Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorRincón Fulla, Marlon
dc.contributor.advisorPalacio Bedoya, Juan Luis
dc.contributor.authorBejar Caceres, Brayan Daniel
dc.date.accessioned2025-04-17T16:19:57Z
dc.date.available2025-04-17T16:19:57Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87964
dc.descriptionIlustraciones, tablas, gráficas
dc.description.abstractEn el ámbito de la biotecnología, el monitoreo continuo y preciso de la concentración celular es esencial para optimizar el crecimiento de biomasa en cultivos biológicos. Los biorreactores y fermentadores (dispositivos diseñados específicamente para el cultivo de diversas células, entre ellas bacterias y levaduras) dependen de la medición de parámetros como temperatura, presión, pH y oxígeno disuelto, en donde la estimación de la concentración celular es igualmente crítica para implementar sistemas de control de lazo cerrado que permita automatizar al máximo el proceso. Las técnicas ópticas, y en particular, la medida de la densidad óptica, se implementa comercialmente y permite caracterizar el crecimiento y evolución de células en suspensiones acuosas en el biorreactor, aprovechando los fenómenos fundamentales de interacción de la luz con la materia como la absorción y dispersión, sin alterar las propiedades biológicas del sistema. No obstante, para las Pymes en Colombia, los sensores de densidad óptica comerciales suelen tener un alto costo, lo que dificulta su adopción en industrias con recursos limitados, como las dedicadas a la producción de cervezas artesanales, inoculantes biológicos y biosimilares, entre otros. En este trabajo se presenta el desarrollo de un instrumento óptico de bajo costo que permite monitorear en tiempo real el crecimiento de biomasa en biorreactores y fermentadores, siendo compatible con los estándares industriales de conexión y comunicación en este tipo de sistemas. El dispositivo aprovecha el fenómeno de la dispersión de la luz generada por las células en suspensión para estimar la concentración celular. En particular, el elemento sensor que se introduce en el biorreactor se encapsula en un material polimérico compatible con los procesos de esterilización in situ, que sustituye el clásico acero inoxidable de los dispositivos comerciales, y se desarrolló un sistema de acondicionamiento de señales que permite controlar la emisión de luz para generar una intensidad lumínica constante en el tiempo, ante el ruido electromagnético y a las variaciones de temperatura, obteniendo una resolución en las medidas de 0.002 e inferior al 1% en la escala de medida en unidades arbitrarias. Esta solución no solo busca hacer más accesible la automatización de procesos productivos en la industria biotecnológica colombiana, sino también, mejorar la calidad del producto final y optimizar el tiempo de producción para incrementar el margen de beneficio. (Tomado de la fuente)
dc.description.abstractIn the field of biotechnology, continuous and accurate monitoring of cell concentration is essential to optimize biomass growth in biological cultures. Bioreactors and fermenters (devices specifically designed for cultivating various cells, including bacteria and yeasts) depend on the measurement of parameters such as temperature, pressure, pH, and dissolved oxygen, where the estimation of cell concentration is equally critical to implement closed-loop control systems that allow maximum automation of the process. Optical techniques, and in particular, the measurement of optical density, are commercially implemented to characterize cell growth and evolution in aqueous suspensions within the bioreactor, by taking advantage of fundamental light-matter interactions, such as absorption and scattering, without altering the biological properties of the system. However, for SMEs (Small and Medium-sized Enterprises) in Colombia, commercial optical density sensors tend to have a high cost, which hinders their adoption in industries with limited resources, such as those dedicated to the production of craft beers, biological inoculants and biosimilars, among others. This work presents the development of a low-cost optical instrument that allows real-time monitoring of biomass growth in bioreactors and fermenters, compatible with industrial standars of connection and communication in these types of systems. The device takes advantage of orking principles are based on light scattered by cells to estimate cell concentration. In particular, the sensor that is introduced into the bioreactor is encapsulated in a polymeric material compatible with sterilization processes in situ}, which replaces the classic stainless steel of commercial devices, and a signal conditioning system was developed to control light emission to generate constant light intensity over time, in the face of electromagnetic noise and temperature variations, obtaining a measurement resolution of 0.002, lower than 1% on the measurement scale in arbitrary units. This solution not only seeks to make the automation of production processes in the Colombian biotechnology industry more accessible, but also, to improve the quality of the final product and optimize production time in order to increase profit margin.
dc.format.extent75 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subject.ddc680 - Manufactura para usos específicos::681 - Instrumentos de precisión y otros dispositivos
dc.titleDesarrollo y evaluación de un prototipo para el monitoreo en tiempo real del crecimiento de cultivos biológicos en biorreactores industriales
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Maestría en Ingeniería Física
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Física
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesK. v. R. Tramper, Johannes, Basic Bioreactor Design. Boca Raton: CRC Press, Apr. 1991.
dc.relation.referencesV. Vojinovic, J. M. S. Cabral, and L. P. Fonseca, “Real-time bioprocess monitoring: Part I: In situ sensors,” Sensors and Actuators B: Chemical, vol. 114, no. 2, pp. 1083–1091, Apr. 2006. [Online]. Available:
dc.relation.referencesD. Schrenk and A. Cartus, Eds., Chemical Contaminants and Residues in Food. Duxford: Springer, Jul. 2017.
dc.relation.referencesF. Jacquet, M.-H. Jeuffroy, J. Jouan, E. Le Cadre, I. Litrico, T. Malausa, X. Reboud, and C. Huyghe, “Pesticide-free agriculture as a new paradigm for research,” Agronomy for Sustainable Development, vol. 42, no. 1, p. 8, Jan. 2022. [Online]. Available: https://doi.org/10.1007/s13593-021-00742-8
dc.relation.referencesL. S. Rösner, F. Walter, C. Ude, G. T. John, and S. Beutel, “Sensors and Techniques for On-Line Determination of Cell Viability in Bioprocess Monitoring,” Bioengineering, vol. 9, no. 12, p. 762, Dec. 2022, number: 12 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2306-5354/9/12/762
dc.relation.referencesJ. H. T. Luong, K. A. Mahmoud, and K. B. Male, “2.60 - Instrumentation and Analytical Methods,” in Comprehensive Biotechnology (Third Edition), M. Moo- Young, Ed. Oxford: Pergamon, Jan. 2011, pp. 893–903. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/B9780444640468001087
dc.relation.references“On-line Biomass Sensors.” [Online]. Available: https://solidabiotech.com/product/ biomass-sensors/
dc.relation.references“Sondas de densidad celular del ASD12.” [Online]. Available: https://www.optek.com/es/ asd12-n.asp
dc.relation.referencesM.-T. I. I. a. r. reserved, “Turb Sensor InPro8100/S/205.” [Online]. Available: https://www.mt.com/int/en/home/products/Process-Analytics/turbidity-meter/ turbidity-sensor/turb-sensor-inpro8100-s-205.html
dc.relation.referencesL.-M. Mauerhofer, P. Pappenreiter, C. Paulik, A. H. Seifert, S. Bernacchi, and S. K.-M. R. Rittmann, “Methods for quantification of growth and productivity in anaerobic microbiology and biotechnology,” Folia Microbiologica, vol. 64, no. 3, pp. 321–360, May 2019. [Online]. Available: http://link.springer.com/10.1007/s12223-018-0658-4
dc.relation.referencesS. Vaidyanathan, G. Macaloney, J. Vaughan, B. McNeil, and L. M. Harvey, “Monitoring of Submerged Bioprocesses,” Critical Reviews in Biotechnology, vol. 19, no. 4, pp. 277–316, Jan. 1999, publisher: Taylor & Francis _eprint: https://doi.org/10.1080/0738-859991229161. [Online]. Available: https://doi.org/10.1080/0738-859991229161
dc.relation.referencesL. Olsson and J. Nielsen, “On-line and in situ monitoring of biomass in submerged cultivations,” Trends in Biotechnology, vol. 15, no. 12, pp. 517–522, Dec. 1997. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167779997011360
dc.relation.references] A. L. Koch, “Growth Measurement,” in Methods for General and Molecular Mi- crobiology. John Wiley & Sons, Ltd, 2007, pp. 172–199, section: 9 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1128/9781555817497.ch9. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1128/9781555817497.ch9
dc.relation.referencesM. Butler, M. Spearman, and K. Braasch, “Monitoring Cell Growth, Viability, and Apoptosis,” in Animal Cell Biotechnology: Methods and Protocols, ser. Methods in Molecular Biology, R. Pörtner, Ed. Totowa, NJ: Humana Press, 2014, pp. 169–192. [Online]. Available: https://doi.org/10.1007/978-1-62703-733-4_12
dc.relation.referencesF. Alimagham, J. Winterburn, B. Dolman, P. M. Domingues, F. Everest, M. Platkov, S. Basov, G. Izakson, A. Katzir, S. R. Elliott, and T. Hutter, “Real-time bioprocess monitoring using a mid-infrared fibre-optic sensor,” Biochemical Engineering Journal, vol. 167, p. 107889, Mar. 2021. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S1369703X20304435
dc.relation.referencesJ. Wu, M. S. Feld, and R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Applied Optics, vol. 32, no. 19, pp. 3585–3595, Jul. 1993, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/ao/abstract.cfm?uri= ao-32-19-3585
dc.relation.referencesK. Azil, A. Altuncu, K. Ferria, S. Bouzid, S. A. Sadık, and F. E. Durak, “A faster and accurate optical water turbidity measurement system using a CCD line sensor,” Optik, vol. 231, p. 166412, Apr. 2021. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S0030402621001455
dc.relation.referencesM. Yousif, H. Burdett, C. Wellen, S. Mandal, G. Arabian, D. Smith, and R. J. Sorichetti, “An innovative approach to correct data from in-situ turbidity sensors for surface water monitoring,” Environmental Modelling & Software, vol. 155, p. 105461, Sep. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364815222001669
dc.relation.referencesJ. Trevathan, W. Read, and A. Sattar, “Implementation and Calibration of an IoT Light Attenuation Turbidity Sensor,” Internet of Things, vol. 19, p. 100576, Aug. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2542660522000671
dc.relation.referencesT. G. Mayerhöfer, S. Pahlow, and J. Popp, “The Bouguer-Beer-Lambert Law: Shining Light on the Obscure,” ChemPhysChem, vol. 21, no. 18, pp. 2029–2046, 2020, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cphc.202000464. [Online]. Available: https: //onlinelibrary.wiley.com/doi/abs/10.1002/cphc.202000464
dc.relation.referencesJ. L. Palacio Bedoya and M. Fulla, “Modelo Físico-Matemático para la Estimación del Tama- ño de Partículas en Suspensiones Coloidales de Baja Dilucón,” CINTEX, vol. 20, pp. 53–68, Jun. 2015.
dc.relation.referencesC. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles. John Wiley & Sons, Ltd, 1998, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527618156.fmatter. [Online]. Availa- ble: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527618156.fmatter
dc.relation.referencesR. W. Boyd, Nonlinear Optics, Third Edition, 3rd ed. USA: Academic Press, Inc., Mar. 2008
dc.relation.referencesJ. Lakowicz, Principles of fluorescence spectroscopy, ser. Principles of Fluorescence Spec- troscopy. Springer, 2006, pages: 954.
dc.relation.references14:00-17:00, “ISO 7027-1:2016.” [Online]. Available: https://www.iso.org/standard/62801. html
dc.relation.referencesJ. Rocher, J. M. Jimenez, J. Tomas, and J. Lloret, “Low-Cost Turbidity Sensor to Determine Eutrophication in Water Bodies,” Sensors, vol. 23, no. 8, p. 3913, Jan. 2023, number: 8 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/1424-8220/23/8/3913
dc.relation.referencesM. W. Prairie, S. H. Frisbie, K. K. Rao, A. H. Saksri, S. Parbat, and E. J. Mitchell, “An accurate, precise, and affordable light emitting diode spectrophotometer for drinking water and other testing with limited resources,” PLOS ONE, vol. 15, no. 1, p. e0226761, Jan. 2020, publisher: Public Library of Science. [Online]. Available: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226761
dc.relation.referencesA. M. Cao y Paz, J. M. Acevedo, J. D. Gandoy, A. del Rio Vazquez, C. M.-P. Freire, and M. L. Soria, “Plastic Optical Fiber Sensor for Real Time Density Measurements in Wine Fermentation,” in 2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007, May 2007, pp. 1–5, iSSN: 1091-5281. [Online]. Available: https://ieeexplore.ieee.org/document/4258431
dc.relation.referencesM. Ramezani, G. Ferrentino, K. Morozova, and M. Scampicchio, “Multiple Light Scattering Measurements for Online Monitoring of Milk Fermentation,” Foods (Basel, Switzerland), vol. 10, no. 7, p. 1582, Jul. 2021.
dc.relation.referencesM. M. Paradkar, R. S. Singhal, and P. R. Kulkarni, “An approach to the detection of synthetic milk in dairy milk: 2. Detection of detergents,” In- ternational Journal of Dairy Technology, vol. 53, no. 3, pp. 92–95, 2000, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1471-0307.2000.tb02667.x. [Onli- ne]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1471-0307.2000.tb02667.x
dc.relation.referencesR. Fan, M. Ebrahimi, H. Quitmann, M. Aden, and P. Czermak, “An Innovative Optical Sensor for the Online Monitoring and Control of Biomass Concentration in a Membrane Bioreactor System for Lactic Acid Production,” Sensors, vol. 16, no. 3, p. 411, Mar. 2016, number: 3 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/1424-8220/16/3/411
dc.relation.referencesK. Karakostas, S. Gkagkanis, K. Katsaliaki, P. Köllensperger, A. Hatzopoulos, and M. E. Kiziroglou, “Portable optical blood scattering sensor,” Microelectronic Engineering, vol. 217, p. 111129, Sep. 2019. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S0167931719302850
dc.relation.referencesW. Shao, H. Zhang, and H. Zhou, “Fine Particle Sensor Based on Multi-Angle Light Scattering and Data Fusion,” Sensors, vol. 17, no. 5, p. 1033, May 2017, number: 5 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/1424-8220/17/5/1033
dc.relation.referencesS. Molaie and P. Lino, “Review of the Newly Developed, Mobile Optical Sensors for Real- Time Measurement of the Atmospheric Particulate Matter Concentration,” Micromachines, vol. 12, no. 4, p. 416, Apr. 2021, number: 4 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2072-666X/12/4/416
dc.relation.referencesL. He, H. Wu, J. Li, B. Li, Y. Sun, P. Jiang, X. Wang, and G. Lin, “Solid Particle Swarm Measurement in Jet Fuel Based on Mie Scattering Theory and Extinction Method,” Sensors, vol. 23, no. 5, p. 2837, Jan. 2023, number: 5 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/1424-8220/23/5/2837
dc.relation.references“OUSBT66 – Analysis OEM.” [Online]. Available: https://www.analysis-oem.com/product/optical-insertion-probe-designed-for-use-with-the-model-ocm44p-transmitter-to-monitor-cell-mass-in-bacterial-fermentation-and-mammalian-cell-culture-applications/
dc.relation.references“Sensors – Cerex Inc.” [Online]. Available: https://www.cerexinc.com/sensors/
dc.relation.references“Kemtrak Turbidimeters.” [Online]. Available: https://www.southforkinst.com/ kemtrak-turbidimeter/
dc.relation.references“TF56-N Turbidity Sensor measures scattered light / turbidity.” [Online]. Available: https://www.optek.com/en/turbidity/tf56-inline-turbidity-sensor.asp
dc.relation.references“DTF16 Turbidity Sensor: 3 Measurement angles 0°, 11° and 90°.” [Online]. Available: https://www.optek.com/en/turbidity/dtf16-inline-turbidimeter.asp
dc.relation.referencesA. M. Salgado, R. O. M. Folly, and B. Valdman, “Biomass monitoring by use of a continuous on-line optical sensor,” Sensors and Actuators B: Chemical, vol. 75, no. 1, pp. 24–28, Apr. 2001. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S0925400500006924
dc.relation.referencesM. He, S. K. Nguang, X. M. Li, G. F. Qin, and X. D. Chen, “Cost Optical Sensor for Online Measurement of Biomass,” Developments in Chemi- cal Engineering and Mineral Processing, vol. 13, no. 1-2, pp. 63–70, 2005, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/apj.5500130107. [Online]. Avai- lable: https://onlinelibrary.wiley.com/doi/abs/10.1002/apj.5500130107
dc.relation.referencesM. G. Macey, Ed., Flow Cytometry. Totowa, NJ: Humana Press, 2007. [Online]. Available: http://link.springer.com/10.1007/978-1-59745-451-3
dc.relation.referencesN. R. Abu-Absi, B. M. Kenty, M. E. Cuellar, M. C. Borys, S. Sakhamuri, D. J. Strachan, M. C. Hausladen, and Z. J. Li, “Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectros- copy probe,” Biotechnology and Bioengineering, vol. 108, no. 5, pp. 1215–1221, 2011, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/bit.23023. [Online]. Availa- ble: https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.23023
dc.relation.referencesK. A. Esmonde-White, M. Cuellar, and I. R. Lewis, “The role of Raman spectroscopy in biopharmaceuticals from development to manufacturing,” Analytical and Bioanalytical Che- mistry, vol. 414, no. 2, pp. 969–991, Jan. 2022.
dc.relation.referencesN. Wei, J. You, K. Friehs, E. Flaschel, and T. W. Nattkemper, “An in situ probe for on-line monitoring of cell density and viability on the basis of dark field microscopy in conjunction with image processing and supervised machine learning,” Biotechnology and Bioengineering, vol. 97, no. 6, pp. 1489–1500, Aug. 2007.
dc.relation.referencesH. P. Schwan, “Biological effects of non-ionizing radiations: Cellular properties and interactions,” Annals of Biomedical Engineering, vol. 16, no. 3, pp. 245–263, May 1988. [Online]. Available: https://doi.org/10.1007/BF02368002
dc.relation.referencesB. Rigaud, J. P. Morucci, and N. Chauveau, “Bioelectrical impedance techniques in medici- ne. Part I: Bioimpedance measurement. Second section: impedance spectrometry,” Critical Reviews in Biomedical Engineering, vol. 24, no. 4-6, pp. 257–351, 1996.
dc.relation.referencesI. K’Owino and O. Sadik, “Impedance Spectroscopy: A Powerful Tool for Rapid Biomolecular Screening and Cell Culture Monitoring,” Electroanalysis, vol. 17, no. 23, pp. 2101–2113, Dec. 2005. [Online]. Available: https://analyticalsciencejournals.onlinelibrary. wiley.com/doi/10.1002/elan.200503371
dc.relation.referencesP. M. Patel, A. Bhat, and G. H. Markx, “A comparative study of cell death using electrical capacitance measurements and dielectrophoresis,” Enzyme and Microbial Technology, vol. 43, no. 7, pp. 523–530, Dec. 2008. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0141022908002445
dc.relation.referencesH. Shafaghat, G. D. Najafpour, S. P. Rezaei, and M. Sharifzadeh, “Optimal growth of Saccharomyces cerevisiae (PTCC 24860) on pretreated molasses for ethanol production: Application of response surface methodology,” Chemical Industry and Chemical Engineering Quarterly, vol. 16, no. 2, pp. 199–206, 2010. [Online]. Available: https://doiserbia.nb.rs/Article.aspx?ID=1451-93721000029S
dc.relation.referencesM. S. Boon, W. P. Serena Saw, and M. Mariatti, “Magnetic, dielectric and thermal stability of Ni–Zn ferrite-epoxy composite thin films for electronic applications,” Journal of Magnetism and Magnetic Materials, vol. 324, no. 5, pp. 755–760, Mar. 2012. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0304885311006676
dc.relation.referencesI. Liakos, A. M. Grumezescu, and A. M. Holban, “Magnetite Nanostructures as Novel Strategies for Anti-Infectious Therapy,” Molecules, vol. 19, no. 8, pp. 12 710–12 726, Aug. 2014, number: 8 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/1420-3049/19/8/12710
dc.relation.referencesE. F. Schubert, Light-Emitting Diodes (3rd Edition, 2018). E. Fred Schubert, Feb. 2018, google-Books-ID: GEFKDwAAQBAJ.
dc.relation.referencesD.-C. Choi, Y. S. Kim, K.-B. Kim, and S.-N. Lee, “Spontaneous Emission Studies for Blue and Green InGaN-Based Light-Emitting Diodes and Laser Diodes,” Photonics, vol. 11, no. 2, p. 135, Feb. 2024, number: 2 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2304-6732/11/2/135
dc.relation.referencesC. D. Kelley, A. Krolick, L. Brunner, A. Burklund, D. Kahn, W. P. Ball, and M. Weber-Shirk, “An Affordable Open-Source Turbidimeter,” Sensors, vol. 14, no. 4, pp. 7142–7155, Apr. 2014, number: 4 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/1424-8220/14/4/7142
dc.relation.referencesA. Chitnis, J. Sun, V. Mandavilli, R. Pachipulusu, S. Wu, M. Gaevski, V. Adivarahan, J. P. Zhang, M. A. Khan, A. Sarua, and M. Kuball, “Self-heating effects at high pump currents in deep ultraviolet light-emitting diodes at 324 nm,” Applied Physics Letters, vol. 81, no. 18, pp. 3491–3493, Oct. 2002. [Online]. Available: https://pubs.aip.org/apl/article/81/18/3491/ 511295/Self-heating-effects-at-high-pump-currents-in-deep
dc.relation.referencesX. Cao, S. LeBoeuf, K. Kim, P. Sandvik, E. Stokes, A. Ebong, D. Walker, J. Kretchmer, J. Lin, and H. Jiang, “Investigation of radiative tunneling in GaN/InGaN single quantum well light-emitting diodes,” Solid-State Electronics, vol. 46, no. 12, pp. 2291–2294, Dec. 2002. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0038110102001909
dc.relation.referencesX. A. Cao and S. F. LeBoeuf, “Current and Temperature Dependent Characteristics of Deep-Ultraviolet Light-Emitting Diodes,” IEEE Transactions on Electron Devices, vol. 54, no. 12, pp. 3414–3417, Dec. 2007, conference Name: IEEE Transactions on Electron Devices. [Online]. Available: https://ieeexplore.ieee.org/document/4383016
dc.relation.referencesB. H. Suits, Electronics for Physicists: An Introduction, ser. Undergraduate Lecture Notes in Physics. Cham: Springer International Publishing, 2020. [Online]. Available: http://link.springer.com/10.1007/978-3-030-39088-4
dc.relation.referencesM. A. Pérez García, Instrumentación electronica. Ediciones Paraninfo, S.A., Jan. 2014.
dc.relation.references“BPW34, BPW34S Photo Detectors | Vishay.” [Online]. Available: https://www.vishay.com/ en/product/81521/
dc.relation.references“LMC6081 data sheet, product information and support | TI.com.” [Online]. Available: https://www.ti.com/product/LMC6081
dc.relation.referencesR. Lyons, Understanding Digital Signal Processing. Pearson Education International, 2011. [Online]. Available: https://books.google.com.co/books?id=c8IT_gAACAAJ
dc.relation.referencesFilter Design Tool.” [Online]. Available: https://webench.ti.com/filter-design-tool/
dc.relation.referencesTI, “FilterPro™ User’s Guide,” Texas Intruments, Application Note, 1991. [Online]. Available: https://www.ti.com/lit/an/sbfa001c/sbfa001c.pdf
dc.relation.references“Ingress Protection (IP) ratings.” [Online]. Available: https://www.iec.ch/ip-ratings
dc.relation.references“M8/M12 Connector System.” [Online]. Available: https://www.te.com/en/products/ connectors/circular-connectors/intersection/m8m12.html
dc.relation.referencesV. T. Inc, “Bogatin’s Practical Guide to Prototype Bread- board and PCB Design 1st edition | 9781630818487, 9781630818487,” 2021. [Online]. Available: https://www.vitalsource.com/products/ bogatin-39-s-practical-guide-to-prototype-breadboard-eric-bogatin-v9781630818487
dc.relation.referencesA. F. Usuga Rodríguez, D. Barrios Hernández, M. C. Botero Aguirre, M. Lopera Castaño, M. Olivera Angel, and L. G. Palacio Baena, “Análisis de la variación de la calidad de leche en Colombia 2008-2019,” Revista MVZ Córdoba, vol. 26, no. 2, pp. e2005–e2005, Apr. 2021, number: 2. [Online]. Available: https://revistamvz.unicordoba.edu.co/article/view/e2005
dc.relation.referencesS. Stocker, F. Foschum, P. Krauter, F. Bergmann, A. Hohmann, C. Scalfi Happ, and A. Kienle, “Broadband Optical Properties of Milk,” Applied Spectroscopy, vol. 71, no. 5, pp. 951–962, May 2017.
dc.relation.referencesT. Katsumata, H. Aizawa, S. Komuro, S. Ito, and T. Matsumoto, “Quantitative analysis of fat and protein concentrations of milk based on fibre-optic evaluation of back scattering intensity,” International Dairy Journal, vol. 109, p. 104743, Oct. 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0958694620301138
dc.relation.referencesN. A. I. M. Kamil, W. Z. W. Ismail, S. R. Balakrishnan, M. Sahrim, I. Ismail, and J. Jamaludin, “Study on Optical Properties of Milk based on Light Propagation Theory,” Journal of Physics: Conference Series, vol. 2071, no. 1, p. 012006, Oct. 2021, publisher: IOP Publishing. [Online]. Available: https://dx.doi.org/10.1088/1742-6596/2071/1/012006
dc.relation.referencesG. Haugaard and J. D. Pettinati, “Photometric Milk Fat Determination1,” Journal of Dairy Science, vol. 42, no. 8, pp. 1255–1275, Aug. 1959. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022030259907301
dc.relation.references. J. Doan, “Some Factors Affecting the Fat Clumping Produced in Milk and Cream Mixtures When Homogenized*,” Journal of Dairy Science, vol. 12, no. 3, pp. 211–230, May 1929. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022030229935724
dc.relation.referencesL. V. Ogden, P. Walstra, and H. A. Morris, “Homogenization-lnduced Clustering of Fat Globules in Cream and Model Systems1,” Journal of Dairy Science, vol. 59, no. 10, pp. 1727–1737, Oct. 1976. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S002203027684430X
dc.relation.referencesQ. Xin, H. Zhi Ling, T. Jian Long, and Y. Zhu, “The rapid determination of fat and protein content in fresh raw milk using the laser light scattering technology,” Optics and Lasers in Engineering, vol. 44, no. 8, pp. 858–869, Aug. 2006. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0143816605000655
dc.relation.referencesA. Gowri, A. S. Rajamani, B. Ramakrishna, and V. V. R. Sai, “U-bent plastic optical fiber probes as refractive index based fat sensor for milk quality monitoring,” Optical Fiber Technology, vol. 47, pp. 15–20, Jan. 2019. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S1068520018305078
dc.relation.referencesP. Dalgaard, T. Ross, L. Kamperman, K. Neumeyer, and T. A. McMeekin, “Estimation of bacterial growth rates from turbidimetric and viable count data,” International Journal of Food Microbiology, vol. 23, no. 3, pp. 391–404, Nov. 1994. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0168160594901651
dc.relation.referencesB. R. Gibson, S. J. Lawrence, J. P. R. Leclaire, C. D. Powell, and K. A. Smart, “Yeast res- ponses to stresses associated with industrial brewery handling,” FEMS microbiology reviews, vol. 31, no. 5, pp. 535–569, Sep. 2007.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocDensidad óptica
dc.subject.agrovocBiorreactores
dc.subject.agrovocAgentes fermentadores
dc.subject.lembCultivo de celulas
dc.subject.lembBiomasa
dc.subject.lembInstrumentos ópticos
dc.subject.lembBiotecnología
dc.subject.lembDispositivos de precisión
dc.subject.proposalCultivo celular
dc.subject.proposalDensidad óptica
dc.subject.proposalSensor de densidad óptica
dc.subject.proposalBiorreactor
dc.subject.proposalFermentador
dc.subject.proposalCell culture
dc.subject.proposalOptical density
dc.subject.proposalOptical density sensor
dc.subject.proposalBioreactor
dc.subject.proposalFermenter
dc.title.translatedDevelopment and evaluation of a prototype for real-time monitoring of biological culture growth in industrial bioreactors
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.description.curricularareaFísica.Sede Medellín
dc.contributor.orcidBejar Caceres, Brayan Daniel [0000-0002-8828-0208]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit