. |
dc.relation.references | 40. Ivanov DP, Parker TL, Walker DA, Alexander C, Ashford MB, Gellert PR, Garnett MC. Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high- throughput screening of tumour spheroids and stem cell neurospheres. PLoS One. 2014 Aug 13;9(8):e103817. |
dc.relation.references | 41. The Cancer Genome Atlas Network. Comprehensive Genomic Characterization of Head and Neck Squamous Cell Carcinomas. Nature 2015; 517(7536):576-82. |
dc.relation.references | 42. Grantab R; Tannock IF.Penetration of Anticancer Drugs through Tumour Tissue as a Function of Cellular Packing Density and Interstitial Fluid Pressure and Its Modification by Bortezomib. BMC Cancer 2012; 12:214. |
dc.relation.references | 43. Grantab R; Sivananthan S; Tannock IF.The Penetration of Anticancer Drugs through Tumor Tissue as a Function of Cellular Adhesion and Packing Density of Tumor Cells. Cancer Res. 2006; 66(2):1033–1039 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.decs | Micropartículas Derivadas de Células |
dc.subject.decs | Cell-Derived Microparticles |
dc.subject.decs | Antineoplásicos Inmunológicos |
dc.subject.decs | Antineoplastic Agents, Immunological |
dc.subject.decs | Neoplasias de Cabeza y Cuello |
dc.subject.decs | Head and Neck Neoplasms |
dc.subject.decs | Sistemas Microfisiológicos |
dc.subject.decs | Microphysiological Systems |
dc.subject.decs | Células Tumorales Cultivadas |
dc.subject.decs | Tumor Cells, Cultured |
dc.subject.proposal | Cultivo celular 3D |
dc.subject.proposal | Esferoides |
dc.subject.proposal | Cáncer de cabeza y cuello |
dc.subject.proposal | Citotoxicidad |
dc.subject.proposal | 3D cell culture |
dc.subject.proposal | Spheroids |
dc.subject.proposal | Head and neck cancer |
dc.subject.proposal | Cytotoxicity |
dc.title.translated | Comparison of 2 3d spheroid-like culture models of head and neck cancer-derived cells for assessment of potential antineoplastic activity |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Investigadores |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001691076 |