dc.rights.license | Atribución-NoComercial 4.0 Internacional |
dc.contributor.advisor | Rincón Fulla, Marlon |
dc.contributor.advisor | Palacio Bedoya, Juan Luis |
dc.contributor.author | Bejar Caceres, Brayan Daniel |
dc.date.accessioned | 2025-04-17T16:19:57Z |
dc.date.available | 2025-04-17T16:19:57Z |
dc.date.issued | 2024 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87964 |
dc.description | Ilustraciones, tablas, gráficas |
dc.description.abstract | En el ámbito de la biotecnología, el monitoreo continuo y preciso de la concentración celular es esencial para optimizar el crecimiento de biomasa en cultivos biológicos. Los biorreactores y fermentadores (dispositivos diseñados específicamente para el cultivo de diversas células, entre ellas bacterias y levaduras) dependen de la medición de parámetros como temperatura, presión, pH y oxígeno disuelto, en donde la estimación de la concentración celular es igualmente crítica para implementar sistemas de control de lazo cerrado que permita automatizar al máximo el proceso. Las técnicas ópticas, y en particular, la medida de la densidad óptica, se implementa comercialmente y permite caracterizar el crecimiento y evolución de células en suspensiones acuosas en el biorreactor, aprovechando los fenómenos fundamentales de interacción de la luz con la materia como la absorción y dispersión, sin alterar las propiedades biológicas del sistema. No obstante, para las Pymes en Colombia, los sensores de densidad óptica comerciales suelen tener un alto costo, lo que dificulta su adopción en industrias con recursos limitados, como las dedicadas a la producción de cervezas artesanales, inoculantes biológicos y biosimilares, entre otros. En este trabajo se presenta el desarrollo de un instrumento óptico de bajo costo que permite monitorear en tiempo real el crecimiento de biomasa en biorreactores y fermentadores, siendo compatible con los estándares industriales de conexión y comunicación en este tipo de sistemas. El dispositivo aprovecha el fenómeno de la dispersión de la luz generada por las células en suspensión para estimar la concentración celular. En particular, el elemento sensor que se introduce en el biorreactor se encapsula en un material polimérico compatible con los procesos de esterilización in situ, que sustituye el clásico acero inoxidable de los dispositivos comerciales, y se desarrolló un sistema de acondicionamiento de señales que permite controlar la emisión de luz para generar una intensidad lumínica constante en el tiempo, ante el ruido electromagnético y a las variaciones de temperatura, obteniendo una resolución en las medidas de 0.002 e inferior al 1% en la escala de medida en unidades arbitrarias. Esta solución no solo busca hacer más accesible la automatización de procesos productivos en la industria biotecnológica colombiana, sino también, mejorar la calidad del producto final y optimizar el tiempo de producción para incrementar el margen de beneficio. (Tomado de la fuente) |
dc.description.abstract | In the field of biotechnology, continuous and accurate monitoring of cell concentration is essential to optimize biomass growth in biological cultures. Bioreactors and fermenters (devices specifically designed for cultivating various cells, including bacteria and yeasts) depend on the measurement of parameters such as temperature, pressure, pH, and dissolved oxygen, where the estimation of cell concentration is equally critical to implement closed-loop control systems that allow maximum automation of the process. Optical techniques, and in particular, the measurement of optical density, are commercially implemented to characterize cell growth and evolution in aqueous suspensions within the bioreactor, by taking advantage of fundamental light-matter interactions, such as absorption and scattering, without altering the biological properties of the system. However, for SMEs (Small and Medium-sized Enterprises) in Colombia, commercial optical density sensors tend to have a high cost, which hinders their adoption in industries with limited resources, such as those dedicated to the production of craft beers, biological inoculants and biosimilars, among others. This work presents the development of a low-cost optical instrument that allows real-time monitoring of biomass growth in bioreactors and fermenters, compatible with industrial standars of connection and communication in these types of systems. The device takes advantage of orking principles are based on light scattered by cells to estimate cell concentration. In particular, the sensor that is introduced into the bioreactor is encapsulated in a polymeric material compatible with sterilization processes in situ}, which replaces the classic stainless steel of commercial devices, and a signal conditioning system was developed to control light emission to generate constant light intensity over time, in the face of electromagnetic noise and temperature variations, obtaining a measurement resolution of 0.002, lower than 1% on the measurement scale in arbitrary units. This solution not only seeks to make the automation of production processes in the Colombian biotechnology industry more accessible, but also, to improve the quality of the final product and optimize production time in order to increase profit margin. |
dc.format.extent | 75 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
dc.subject.ddc | 680 - Manufactura para usos específicos::681 - Instrumentos de precisión y otros dispositivos |
dc.title | Desarrollo y evaluación de un prototipo para el monitoreo en tiempo real del crecimiento de cultivos biológicos en biorreactores industriales |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Medellín - Ciencias - Maestría en Ingeniería Física |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magíster en Ingeniería Física |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ciencias |
dc.publisher.place | Medellín, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín |
dc.relation.indexed | LaReferencia |
dc.relation.references | K. v. R. Tramper, Johannes, Basic Bioreactor Design. Boca Raton: CRC Press, Apr. 1991. |
dc.relation.references | V. Vojinovic, J. M. S. Cabral, and L. P. Fonseca, “Real-time bioprocess monitoring: Part I: In
situ sensors,” Sensors and Actuators B: Chemical, vol. 114, no. 2, pp. 1083–1091, Apr. 2006.
[Online]. Available: |
dc.relation.references | D. Schrenk and A. Cartus, Eds., Chemical Contaminants and Residues in Food. Duxford:
Springer, Jul. 2017. |
dc.relation.references | F. Jacquet, M.-H. Jeuffroy, J. Jouan, E. Le Cadre, I. Litrico, T. Malausa, X. Reboud,
and C. Huyghe, “Pesticide-free agriculture as a new paradigm for research,” Agronomy
for Sustainable Development, vol. 42, no. 1, p. 8, Jan. 2022. [Online]. Available:
https://doi.org/10.1007/s13593-021-00742-8 |
dc.relation.references | L. S. Rösner, F. Walter, C. Ude, G. T. John, and S. Beutel, “Sensors and Techniques for
On-Line Determination of Cell Viability in Bioprocess Monitoring,” Bioengineering, vol. 9,
no. 12, p. 762, Dec. 2022, number: 12 Publisher: Multidisciplinary Digital Publishing
Institute. [Online]. Available: https://www.mdpi.com/2306-5354/9/12/762 |
dc.relation.references | J. H. T. Luong, K. A. Mahmoud, and K. B. Male, “2.60 - Instrumentation and
Analytical Methods,” in Comprehensive Biotechnology (Third Edition), M. Moo-
Young, Ed. Oxford: Pergamon, Jan. 2011, pp. 893–903. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780444640468001087 |
dc.relation.references | “On-line Biomass Sensors.” [Online]. Available: https://solidabiotech.com/product/
biomass-sensors/ |
dc.relation.references | “Sondas de densidad celular del ASD12.” [Online]. Available: https://www.optek.com/es/
asd12-n.asp |
dc.relation.references | M.-T. I. I. a. r. reserved, “Turb Sensor InPro8100/S/205.” [Online].
Available: https://www.mt.com/int/en/home/products/Process-Analytics/turbidity-meter/
turbidity-sensor/turb-sensor-inpro8100-s-205.html |
dc.relation.references | L.-M. Mauerhofer, P. Pappenreiter, C. Paulik, A. H. Seifert, S. Bernacchi, and S. K.-M. R.
Rittmann, “Methods for quantification of growth and productivity in anaerobic microbiology
and biotechnology,” Folia Microbiologica, vol. 64, no. 3, pp. 321–360, May 2019. [Online].
Available: http://link.springer.com/10.1007/s12223-018-0658-4 |
dc.relation.references | S. Vaidyanathan, G. Macaloney, J. Vaughan, B. McNeil, and L. M. Harvey, “Monitoring of
Submerged Bioprocesses,” Critical Reviews in Biotechnology, vol. 19, no. 4, pp. 277–316,
Jan. 1999, publisher: Taylor & Francis _eprint: https://doi.org/10.1080/0738-859991229161.
[Online]. Available: https://doi.org/10.1080/0738-859991229161 |
dc.relation.references | L. Olsson and J. Nielsen, “On-line and in situ monitoring of biomass in submerged
cultivations,” Trends in Biotechnology, vol. 15, no. 12, pp. 517–522, Dec. 1997. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0167779997011360 |
dc.relation.references | ] A. L. Koch, “Growth Measurement,” in Methods for General and Molecular Mi-
crobiology. John Wiley & Sons, Ltd, 2007, pp. 172–199, section: 9 _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1128/9781555817497.ch9. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1128/9781555817497.ch9 |
dc.relation.references | M. Butler, M. Spearman, and K. Braasch, “Monitoring Cell Growth, Viability, and
Apoptosis,” in Animal Cell Biotechnology: Methods and Protocols, ser. Methods in
Molecular Biology, R. Pörtner, Ed. Totowa, NJ: Humana Press, 2014, pp. 169–192.
[Online]. Available: https://doi.org/10.1007/978-1-62703-733-4_12 |
dc.relation.references | F. Alimagham, J. Winterburn, B. Dolman, P. M. Domingues, F. Everest, M. Platkov,
S. Basov, G. Izakson, A. Katzir, S. R. Elliott, and T. Hutter, “Real-time bioprocess
monitoring using a mid-infrared fibre-optic sensor,” Biochemical Engineering Journal, vol.
167, p. 107889, Mar. 2021. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1369703X20304435 |
dc.relation.references | J. Wu, M. S. Feld, and R. P. Rava, “Analytical model for extracting intrinsic fluorescence
in turbid media,” Applied Optics, vol. 32, no. 19, pp. 3585–3595, Jul. 1993, publisher:
Optica Publishing Group. [Online]. Available: https://opg.optica.org/ao/abstract.cfm?uri=
ao-32-19-3585 |
dc.relation.references | K. Azil, A. Altuncu, K. Ferria, S. Bouzid, S. A. Sadık, and F. E. Durak, “A faster and
accurate optical water turbidity measurement system using a CCD line sensor,” Optik,
vol. 231, p. 166412, Apr. 2021. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0030402621001455 |
dc.relation.references | M. Yousif, H. Burdett, C. Wellen, S. Mandal, G. Arabian, D. Smith, and R. J. Sorichetti,
“An innovative approach to correct data from in-situ turbidity sensors for surface water
monitoring,” Environmental Modelling & Software, vol. 155, p. 105461, Sep. 2022. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S1364815222001669 |
dc.relation.references | J. Trevathan, W. Read, and A. Sattar, “Implementation and Calibration of an IoT Light
Attenuation Turbidity Sensor,” Internet of Things, vol. 19, p. 100576, Aug. 2022. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S2542660522000671 |
dc.relation.references | T. G. Mayerhöfer, S. Pahlow, and J. Popp, “The Bouguer-Beer-Lambert Law: Shining
Light on the Obscure,” ChemPhysChem, vol. 21, no. 18, pp. 2029–2046, 2020, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cphc.202000464. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/cphc.202000464 |
dc.relation.references | J. L. Palacio Bedoya and M. Fulla, “Modelo Físico-Matemático para la Estimación del Tama-
ño de Partículas en Suspensiones Coloidales de Baja Dilucón,” CINTEX, vol. 20, pp. 53–68,
Jun. 2015. |
dc.relation.references | C. F. Bohren and D. R. Huffman, Absorption and Scattering of
Light by Small Particles. John Wiley & Sons, Ltd, 1998, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527618156.fmatter. [Online]. Availa-
ble: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527618156.fmatter |
dc.relation.references | R. W. Boyd, Nonlinear Optics, Third Edition, 3rd ed. USA: Academic Press, Inc., Mar.
2008 |
dc.relation.references | J. Lakowicz, Principles of fluorescence spectroscopy, ser. Principles of Fluorescence Spec-
troscopy. Springer, 2006, pages: 954. |
dc.relation.references | 14:00-17:00, “ISO 7027-1:2016.” [Online]. Available: https://www.iso.org/standard/62801.
html |
dc.relation.references | J. Rocher, J. M. Jimenez, J. Tomas, and J. Lloret, “Low-Cost Turbidity Sensor to
Determine Eutrophication in Water Bodies,” Sensors, vol. 23, no. 8, p. 3913, Jan. 2023,
number: 8 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available:
https://www.mdpi.com/1424-8220/23/8/3913 |
dc.relation.references | M. W. Prairie, S. H. Frisbie, K. K. Rao, A. H. Saksri, S. Parbat, and E. J.
Mitchell, “An accurate, precise, and affordable light emitting diode spectrophotometer
for drinking water and other testing with limited resources,” PLOS ONE, vol. 15,
no. 1, p. e0226761, Jan. 2020, publisher: Public Library of Science. [Online]. Available:
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226761 |
dc.relation.references | A. M. Cao y Paz, J. M. Acevedo, J. D. Gandoy, A. del Rio Vazquez, C. M.-P. Freire,
and M. L. Soria, “Plastic Optical Fiber Sensor for Real Time Density Measurements
in Wine Fermentation,” in 2007 IEEE Instrumentation & Measurement Technology
Conference IMTC 2007, May 2007, pp. 1–5, iSSN: 1091-5281. [Online]. Available:
https://ieeexplore.ieee.org/document/4258431 |
dc.relation.references | M. Ramezani, G. Ferrentino, K. Morozova, and M. Scampicchio, “Multiple Light Scattering
Measurements for Online Monitoring of Milk Fermentation,” Foods (Basel, Switzerland),
vol. 10, no. 7, p. 1582, Jul. 2021. |
dc.relation.references | M. M. Paradkar, R. S. Singhal, and P. R. Kulkarni, “An approach to the
detection of synthetic milk in dairy milk: 2. Detection of detergents,” In-
ternational Journal of Dairy Technology, vol. 53, no. 3, pp. 92–95, 2000,
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1471-0307.2000.tb02667.x. [Onli-
ne]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1471-0307.2000.tb02667.x |
dc.relation.references | R. Fan, M. Ebrahimi, H. Quitmann, M. Aden, and P. Czermak, “An Innovative Optical
Sensor for the Online Monitoring and Control of Biomass Concentration in a Membrane
Bioreactor System for Lactic Acid Production,” Sensors, vol. 16, no. 3, p. 411, Mar. 2016,
number: 3 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available:
https://www.mdpi.com/1424-8220/16/3/411 |
dc.relation.references | K. Karakostas, S. Gkagkanis, K. Katsaliaki, P. Köllensperger, A. Hatzopoulos, and M. E.
Kiziroglou, “Portable optical blood scattering sensor,” Microelectronic Engineering, vol.
217, p. 111129, Sep. 2019. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0167931719302850 |
dc.relation.references | W. Shao, H. Zhang, and H. Zhou, “Fine Particle Sensor Based on Multi-Angle
Light Scattering and Data Fusion,” Sensors, vol. 17, no. 5, p. 1033, May 2017,
number: 5 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available:
https://www.mdpi.com/1424-8220/17/5/1033 |
dc.relation.references | S. Molaie and P. Lino, “Review of the Newly Developed, Mobile Optical Sensors for Real-
Time Measurement of the Atmospheric Particulate Matter Concentration,” Micromachines, vol. 12, no. 4, p. 416, Apr. 2021, number: 4 Publisher: Multidisciplinary Digital Publishing
Institute. [Online]. Available: https://www.mdpi.com/2072-666X/12/4/416 |
dc.relation.references | L. He, H. Wu, J. Li, B. Li, Y. Sun, P. Jiang, X. Wang, and G. Lin, “Solid Particle Swarm
Measurement in Jet Fuel Based on Mie Scattering Theory and Extinction Method,” Sensors,
vol. 23, no. 5, p. 2837, Jan. 2023, number: 5 Publisher: Multidisciplinary Digital Publishing
Institute. [Online]. Available: https://www.mdpi.com/1424-8220/23/5/2837 |
dc.relation.references | “OUSBT66 – Analysis OEM.” [Online]. Available: https://www.analysis-oem.com/product/optical-insertion-probe-designed-for-use-with-the-model-ocm44p-transmitter-to-monitor-cell-mass-in-bacterial-fermentation-and-mammalian-cell-culture-applications/ |
dc.relation.references | “Sensors – Cerex Inc.” [Online]. Available: https://www.cerexinc.com/sensors/ |
dc.relation.references | “Kemtrak Turbidimeters.” [Online]. Available: https://www.southforkinst.com/
kemtrak-turbidimeter/ |
dc.relation.references | “TF56-N Turbidity Sensor measures scattered light / turbidity.” [Online]. Available:
https://www.optek.com/en/turbidity/tf56-inline-turbidity-sensor.asp |
dc.relation.references | “DTF16 Turbidity Sensor: 3 Measurement angles 0°, 11° and 90°.” [Online]. Available:
https://www.optek.com/en/turbidity/dtf16-inline-turbidimeter.asp |
dc.relation.references | A. M. Salgado, R. O. M. Folly, and B. Valdman, “Biomass monitoring by use of a
continuous on-line optical sensor,” Sensors and Actuators B: Chemical, vol. 75, no. 1,
pp. 24–28, Apr. 2001. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0925400500006924 |
dc.relation.references | M. He, S. K. Nguang, X. M. Li, G. F. Qin, and X. D. Chen, “Cost
Optical Sensor for Online Measurement of Biomass,” Developments in Chemi-
cal Engineering and Mineral Processing, vol. 13, no. 1-2, pp. 63–70, 2005,
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/apj.5500130107. [Online]. Avai-
lable: https://onlinelibrary.wiley.com/doi/abs/10.1002/apj.5500130107 |
dc.relation.references | M. G. Macey, Ed., Flow Cytometry. Totowa, NJ: Humana Press, 2007. [Online]. Available:
http://link.springer.com/10.1007/978-1-59745-451-3 |
dc.relation.references | N. R. Abu-Absi, B. M. Kenty, M. E. Cuellar, M. C. Borys, S. Sakhamuri, D. J.
Strachan, M. C. Hausladen, and Z. J. Li, “Real time monitoring of multiple
parameters in mammalian cell culture bioreactors using an in-line Raman spectros-
copy probe,” Biotechnology and Bioengineering, vol. 108, no. 5, pp. 1215–1221, 2011, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/bit.23023. [Online]. Availa-
ble: https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.23023 |
dc.relation.references | K. A. Esmonde-White, M. Cuellar, and I. R. Lewis, “The role of Raman spectroscopy in
biopharmaceuticals from development to manufacturing,” Analytical and Bioanalytical Che-
mistry, vol. 414, no. 2, pp. 969–991, Jan. 2022. |
dc.relation.references | N. Wei, J. You, K. Friehs, E. Flaschel, and T. W. Nattkemper, “An in situ probe for on-line
monitoring of cell density and viability on the basis of dark field microscopy in conjunction
with image processing and supervised machine learning,” Biotechnology and Bioengineering,
vol. 97, no. 6, pp. 1489–1500, Aug. 2007. |
dc.relation.references | H. P. Schwan, “Biological effects of non-ionizing radiations: Cellular properties and
interactions,” Annals of Biomedical Engineering, vol. 16, no. 3, pp. 245–263, May 1988.
[Online]. Available: https://doi.org/10.1007/BF02368002 |
dc.relation.references | B. Rigaud, J. P. Morucci, and N. Chauveau, “Bioelectrical impedance techniques in medici-
ne. Part I: Bioimpedance measurement. Second section: impedance spectrometry,” Critical
Reviews in Biomedical Engineering, vol. 24, no. 4-6, pp. 257–351, 1996. |
dc.relation.references | I. K’Owino and O. Sadik, “Impedance Spectroscopy: A Powerful Tool for Rapid
Biomolecular Screening and Cell Culture Monitoring,” Electroanalysis, vol. 17, no. 23, pp.
2101–2113, Dec. 2005. [Online]. Available: https://analyticalsciencejournals.onlinelibrary.
wiley.com/doi/10.1002/elan.200503371 |
dc.relation.references | P. M. Patel, A. Bhat, and G. H. Markx, “A comparative study of cell death
using electrical capacitance measurements and dielectrophoresis,” Enzyme and Microbial
Technology, vol. 43, no. 7, pp. 523–530, Dec. 2008. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0141022908002445 |
dc.relation.references | H. Shafaghat, G. D. Najafpour, S. P. Rezaei, and M. Sharifzadeh, “Optimal growth
of Saccharomyces cerevisiae (PTCC 24860) on pretreated molasses for ethanol
production: Application of response surface methodology,” Chemical Industry and
Chemical Engineering Quarterly, vol. 16, no. 2, pp. 199–206, 2010. [Online]. Available:
https://doiserbia.nb.rs/Article.aspx?ID=1451-93721000029S |
dc.relation.references | M. S. Boon, W. P. Serena Saw, and M. Mariatti, “Magnetic, dielectric and thermal stability of
Ni–Zn ferrite-epoxy composite thin films for electronic applications,” Journal of Magnetism
and Magnetic Materials, vol. 324, no. 5, pp. 755–760, Mar. 2012. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0304885311006676 |
dc.relation.references | I. Liakos, A. M. Grumezescu, and A. M. Holban, “Magnetite Nanostructures as Novel
Strategies for Anti-Infectious Therapy,” Molecules, vol. 19, no. 8, pp. 12 710–12 726,
Aug. 2014, number: 8 Publisher: Multidisciplinary Digital Publishing Institute. [Online].
Available: https://www.mdpi.com/1420-3049/19/8/12710 |
dc.relation.references | E. F. Schubert, Light-Emitting Diodes (3rd Edition, 2018). E. Fred Schubert, Feb. 2018,
google-Books-ID: GEFKDwAAQBAJ. |
dc.relation.references | D.-C. Choi, Y. S. Kim, K.-B. Kim, and S.-N. Lee, “Spontaneous Emission Studies for Blue
and Green InGaN-Based Light-Emitting Diodes and Laser Diodes,” Photonics, vol. 11,
no. 2, p. 135, Feb. 2024, number: 2 Publisher: Multidisciplinary Digital Publishing Institute.
[Online]. Available: https://www.mdpi.com/2304-6732/11/2/135 |
dc.relation.references | C. D. Kelley, A. Krolick, L. Brunner, A. Burklund, D. Kahn, W. P. Ball, and M. Weber-Shirk,
“An Affordable Open-Source Turbidimeter,” Sensors, vol. 14, no. 4, pp. 7142–7155,
Apr. 2014, number: 4 Publisher: Multidisciplinary Digital Publishing Institute. [Online].
Available: https://www.mdpi.com/1424-8220/14/4/7142 |
dc.relation.references | A. Chitnis, J. Sun, V. Mandavilli, R. Pachipulusu, S. Wu, M. Gaevski, V. Adivarahan, J. P.
Zhang, M. A. Khan, A. Sarua, and M. Kuball, “Self-heating effects at high pump currents in
deep ultraviolet light-emitting diodes at 324 nm,” Applied Physics Letters, vol. 81, no. 18,
pp. 3491–3493, Oct. 2002. [Online]. Available: https://pubs.aip.org/apl/article/81/18/3491/
511295/Self-heating-effects-at-high-pump-currents-in-deep |
dc.relation.references | X. Cao, S. LeBoeuf, K. Kim, P. Sandvik, E. Stokes, A. Ebong, D. Walker, J. Kretchmer,
J. Lin, and H. Jiang, “Investigation of radiative tunneling in GaN/InGaN single quantum
well light-emitting diodes,” Solid-State Electronics, vol. 46, no. 12, pp. 2291–2294, Dec.
2002. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0038110102001909 |
dc.relation.references | X. A. Cao and S. F. LeBoeuf, “Current and Temperature Dependent Characteristics of
Deep-Ultraviolet Light-Emitting Diodes,” IEEE Transactions on Electron Devices, vol. 54,
no. 12, pp. 3414–3417, Dec. 2007, conference Name: IEEE Transactions on Electron
Devices. [Online]. Available: https://ieeexplore.ieee.org/document/4383016 |
dc.relation.references | B. H. Suits, Electronics for Physicists: An Introduction, ser. Undergraduate Lecture
Notes in Physics. Cham: Springer International Publishing, 2020. [Online]. Available:
http://link.springer.com/10.1007/978-3-030-39088-4 |
dc.relation.references | M. A. Pérez García, Instrumentación electronica. Ediciones Paraninfo, S.A., Jan. 2014. |
dc.relation.references | “BPW34, BPW34S Photo Detectors | Vishay.” [Online]. Available: https://www.vishay.com/
en/product/81521/ |
dc.relation.references | “LMC6081 data sheet, product information and support | TI.com.” [Online]. Available:
https://www.ti.com/product/LMC6081 |
dc.relation.references | R. Lyons, Understanding Digital Signal Processing. Pearson Education International,
2011. [Online]. Available: https://books.google.com.co/books?id=c8IT_gAACAAJ |
dc.relation.references | Filter Design Tool.” [Online]. Available: https://webench.ti.com/filter-design-tool/ |
dc.relation.references | TI, “FilterPro™ User’s Guide,” Texas Intruments, Application Note, 1991. [Online].
Available: https://www.ti.com/lit/an/sbfa001c/sbfa001c.pdf |
dc.relation.references | “Ingress Protection (IP) ratings.” [Online]. Available: https://www.iec.ch/ip-ratings |
dc.relation.references | “M8/M12 Connector System.” [Online]. Available: https://www.te.com/en/products/
connectors/circular-connectors/intersection/m8m12.html |
dc.relation.references | V. T. Inc, “Bogatin’s Practical Guide to Prototype Bread-
board and PCB Design 1st edition | 9781630818487,
9781630818487,” 2021. [Online]. Available: https://www.vitalsource.com/products/
bogatin-39-s-practical-guide-to-prototype-breadboard-eric-bogatin-v9781630818487 |
dc.relation.references | A. F. Usuga Rodríguez, D. Barrios Hernández, M. C. Botero Aguirre, M. Lopera Castaño,
M. Olivera Angel, and L. G. Palacio Baena, “Análisis de la variación de la calidad de leche
en Colombia 2008-2019,” Revista MVZ Córdoba, vol. 26, no. 2, pp. e2005–e2005, Apr. 2021,
number: 2. [Online]. Available: https://revistamvz.unicordoba.edu.co/article/view/e2005 |
dc.relation.references | S. Stocker, F. Foschum, P. Krauter, F. Bergmann, A. Hohmann, C. Scalfi Happ, and A. Kienle,
“Broadband Optical Properties of Milk,” Applied Spectroscopy, vol. 71, no. 5, pp. 951–962,
May 2017. |
dc.relation.references | T. Katsumata, H. Aizawa, S. Komuro, S. Ito, and T. Matsumoto, “Quantitative analysis of
fat and protein concentrations of milk based on fibre-optic evaluation of back scattering
intensity,” International Dairy Journal, vol. 109, p. 104743, Oct. 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0958694620301138 |
dc.relation.references | N. A. I. M. Kamil, W. Z. W. Ismail, S. R. Balakrishnan, M. Sahrim, I. Ismail, and
J. Jamaludin, “Study on Optical Properties of Milk based on Light Propagation Theory,”
Journal of Physics: Conference Series, vol. 2071, no. 1, p. 012006, Oct. 2021, publisher:
IOP Publishing. [Online]. Available: https://dx.doi.org/10.1088/1742-6596/2071/1/012006 |
dc.relation.references | G. Haugaard and J. D. Pettinati, “Photometric Milk Fat Determination1,” Journal
of Dairy Science, vol. 42, no. 8, pp. 1255–1275, Aug. 1959. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0022030259907301 |
dc.relation.references | . J. Doan, “Some Factors Affecting the Fat Clumping Produced in Milk and Cream Mixtures
When Homogenized*,” Journal of Dairy Science, vol. 12, no. 3, pp. 211–230, May 1929.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022030229935724 |
dc.relation.references | L. V. Ogden, P. Walstra, and H. A. Morris, “Homogenization-lnduced Clustering of Fat
Globules in Cream and Model Systems1,” Journal of Dairy Science, vol. 59, no. 10, pp.
1727–1737, Oct. 1976. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S002203027684430X |
dc.relation.references | Q. Xin, H. Zhi Ling, T. Jian Long, and Y. Zhu, “The rapid determination of fat and
protein content in fresh raw milk using the laser light scattering technology,” Optics
and Lasers in Engineering, vol. 44, no. 8, pp. 858–869, Aug. 2006. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0143816605000655 |
dc.relation.references | A. Gowri, A. S. Rajamani, B. Ramakrishna, and V. V. R. Sai, “U-bent plastic
optical fiber probes as refractive index based fat sensor for milk quality monitoring,”
Optical Fiber Technology, vol. 47, pp. 15–20, Jan. 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1068520018305078 |
dc.relation.references | P. Dalgaard, T. Ross, L. Kamperman, K. Neumeyer, and T. A. McMeekin, “Estimation
of bacterial growth rates from turbidimetric and viable count data,” International Journal
of Food Microbiology, vol. 23, no. 3, pp. 391–404, Nov. 1994. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0168160594901651 |
dc.relation.references | B. R. Gibson, S. J. Lawrence, J. P. R. Leclaire, C. D. Powell, and K. A. Smart, “Yeast res-
ponses to stresses associated with industrial brewery handling,” FEMS microbiology reviews,
vol. 31, no. 5, pp. 535–569, Sep. 2007. |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.agrovoc | Densidad óptica |
dc.subject.agrovoc | Biorreactores |
dc.subject.agrovoc | Agentes fermentadores |
dc.subject.lemb | Cultivo de celulas |
dc.subject.lemb | Biomasa |
dc.subject.lemb | Instrumentos ópticos |
dc.subject.lemb | Biotecnología |
dc.subject.lemb | Dispositivos de precisión |
dc.subject.proposal | Cultivo celular |
dc.subject.proposal | Densidad óptica |
dc.subject.proposal | Sensor de densidad óptica |
dc.subject.proposal | Biorreactor |
dc.subject.proposal | Fermentador |
dc.subject.proposal | Cell culture |
dc.subject.proposal | Optical density |
dc.subject.proposal | Optical density sensor |
dc.subject.proposal | Bioreactor |
dc.subject.proposal | Fermenter |
dc.title.translated | Development and evaluation of a prototype for real-time monitoring of biological culture growth in industrial bioreactors |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Estudiantes |
dcterms.audience.professionaldevelopment | Investigadores |
dcterms.audience.professionaldevelopment | Maestros |
dc.description.curriculararea | Física.Sede Medellín |
dc.contributor.orcid | Bejar Caceres, Brayan Daniel [0000-0002-8828-0208] |