Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.authorRueda, Viviana María
dc.contributor.authorVelásquez Henao, Juan David
dc.contributor.authorFranco Cardona, Carlos Jaime
dc.date.accessioned2019-06-24T17:36:02Z
dc.date.available2019-06-24T17:36:02Z
dc.date.issued2011
dc.identifier.issnISSN: 0012-7353
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/8745
dc.description.abstractLa predicción de la demanda es un problema de gran importancia para el sector eléctrico, ya que a partir de sus resultados, los agentes del mercado de energía toman las decisiones más adecuadas para su labor. En este artículo se presenta un análisis de las técnicas y modelos más usados en el pronóstico de la demanda de electricidad y la problemática o difi cultades a las que se enfrentan los investigadores al momento de realizar un pronóstico. El análisis muestra que las técnicas más usadas son los modelos ARIMA y las redes neuronales artifi ciales. Sin embargo, se encontró poca claridad sobre cuál modelo es más adecuado y en qué casos, adicionalmente, los estudios no presentan una recomendación específi ca para desarrollar modelos de pronóstico de demanda, específi camente en el caso colombiano. Finalmente, se propone realizar un estudio sistemático con el fi n de determinar los modelos más adecuados para predicción de demanda para el caso colombiano./ Abstract: Electricity demand forecasting is a major problem for the electricity sector, because the energy market players use the results of the electricity demand forecasting to make the right decisions for their work. This article presents an analysis of models and techniques used in the electricity demand forecasting and explain the problems or diffi culties that researchers have when making a forecast. Our analysis shows that the most used techniques are the ARIMA model and artifi cial neural networks. However, it appears unclear evidence on which model is most appropriate and in what cases, in addition, the studies do not present a specifi c recommendation to develop models for forecasting demand, specifi cally in the Colombian case. Finally, we propose to make a systematic study to determine the most appropriate models for forecasting demand for the Colombian case.
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia Sede Medell� Facultad de Minas
dc.relation.ispartofUniversidad Nacional de Colombia Sede Medellín Facultad de Minas Escuela de Sistemas
dc.relation.ispartofEscuela de Sistemas
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc0 Generalidades / Computer science, information and general works
dc.titleAvances recientes en la predicción de la demanda de electricidad usando modelos no lineales./ Recent advances in load forecasting using nonlinear models.
dc.typeArtículo de revista
dc.type.driverinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.eprintshttp://bdigital.unal.edu.co/5431/
dc.relation.referencesRueda, Viviana María and Velásquez Henao, Juan David and Franco Cardona, Carlos Jaime (2011) Avances recientes en la predicción de la demanda de electricidad usando modelos no lineales./ Recent advances in load forecasting using nonlinear models. Dyna, 78 (167). pp. 36-43. ISSN 0012-7353
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPronóstico
dc.subject.proposalDemanda de electricidad
dc.subject.proposalModelos no lineales.
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit