dc.rights.license | Atribución-NoComercial 4.0 Internacional |
dc.contributor.advisor | Arias López, Luz Amparo |
dc.contributor.author | González Arias, Julián Enrique |
dc.date.accessioned | 2024-12-11T15:07:57Z |
dc.date.available | 2024-12-11T15:07:57Z |
dc.date.issued | 2024 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87290 |
dc.description | ilustraciones, diagramas |
dc.description.abstract | La Enfermedad de Hígado Graso no Alcohólico (EHGNA), es un tipo de hepatopatía crónica que actualmente está en crecimiento e impacta la vida de pacientes con comorbilidades metabólicas como la obesidad y la Diabetes Mellitus tipo II, que con el tiempo pueden desarrollar Esteatohepatitis no Alcohólica (EHNA), en el contexto de inflamación crónica que los pone en riesgo de desarrollar cirrosis y finalmente Hepatocarcinoma. Este tipo de patologías afecta a nivel funcional al hígado, afecciones explicables por alteraciones a múltiples niveles -molecular, celular, tisular y macroscópico-. El objetivo del presente trabajo de grado es realizar una revisión bibliográfica sobre conceptos morfológicos -en cuanto a la embriología, anatomía e histología- del hígado normal y de cómo la comprensión de estos conceptos nos permite entender los cambios patológicos y fisiopatológicos que sufre el hígado en estas patologías. Se encontraron múltiples interacciones complejas en los múltiples niveles mencionados que explican lo que sucede en la enfermedad, permitiendo identificar posibles perspectivas futuras para impactar de forma positiva a los pacientes (Texto tomado de la fuente). |
dc.description.abstract | Non-Alcoholic Fatty Liver Disease (NAFLD) is a type of chronic liver disease that is currently growing and impacts the lives of patients with metabolic comorbidities such as obesity and Type II Diabetes Mellitus, who over time can develop Non-Alcoholic Steatohepatitis. (NASH), in the context of chronic inflammation that puts them at risk of developing cirrhosis and finally Hepatocarcinoma. This type of pathology affects the liver at a functional level, conditions that can be explained by alterations at multiple levels - molecular, cellular, tissue and macroscopic-. The objective of this tesis is to carry out a bibliographic review on morphological concepts - in terms of embryology, anatomy and histology - of the normal liver and how the understanding of these concepts allows us to understand the pathological and pathophysiological changes that the liver undergoes in these pathologies. Multiple complex interactions were found at the multiple levels mentioned, that explain what happens in the disease, allowing the identification of possible future perspectives to positively impact patients. |
dc.format.extent | 153 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades |
dc.title | Revisión bibliográfica de conceptos morfológicos en el desarrollo de Enfermedad de Hígado Graso no Alcohólico (EHGNA) y Esteatohepatitis no Alcohólica (EHNA) |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Medicina - Maestría en Morfología Humana |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magíster en Morfología Humana |
dc.description.researcharea | Trabajo de Grado de Profundización |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Medicina |
dc.publisher.place | Bogotá, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Abdelmalek, M. F. (2021). Nonalcoholic fatty liver disease: another leap forward. In Nature Reviews Gastroenterology and Hepatology (Vol. 18, Issue 2, pp. 85–86). Nature Research. https://doi.org/10.1038/s41575-020-00406-0 |
dc.relation.references | Abdel-Misih, S. R. Z., & Bloomston, M. (2010). Liver Anatomy. In Surgical Clinics of North America (Vol. 90, Issue 4, pp. 643–653). W.B. Saunders. https://doi.org/10.1016/j.suc.2010.04.017 |
dc.relation.references | Agur, A., Dalley, A., & Moore, K. (2019). 5 Abdomen . In Fundamentos de anatomía con orientación clínica (6th ed.). Wolters Kluwer. |
dc.relation.references | Al-Awad, Adel, Granados, ;, Sánchez, ;, Arleen, Fernández, &, & Ramón 2. (2012). VARIANTE ANATÓMICA EN EL ORIGEN DE LA VENA PORTA: A PROPÓSITO DE UN CASO. Anatomical Variation in the Origin of Portal Vein: Case Report. Reporte de Caso Resumen. In Revista Argentina de Anatomía Online (Vol. 3). |
dc.relation.references | Alves-Bezerra, M., & Cohen, D. E. (2018). Triglyceride metabolism in the liver. Comprehensive Physiology, 8(1), 1–22. https://doi.org/10.1002/cphy.c170012 |
dc.relation.references | Barr, R. G., Ferraioli, G., Palmeri, M. L., Goodman, Z. D., Garcia-Tsao, G., Rubin, J., Garra, B., Myers, R. P., Wilson, S. R., Rubens, D., & Levine, D. (2015). Elastography assessment of liver fibrosis: Society of radiologists in ultrasound consensus conference statement. Radiology, 276(3), 845–861. https://doi.org/10.1148/radiol.2015150619 |
dc.relation.references | Bass, N. M. (1990). Fatty acid-binding protein expression in the liver: its regulation and relationship to the zonation of fatty acid metabolism. In Molecular and Cellular Biochemistry (Vol. 98). |
dc.relation.references | Bedossa, P. (2017). Pathology of non-alcoholic fatty liver disease. In Liver International (Vol. 37, pp. 85–89). Blackwell Publishing Ltd. https://doi.org/10.1111/liv.13301 |
dc.relation.references | Bourebaba, N., & Marycz, K. (2021). Hepatic stellate cells role in the course of metabolic disorders development – A molecular overview. In Pharmacological Research (Vol. 170). Academic Press. https://doi.org/10.1016/j.phrs.2021.105739 |
dc.relation.references | Boyer, J. L. (2013). Bile formation and secretion. Comprehensive Physiology, 3(3), 1035–1078. https://doi.org/10.1002/cphy.c120027 |
dc.relation.references | Brown, G. T., & Kleiner, D. E. (2016). Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. In Metabolism: Clinical and Experimental (Vol. 65, Issue 8, pp. 1080–1086). W.B. Saunders. https://doi.org/10.1016/j.metabol.2015.11.008 |
dc.relation.references | Brunt, E. M., Kleiner, D. E., Carpenter, D. H., Rinella, M., Harrison, S. A., Loomba, R., Younossi, Z., Neuschwander-Tetri, B. A., & Sanyal, A. J. (2021). NAFLD: Reporting Histologic Findings in Clinical Practice. In Hepatology (Vol. 73, Issue 5, pp. 2028–2038). John Wiley and Sons Inc. https://doi.org/10.1002/hep.31599 |
dc.relation.references | Bruzzì, S., Sutti, S., Giudici, G., Burlone, M. E., Ramavath, N. N., Toscani, A., Bozzola, C., Schneider, P., Morello, E., Parola, M., Pirisi, M., & Albano, E. (2018). B2-Lymphocyte responses to oxidative stress-derived antigens contribute to the evolution of nonalcoholic fatty liver disease (NAFLD). Free Radical Biology and Medicine, 124, 249–259. https://doi.org/10.1016/j.freeradbiomed.2018.06.015 |
dc.relation.references | Buzzetti, E., Pinzani, M., & Tsochatzis, E. A. (2016). The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism: Clinical and Experimental, 65(8), 1038–1048. https://doi.org/10.1016/j.metabol.2015.12.012 |
dc.relation.references | Caldwell, S., & Lackner, C. (2017). Perspectives on NASH histology: Cellular ballooning. Annals of Hepatology, 16(2), 182–184. https://doi.org/10.5604/16652681.1231550 |
dc.relation.references | Chalasani, N., Younossi, Z., Lavine, J. E., Diehl, A. M., Brunt, E. M., Cusi, K., Charlton, M., & Sanyal, A. J. (2012). The diagnosis and management of non-alcoholic fatty liver disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology, 55(6), 2005–2023. https://doi.org/10.1002/hep.25762 |
dc.relation.references | Chiva, L. M., & Magrina, J. (2018). Abdominal and Pelvic Anatomy. In Principles of Gynecologic Oncology Surgery (pp. 3–49). Elsevier. https://doi.org/10.1016/B978-0-323-42878-1.00002-X |
dc.relation.references | Coulon, S., Heindryckx, F., Geerts, A., Van Steenkiste, C., Colle, I., & Van Vlierberghe, H. (2011). Angiogenesis in chronic liver disease and its complications. In Liver International (Vol. 31, Issue 2, pp. 146–162). https://doi.org/10.1111/j.1478-3231.2010.02369.x |
dc.relation.references | De, A., & Duseja, A. (2020). Natural History of Simple Steatosis or Nonalcoholic Fatty Liver. In Journal of Clinical and Experimental Hepatology (Vol. 10, Issue 3, pp. 255–262). Elsevier B.V. https://doi.org/10.1016/j.jceh.2019.09.005 |
dc.relation.references | De Muynck, K., Vanderborght, B., Van Vlierberghe, H., & Devisscher, L. (2021). The gut–liver axis in chronic liver disease: A macrophage perspective. In Cells (Vol. 10, Issue 11). MDPI. https://doi.org/10.3390/cells10112959 |
dc.relation.references | Di-Iacovo, N., Pieroni, S., Piobbico, D., Castelli, M., Scopetti, D., Ferracchiato, S., Della-Fazia, M. A., & Servillo, G. (2023). Liver Regeneration and Immunity: A Tale to Tell. In International Journal of Molecular Sciences (Vol. 24, Issue 2). MDPI. https://doi.org/10.3390/ijms24021176 |
dc.relation.references | Dixon, L. J., Barnes, M., Tang, H., Pritchard, M. T., & Nagy, L. E. (2013). Kupffer cells in the liver. Comprehensive Physiology, 3(2), 785–797. https://doi.org/10.1002/cphy.c120026 |
dc.relation.references | Dutta, S., Mishra, S. P., Sahu, A. K., Mishra, K., Kashyap, P., & Sahu, B. (2021). Hepatocytes and Their Role in Metabolism. www.intechopen.com |
dc.relation.references | Elchaninov, A., Vishnyakova, P., Menyailo, E., Sukhikh, G., & Fatkhudinov, T. (2022). An Eye on Kupffer Cells: Development, Phenotype and the Macrophage Niche. In International Journal of Molecular Sciences (Vol. 23, Issue 17). MDPI. https://doi.org/10.3390/ijms23179868 |
dc.relation.references | Filali-Mouncef, Y., Hunter, C., Roccio, F., Zagkou, S., Dupont, N., Primard, C., Proikas-Cezanne, T., & Reggiori, F. (2022). The ménage à trois of autophagy, lipid droplets and liver disease. In Autophagy (Vol. 18, Issue 1, pp. 50–72). Taylor and Francis Ltd. https://doi.org/10.1080/15548627.2021.1895658 |
dc.relation.references | Forbes, S. J., & Newsome, P. N. (2016). Liver regeneration-mechanisms and models to clinical application. In Nature Reviews Gastroenterology and Hepatology (Vol. 13, Issue 8, pp. 473–485). Nature Publishing Group. https://doi.org/10.1038/nrgastro.2016.97 |
dc.relation.references | Gartner, L. (2021). Aparato digestivo: Gándulas. In Texto de Histología Atlas a color (5th ed., pp. 517–530). Elsevier. |
dc.relation.references | Gracia-Sancho, J., Caparrós, E., Fernández-Iglesias, A., & Francés, R. (2021). Role of liver sinusoidal endothelial cells in liver diseases. In Nature Reviews Gastroenterology and Hepatology (Vol. 18, Issue 6, pp. 411–431). Nature Research. https://doi.org/10.1038/s41575-020-00411-3 |
dc.relation.references | Grigoraş, A., Giuşcă, S. E., Avădănei, E. R., Amălinei, C., & Căruntu, I.-D. (2016). Pointing at Ito cell, from structure to function (… or Cinderella story in liver histology). Rom J Morphol Embryol, 57(3), 915–923. http://www.rjme.ro/ |
dc.relation.references | Hammoutene, A., & Rautou, P.-E. (2019). Role of liver sinusoidal endothelial cells in non-alcoholic fatty liver disease. 1278–1291. |
dc.relation.references | Hardy, T., Oakley, F., Anstee, Q. M., & Day, C. P. (2016). Nonalcoholic Fatty Liver Disease: Pathogenesis and Disease Spectrum. Annual Review of Pathology: Mechanisms of Disease, 11, 451–496. https://doi.org/10.1146/annurev-pathol-012615-044224 |
dc.relation.references | Hora, S., & Wuestefeld, T. (2023). Liver Injury and Regeneration: Current Understanding, New Approaches, and Future Perspectives. In Cells (Vol. 12, Issue 17). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/cells12172129 |
dc.relation.references | Huang, T., Behary, J., & Zekry, A. (2020). Non-alcoholic fatty liver disease: a review of epidemiology, risk factors, diagnosis and management. In Internal Medicine Journal (Vol. 50, Issue 9, pp. 1038–1047). Blackwell Publishing. https://doi.org/10.1111/imj.14709 |
dc.relation.references | Huang, W., Han, N., Du, L., Wang, M., Chen, L., & Tang, H. (2021). A narrative review of liver regeneration—from models to molecular basis. Annals of Translational Medicine, 9(22), 1705–1705. https://doi.org/10.21037/atm-21-5234 |
dc.relation.references | Huby, T., & Gautier, E. L. (2022). Immune cell-mediated features of non-alcoholic steatohepatitis. In Nature Reviews Immunology (Vol. 22, Issue 7, pp. 429–443). Nature Research. https://doi.org/10.1038/s41577-021-00639-3 |
dc.relation.references | Ikura, Y. (2020, July 1). Nonalcoholic fatty liver disease / nonalcoholic steatohepatitis (NASH). Pathology Outlines . https://www.pathologyoutlines.com/topic/liverNASH.html |
dc.relation.references | Ipsen, D. H., Lykkesfeldt, J., & Tveden-Nyborg, P. (2018). Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. In Cellular and Molecular Life Sciences (Vol. 75, Issue 18, pp. 3313–3327). Birkhauser Verlag AG. https://doi.org/10.1007/s00018-018-2860-6 |
dc.relation.references | Jang, W., & Song, J. S. (2023). Non-Invasive Imaging Methods to Evaluate Non-Alcoholic Fatty Liver Disease with Fat Quantification: A Review. In Diagnostics (Vol. 13, Issue 11). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/diagnostics13111852 |
dc.relation.references | Jung, Y., Witek, R. P., Syn, W. K., Choi, S. S., Omenetti, A., Premont, R., Guy, C. D., & Diehl, A. M. (2010). Signals from dying hepatocytes trigger growth of liver progenitors. Gut, 59(5), 655–665. https://doi.org/10.1136/gut.2009.204354 |
dc.relation.references | Juza, R. M., & Pauli, E. M. (2014). Clinical and surgical anatomy of the liver: A review for clinicians. In Clinical Anatomy (Vol. 27, Issue 5, pp. 764–769). John Wiley and Sons Inc. https://doi.org/10.1002/ca.22350 |
dc.relation.references | Kamm, D. R., & McCommis, K. S. (2022). Hepatic stellate cells in physiology and pathology. The Journal of Physiology, 600(8), 1825–1837. https://doi.org/10.1113/JP281061 |
dc.relation.references | Kanamori, Y., Tanaka, M., Itoh, M., Ochi, K., Ito, A., Hidaka, I., Sakaida, I., Ogawa, Y., & Suganami, T. (2021). Iron-rich Kupffer cells exhibit phenotypic changes during the development of liver fibrosis in NASH. IScience, 24(2). https://doi.org/10.1016/j.isci.2020.102032 |
dc.relation.references | Kierszenbaum, A. L., & Tres, L. L. (2016). Chapter 17. Digestive Glands. In Histology and Cell Biology An introduction to Pathology (4th ed.). Elsevier |
dc.relation.references | Kleiner, D. E., & Makhlouf, H. R. (2016). Histology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in Adults and Children. In Clinics in Liver Disease (Vol. 20, Issue 2, pp. 293–312). W.B. Saunders. https://doi.org/10.1016/j.cld.2015.10.011 |
dc.relation.references | Kordes, C., Sawitza, I., & Häussinger, D. (2008). Canonical Wnt signaling maintains the quiescent stage of hepatic stellate cells. Biochemical and Biophysical Research Communications, 367(1), 116–123. https://doi.org/10.1016/j.bbrc.2007.12.085 |
dc.relation.references | Krenkel, O., & Tacke, F. (2017). Liver macrophages in tissue homeostasis and disease. In Nature Reviews Immunology (Vol. 17, Issue 5, pp. 306–321). Nature Publishing Group. https://doi.org/10.1038/nri.2017.11 |
dc.relation.references | Latarjet, M., & Ruiz Liard, A. (2019). 109 Hígado . In Anatomía Humana (5th ed., Vol. 2). Panamericana. |
dc.relation.references | Lau, C., Kalantari, B., Batts, K. P., Ferrell, L. D., Nyberg, S. L., Graham, R. P., & Moreira, R. K. (2021). The Voronoi theory of the normal liver lobular architecture and its applicability in hepatic zonation. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-88699-2 |
dc.relation.references | Li, Q., Dhyani, M., Grajo, J. R., Sirlin, C., & Samir, A. E. (2018). Current status of imaging in nonalcoholic fatty liver disease. World Journal of Hepatology, 10(8), 530–542. https://doi.org/10.4254/wjh.v10.i8.530 |
dc.relation.references | Llewellyn, J., Fede, C., Loneker, A. E., Friday, C. S., Hast, M. W., Theise, N. D., Furth, E. E., Guido, M., Stecco, C., & Wells, R. G. (2023). Glisson’s capsule matrix structure and function is altered in patients with cirrhosis irrespective of aetiology. JHEP Reports, 5(9). https://doi.org/10.1016/j.jhepr.2023.100760 |
dc.relation.references | Lua, I., & Asahina, K. (2016). The role of mesothelial cells in liver development, injury, and regeneration. In Gut and Liver (Vol. 10, Issue 2, pp. 166–176). Joe Bok Chung. https://doi.org/10.5009/gnl15226 |
dc.relation.references | Mahadevan,V. (2020). Anatomy of the liver. In Surgery (Oxford) (Vol. 38, Issue 8, pp.427- 431).https://doi.org/10.1016/j.mpsur.2014.10.004. |
dc.relation.references | Mak, K. M., & Shin, D. W. (2021). Hepatic sinusoids versus central veins: Structures, markers, angiocrines, and roles in liver regeneration and homeostasis. In Anatomical Record (Vol. 304, Issue 8, pp. 1661–1691). John Wiley and Sons Inc. https://doi.org/10.1002/ar.24560 |
dc.relation.references | Marzuillo, P., Grandone, A., Perrone, L., & Miraglia Del Giudice, E. (2015). Controversy in the diagnosis of pediatric non-alcoholic fatty liver disease. World Journal of Gastroenterology, 21(21), 6444–6450. https://doi.org/10.3748/wjg.v21.i21.6444 |
dc.relation.references | Mathew, R. P., & Venkatesh, S. K. (2018). Liver vascular anatomy: a refresher. Abdominal Radiology, 43(8), 1886–1895. https://doi.org/10.1007/s00261-018-1623-z |
dc.relation.references | Matsumoto, M., Zhang, J., Zhang, X., Liu, J., Jiang, J. X., Yamaguchi, K., Taruno, A., Katsuyama, M., Iwata, K., Ibi, M., Cui, W., Matsuno, K., Marunaka, Y., Itoh, Y., Torok, N. J., & Yabe-Nishimura, C. (2018). The NOX1 isoform of NADPH oxidase is involved in dysfunction of liver sinusoids in nonalcoholic fatty liver disease. Free Radical Biology and Medicine, 115, 412–420. https://doi.org/10.1016/j.freeradbiomed.2017.12.019 |
dc.relation.references | Maurice J, Manousou P. (2018) Non-alcoholic fatty liver disease. In Clin Med (Lond) (Vol.18(3):245-250). https://doi.org/10.7861/clinmedicine.18-3-245. |
dc.relation.references | Michalopoulos, G. K. (2013). Principles of liver regeneration and growth homeostasis. Comprehensive Physiology, 3(1), 485–513. https://doi.org/10.1002/cphy.c120014 |
dc.relation.references | Michalopoulos, G. K., & Bhushan, B. (2021). Liver regeneration: biological and pathological mechanisms and implications. In Nature Reviews Gastroenterology and Hepatology (Vol. 18, Issue 1, pp. 40–55). Nature Research. https://doi.org/10.1038/s41575-020-0342-4 |
dc.relation.references | Mooring, M., Fowl, B. H., Lum, S. Z. C., Liu, Y., Yao, K., Softic, S., Kirchner, R., Bernstein, A., Singhi, A. D., Jay, D. G., Kahn, C. R., Camargo, F. D., & Yimlamai, D. (2020). Hepatocyte Stress Increases Expression of Yes-Associated Protein and Transcriptional Coactivator With PDZ-Binding Motif in Hepatocytes to Promote Parenchymal Inflammation and Fibrosis. Hepatology, 71(5), 1813–1830. https://doi.org/10.1002/hep.30928 |
dc.relation.references | Nassir, F. (2022). NAFLD: Mechanisms, Treatments, and Biomarkers. In Biomolecules (Vol. 12, Issue 6). MDPI. https://doi.org/10.3390/biom12060824 |
dc.relation.references | Nassir, F., & Ibdah, J. A. (2014). Role of mitochondria in nonalcoholic fatty liver disease. In International Journal of Molecular Sciences (Vol. 15, Issue 5, pp. 8713–8742). MDPI. https://doi.org/10.3390/ijms15058713 |
dc.relation.references | Netter, F. (2010). Atlas of Human Anatomy (J. Hansen, B. Benninger, J. Brueckner, S. Carmichael, N. Granger, & S. Tubbs, Eds.; 5th ed.). Elsevier |
dc.relation.references | Ober, E. A., & Lemaigre, F. P. (2018). Development of the liver: Insights into organ and tissue morphogenesis. In Journal of Hepatology (Vol. 68, Issue 5, pp. 1049–1062). Elsevier B.V. https://doi.org/10.1016/j.jhep.2018.01.005 |
dc.relation.references | Papatheodoridi, M., & Cholongitas, E. (2019). Diagnosis of Non-alcoholic Fatty Liver Disease (NAFLD): Current Concepts. Current Pharmaceutical Design, 24(38), 4574–4586. https://doi.org/10.2174/1381612825666190117102111 |
dc.relation.references | Paranjpe, S., Bowen, W. C., Mars, W. M., Orr, A., Haynes, M. M., DeFrances, M. C., Liu, S., Tseng, G. C., Tsagianni, A., & Michalopoulos, G. K. (2016). Combined systemic elimination of MET and epidermal growth factor receptor signaling completely abolishes liver regeneration and leads to liver decompensation. Hepatology, 64(5), 1711–1724. https://doi.org/10.1002/hep.28721 |
dc.relation.references | Park, S. W., Zhou, Y., Lee, J., Lu, A., Sun, C., Chung, J., Ueki, K., & Ozcan, U. (2010). The regulatory subunits of PI3K, p85α and p85Β, interact with XBP-1 and increase its nuclear translocation. Nature Medicine, 16(4), 429–437. https://doi.org/10.1038/nm.2099 |
dc.relation.references | Pawlina, W., & Ross, M. H. (2015). 18 SISTEMA DIGESTIVO III: HÍGADO, VESÍCULA BILIAR Y PÁNCREAS. In Ross Histología texto y Atlas (8th ed., pp. 666–680). Wolters Kliwer. |
dc.relation.references | Perin, S., McCann, C. J., Borrelli, O., De Coppi, P., & Thapar, N. (2017). Update on foregut molecular embryology and role of regenerative medicine therapies. In Frontiers in Pediatrics (Vol. 5). Frontiers Media S.A. https://doi.org/10.3389/fped.2017.00091 |
dc.relation.references | Pouwels, S., Sakran, N., Graham, Y., Leal, A., Pintar, T., Yang, W., Kassir, R., Singhal, R., Mahawar, K., & Ramnarain, D. (2022). Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. In BMC Endocrine Disorders (Vol. 22, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12902-022-00980-1 |
dc.relation.references | Powell, E. E., Wong, V. W. S., & Rinella, M. (2021). Non-alcoholic fatty liver disease. In The Lancet (Vol. 397, Issue 10290, pp. 2212–2224). Elsevier B.V. https://doi.org/10.1016/S0140-6736(20)32511-3 |
dc.relation.references | Prieto-Ortiz, J. E., Sánchez-Luque, C. B., & Ortega-Quiroz, R. (2022). Non-alcoholic fatty liver disease part 1: general aspects, epidemiology. pathophysiology and natural history. In Revista Colombiana de Gastroenterologia (Vol. 37, Issue 4, pp. 420–433). Asociacion Colombiana de Gastroenterologia. https://doi.org/10.22516/25007440.952 |
dc.relation.references | Pro, E. A. (2014). Abdomen . In Anatomía clinica (2nd ed., pp. 621–632). Panamericana. |
dc.relation.references | Rada, P., González-Rodríguez, Á., García-Monzón, C., & Valverde, Á. M. (2020). Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? In Cell Death and Disease (Vol. 11, Issue 9). Springer Nature. https://doi.org/10.1038/s41419-020-03003-w |
dc.relation.references | Rani, R., & Gandhi, C. R. (2023). Stellate cell in hepatic inflammation and acute injury. In Journal of Cellular Physiology (Vol. 238, Issue 6, pp. 1226–1236). John Wiley and Sons Inc. https://doi.org/10.1002/jcp.31029 |
dc.relation.references | Ribeiro, M. D. C., & Szabo, G. (2021). Role of the Inflammasome in Liver Disease. In Annual Review of Pathology: Mechanisms of Disease (Vol. 17, pp. 345–365). Annual Reviews Inc. https://doi.org/10.1146/annurev-pathmechdis-032521-102529 |
dc.relation.references | Ross, M. A., Sander, C. M., Kleeb, T. B., Watkins, S. C., & Stolz, D. B. (2001). Spatiotemporal expression of angiogenesis growth factor receptors during the revascularization of regenerating rat liver. Hepatology, 34(6), 1135–1148. https://doi.org/10.1053/jhep.2001.29624 |
dc.relation.references | Sadler, T. W. (2019). 15 Sistema Digestivo . In Langman Embriología médica (14th ed., pp. 377–412). Wolters Kluwer |
dc.relation.references | Sanders, F. W. B., & Griffin, J. L. (2016). De novo lipogenesis in the liver in health and disease: More than just a shunting yard for glucose. Biological Reviews, 91(2), 452–468. https://doi.org/10.1111/brv.12178 |
dc.relation.references | Schneider, J. L., Suh, Y., & Cuervo, A. M. (2014). Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metabolism, 20(3), 417–432. https://doi.org/10.1016/j.cmet.2014.06.009 |
dc.relation.references | Schroeder, B., Schulze, R. J., Weller, S. G., Sletten, A. C., Casey, C. A., & McNiven, M. A. (2015). The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology, 61(6), 1896–1907. https://doi.org/10.1002/hep.27667 |
dc.relation.references | Schulze, R. J., Schott, M. B., Casey, C. A., Tuma, P. L., & McNiven, M. A. (2019). The cell biology of the hepatocyte: A membrane trafficking machine. In Journal of Cell Biology (Vol. 218, Issue 7, pp. 2096–2112). Rockefeller University Press. https://doi.org/10.1083/jcb.201903090 |
dc.relation.references | Schuster, S., Cabrera, D., Arrese, M., & Feldstein, A. E. (2018). Triggering and resolution of inflammation in NASH. In Nature Reviews Gastroenterology and Hepatology (Vol. 15, Issue 6, pp. 349–364). Nature Publishing Group. https://doi.org/10.1038/s41575-018-0009-6 |
dc.relation.references | Serhan, C. N. (2017). Treating inflammation and infection in the 21st century: New hints from decoding resolution mediators and mechanisms. In FASEB Journal (Vol. 31, Issue 4, pp. 1273–1288). FASEB. https://doi.org/10.1096/fj.201601222R |
dc.relation.references | Singh Monga, S. P., & Behari, J. (2010). Chapter 20 - Molecular Basis of Liver Disease. In W. B. Coleman & G. Tsongalis (Eds.), Essentials Concepts in Molecular Pathology (pp. 263–278). Elsevier. https://doi.org/10.1016/B978-0-12-374418-0.00029-3 |
dc.relation.references | Soares-da-Silva, F., Peixoto, M., Cumano, A., & Pinto-do-Ó, P. (2020). Crosstalk Between the Hepatic and Hematopoietic Systems During Embryonic Development. In Frontiers in Cell and Developmental Biology (Vol. 8). Frontiers Media S.A. https://doi.org/10.3389/fcell.2020.00612 |
dc.relation.references | Srimani, P., & Saha, A. (2020). Liver morphology: anatomical study about the outer aspects. Surgical and Radiologic Anatomy, 42(12), 1425–1434. https://doi.org/10.1007/s00276-020-02485-9 |
dc.relation.references | Sufleţel, R. T., Melincovici, C. S., Gheban, B. A., Toader, Z., & Mihu, C. M. (2020). Hepatic stellate cells - from past till present: Morphology, human markers, human cell lines, behavior in normal and liver pathology. Romanian Journal of Morphology and Embryology, 61(3), 615–642. https://doi.org/10.47162/RJME.61.3.01 |
dc.relation.references | Sunny, N. E., Bril, F., & Cusi, K. (2017). Mitochondrial Adaptation in Nonalcoholic Fatty Liver Disease: Novel Mechanisms and Treatment Strategies. In Trends in Endocrinology and Metabolism (Vol. 28, Issue 4, pp. 250–260). Elsevier Inc. https://doi.org/10.1016/j.tem.2016.11.006 |
dc.relation.references | Takahashi, Y., & Fukusato, T. (2014). Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World Journal of Gastroenterology, 20(42), 15539–15548. https://doi.org/10.3748/wjg.v20.i42.15539 |
dc.relation.references | Tamaki, N., Ajmera, V., & Loomba, R. (2022). Non-invasive methods for imaging hepatic steatosis and their clinical importance in NAFLD. In Nature Reviews Endocrinology (Vol. 18, Issue 1, pp. 55–66). Nature Research. https://doi.org/10.1038/s41574-021-00584-0 |
dc.relation.references | Tanimizu, N. (2022). The neonatal liver: Normal development and response to injury and disease. Seminars in Fetal and Neonatal Medicine, 27(1). https://doi.org/10.1016/j.siny.2021.101229 |
dc.relation.references | Tateya, S., Rizzo, N. O., Handa, P., Cheng, A. M., Morgan-Stevenson, V., Daum, G., Clowes, A. W., Morton, G. J., Schwartz, M. W., & Kim, F. (2011). Endothelial NO/cGMP/VASP signaling attenuates kupffer cell activation and hepatic insulin resistance induced by high-fat feeding. Diabetes, 60(11), 2792–2801. https://doi.org/10.2337/db11-0255 |
dc.relation.references | Theise, N. D. (2021). Hígado y Vesícula Biliar. In V. Kumar, A. Abbas, & J. Aster (Eds.), Robbins Y Cotran Patología Estructural Y Funcional (10th ed., pp. 821–895). Elsevier. |
dc.relation.references | Tiniakos, D. G., Vos, M. B., & Brunt, E. M. (2010). Nonalcoholic fatty liver disease: Pathology and pathogenesis. In Annual Review of Pathology: Mechanisms of Disease (Vol. 5, pp. 145–171). https://doi.org/10.1146/annurev-pathol-121808-102132 |
dc.relation.references | Trefts, E., Gannon, M., & Wasserman, D. H. (2017). The liver. Current Biology, 27(21), R1147–R1151. https://doi.org/10.1016/j.cub.2017.09.019 |
dc.relation.references | Valenti, L., Mendoza, R. M., Rametta, R., Maggioni, M., Kitajewski, C., Shawber, C. J., & Pajvani, U. B. (2013). Hepatic notch signaling correlates with insulin resistance and nonalcoholic fatty liver disease. Diabetes, 62(12), 4052–4062. https://doi.org/10.2337/db13-0769 |
dc.relation.references | Wallace, S. J., Tacke, F., Schwabe, R. F., & Henderson, N. C. (2022). Understanding the cellular interactome of non-alcoholic fatty liver disease. In JHEP Reports (Vol. 4, Issue 8). Elsevier B.V. https://doi.org/10.1016/j.jhepr.2022.100524 |
dc.relation.references | Wolf, M. J., Adili, A., Piotrowitz, K., Abdullah, Z., Boege, Y., Stemmer, K., Ringelhan, M., Simonavicius, N., Egger, M., Wohlleber, D., Lorentzen, A., Einer, C., Schulz, S., Clavel, T., Protzer, U., Thiele, C., Zischka, H., Moch, H., Tschöp, M., … Heikenwalder, M. (2014). Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell, 26(4), 549–564. https://doi.org/10.1016/j.ccell.2014.09.003 |
dc.relation.references | Xu, G. X., Wei, S., Yu, C., Zhao, S. Q., Yang, W. J., Feng, Y. H., Pan, C., Yang, K. X., & Ma, Y. (2023). Activation of Kupffer cells in NAFLD and NASH: mechanisms and therapeutic interventions. In Frontiers in Cell and Developmental Biology (Vol. 11). Frontiers Media SA. https://doi.org/10.3389/fcell.2023.1199519 |
dc.relation.references | Xu, R., Huang, H., Zhang, Z., & Wang, F. S. (2014). The role of neutrophils in the development of liver diseases. In Cellular and Molecular Immunology (Vol. 11, Issue 3, pp. 224–231). Chinese Soc Immunology. https://doi.org/10.1038/cmi.2014.2 |
dc.relation.references | Yoo, K. S., Lim, W. T., & Choi, H. S. (2016). Biology of cholangiocytes: From bench to bedside. In Gut and Liver (Vol. 10, Issue 5, pp. 687–698). Joe Bok Chung. https://doi.org/10.5009/gnl16033 |
dc.relation.references | Younossi, Z. M. (2019). Non-alcoholic fatty liver disease – A global public health perspective. In Journal of Hepatology (Vol. 70, Issue 3, pp. 531–544). Elsevier B.V. https://doi.org/10.1016/j.jhep.2018.10.033 |
dc.relation.references | Younossi, Z. M., Loomba, R., Anstee, Q. M., Rinella, M. E., Bugianesi, E., Marchesini, G., Neuschwander-Tetri, B. A., Serfaty, L., Negro, F., Caldwell, S. H., Ratziu, V., Corey, K. E., Friedman, S. L., Abdelmalek, M. F., Harrison, S. A., Sanyal, A. J., Lavine, J. E., Mathurin, P., Charlton, M. R., … Lindor, K. (2018). Diagnostic modalities for nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and associated fibrosis. In Hepatology (Vol. 68, Issue 1, pp. 349–360). John Wiley and Sons Inc. https://doi.org/10.1002/hep.29721 |
dc.relation.references | Zhang, H., Liu, M., Zhong, W., Zheng, Y., Li, Y., Guo, L., Zhang, Y., Ran, Y., Zhao, J., Zhou, L., & Wang, B. (2021). Leaky Gut Driven by Dysbiosis Augments Activation and Accumulation of Liver Macrophages via RIP3 Signaling Pathway in Autoimmune Hepatitis. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.624360 |
dc.relation.references | Zhu, C., Tabas, I., Schwabe, R. F., & Pajvani, U. B. (2021). Maladaptive regeneration — the reawakening of developmental pathways in NASH and fibrosis. In Nature Reviews Gastroenterology and Hepatology (Vol. 18, Issue 2, pp. 131–142). Nature Research. https://doi.org/10.1038/s41575-020-00365-6 |
dc.relation.references | Zhu, L., Baker, S. S., Liu, W., Tao, M. H., Patel, R., Nowak, N. J., & Baker, R. D. (2011). Lipid in the livers of adolescents with nonalcoholic steatohepatitis: Combined effects of pathways on steatosis. Metabolism: Clinical and Experimental, 60(7), 1001–1011. https://doi.org/10.1016/j.metabol.2010.10.003 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.decs | Enfermedad del Hígado Graso no Alcohólico |
dc.subject.decs | Non-alcoholic Fatty Liver Disease |
dc.subject.decs | Carcinoma Hepatocelular |
dc.subject.decs | Carcinoma, Hepatocellular |
dc.subject.decs | Enfermedades del Sistema Digestivo |
dc.subject.decs | Digestive System Diseases |
dc.subject.proposal | Enfermedad por Hígado Graso No Alcohólico |
dc.subject.proposal | Esteatohepatitis no Alcohólica |
dc.subject.proposal | Anatomía |
dc.subject.proposal | Embriología |
dc.subject.proposal | Histología |
dc.subject.proposal | Non-alcoholic Fatty Liver Disease |
dc.subject.proposal | Non-alcoholic Steatohepatitis |
dc.subject.proposal | Anatomy |
dc.subject.proposal | Embryology |
dc.subject.proposal | Histology |
dc.title.translated | Bibliographic review of morphological concepts in the development of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Bibliotecarios |
dcterms.audience.professionaldevelopment | Consejeros |
dcterms.audience.professionaldevelopment | Estudiantes |
dcterms.audience.professionaldevelopment | Grupos comunitarios |
dcterms.audience.professionaldevelopment | Investigadores |
dcterms.audience.professionaldevelopment | Maestros |