dc.rights.license | Reconocimiento 4.0 Internacional |
dc.contributor.advisor | Ardila Barrantes, Harold Duban |
dc.contributor.advisor | Melgarejo Muñoz, Luz Marina |
dc.contributor.author | Esquivel Pomar, José Miguel |
dc.date.accessioned | 2025-04-21T20:46:53Z |
dc.date.available | 2025-04-21T20:46:53Z |
dc.date.issued | 2024 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88012 |
dc.description | ilustraciones, diagramas, fotografías |
dc.description.abstract | La búsqueda constante de alternativas sostenibles para el manejo de enfermedades y plagas en cultivos de importancia económica ha orientado las investigaciones hacia enfoques más amigables con el medio ambiente. Esto implica un cambio en los tratamientos convencionales contra fitopatógenos, los cuales emplean sustancias químicas tóxicas tanto para el medio ambiente como para los agricultores. En este contexto, se han explorado opciones de bajo impacto ambiental y fácil disponibilidad para controlar el marchitamiento vascular causado por Fusarium oxysporum f. sp. dianthi (Fod) en el clavel (Dianthus caryophyllus L.). En el presente estudio, se determinó el efecto de la aspersión foliar de tiamina, como posible inductor de resistencia en parámetros fisiológicos de la planta como la fluorescencia de la clorofila a, la conductancia estomática y la temperatura foliar, además de los índices de severidad en dos cultivares de clavel con niveles contrastantes de resistencia al patógeno Fod: "Golem" (resistente) y "Mizuki" (susceptible). Se encontró que la tiamina incrementó la capacidad de respuesta de la planta frente al hongo patógeno y redujo la progresión de la enfermedad durante al menos ocho semanas en el cultivar susceptible "Mizuki", mostrando una respuesta diferencial en algunos de los parámetros fisiológicos evaluados. El análisis de la expresión génica mediante qRT-PCR reveló que el tratamiento con tiamina moduló genes relacionados con la resistencia sistémica adquirida (SAR), como los genes que codifican proteínas del dominio 14-3-3, enzimas tipo cisteína proteasa y el receptor de péptidos NPR1, asociado a la ruta del ácido salicílico (Texto tomado de la fuente). |
dc.description.abstract | The constant search for sustainable alternatives for the management of diseases and pests in economically important crops has directed research towards more environmentally friendly approaches. This implies a change in conventional treatments against phytopathogens, which use toxic chemicals for both the environment and farmers. In this context, options with low environmental impact and easy availability have been explored to control vascular wilt caused by Fusarium oxysporum f. sp. dianthi (Fod) on the carnation (Dianthus caryophyllus L.). In the present study, the effect of foliar spraying of thiamine was determined as a possible resistance inducer on plant physiological parameters such as chlorophyll a fluorescence, stomatal conductance and leaf temperature, in addition to the severity indices in two carnation cultivars with contrasting levels of resistance to the Fod pathogen: "Golem" (resistant) and "Mizuki" (susceptible). It was found that thiamine increased the plant's response capacity against the pathogenic fungus and reduced the progression of the disease for at least eight weeks in the susceptible cultivar "Mizuki", showing a differential response in some of the physiological parameters evaluated. Gene expression analysis by qRT-PCR revealed that thiamine treatment modulated genes related to systemic acquired resistance (SAR), such as genes encoding 14-3-3 domain proteins, cysteine protease-like enzymes, and the receptor. NPR1 peptides, associated with the salicylic acid pathway. |
dc.format.extent | 121 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ |
dc.subject.ddc | 540 - Química y ciencias afines |
dc.subject.ddc | 580 - Plantas |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales |
dc.title | Evaluación del papel de la Tiamina como inductor de resistencia sistémica adquirida en clavel (Dianthus Caryophyllus l.) para el control del marchitamiento vascular |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Bioquímica |
dc.contributor.researchgroup | Fisiología del Estrés y Biodiversidad en Plantas y Microorganismos |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magister en ciencias - Bioquímica |
dc.description.researcharea | Bioquímica de las interacciones Hospedero - Patógeno |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ciencias |
dc.publisher.place | Bogotá, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.indexed | N/A |
dc.relation.references | Abdel-Monaim, M. F. (2011). Role of riboflavin and thiamine in induced resistance against charcoal rot disease of soybean. African Journal of Biotechnology, 10(53), 10842–10855. https://doi.org/10.5897/ajb11.253 |
dc.relation.references | Ahn, I. P., Kim, S., & Lee, Y. H. (2005). Vitamin B1 functions as an activator of plant disease resistance. Plant Physiology, 138(3), 1505–1515. https://doi.org/10.1104/pp.104.058693 |
dc.relation.references | Alcázar, C., Tutor, M., Roldán, P., & Caridad Director, R. (2023). Evaluación de la capacidad bioestimulante de diferentes productos de origen natural. https://riunet.upv.es/handle/10251/200404 |
dc.relation.references | Alisaac, E., Behmann, J., Kuska, M. T., Dehne, H. W., & Mahlein, A. K. (2018). Hyperspectral quantification of wheat resistance to Fusarium head blight: comparison of two Fusarium species. European Journal of Plant Pathology, 152(4), 869–884. https://doi.org/10.1007/S10658-018-1505-9/FIGURES/8 |
dc.relation.references | Alvarez, M. E., Savouré, A., & Szabados, L. (2022). Proline metabolism as regulatory hub. Trends in Plant Science, 27(1), 39–55. https://doi.org/10.1016/J.TPLANTS.2021.07.009 |
dc.relation.references | Arif, T., Bhosale, J. D., Kumar, N., Mandal, T. K., Bendre, R. S., Lavekar, G. S., & Dabur, R. (2009). Natural products - Antifungal agents derived from plants. Journal of Asian Natural Products Research, 11(7), 621–638. https://doi.org/10.1080/10286020902942350 |
dc.relation.references | Baayen, R. P., Elgersma, D. M., Demmink, J. F., & Sparnaaij, L. D. (1988). Differences in pathogenesis observed among susceptible interactions of carnation with four races of Fusarium oxysporum f.sp. dianthi. Netherlands Journal of Plant Pathology, 94(2), 81–94. https://doi.org/10.1007/BF01998398 |
dc.relation.references | Baenas, N., García-Viguera, C., & Moreno, D. A. (2014). Elicitation: A Tool for Enriching the Bioactive Composition of Foods. Molecules, 19(9), 13541. https://doi.org/10.3390/MOLECULES190913541 |
dc.relation.references | Barreto Pulido W. (2023). Efecto de la aplicación de fosfito de potasio en la biosíntesis de metabolitos durante la interacción clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia, Sede Bogotá. |
dc.relation.references | Baker, N. R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59(Volume 59, 2008), 89–113. https://doi.org/10.1146/ANNUREV.ARPLANT.59.032607.092759/CITE/REFWORKS |
dc.relation.references | Baker, N. R., & Rosenqvist, E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany, 55(403), 1607–1621. https://doi.org/10.1093/JXB/ERH196 |
dc.relation.references | Benavides-Mendoza, A., Nazario Francisco-francisco, Y., Mendoza, B., & Francisco, F. (2022). Recientes aplicaciones de la fluorescencia de la clorofila en los cultivos vegetales. EPISTEMUS, 16(33), 106–114. https://doi.org/10.36790/EPISTEMUS.V16I33.285 |
dc.relation.references | Bhatt, D., Nath, M., Sharma, M., Bhatt, M. D., Bisht, D. S., & Butani, N. V. (2020). Role of Growth Regulators and Phytohormones in Overcoming Environmental Stress. Protective Chemical Agents in the Amelioration of Plant Abiotic Stress, 254–279. https://doi.org/10.1002/9781119552154.CH11 |
dc.relation.references | Boubakri, H., Poutaraud, A., Wahab, M. A., Clayeux, C., Baltenweck-Guyot, R., Steyer, D., Marcic, C., Mliki, A., & Soustre-Gacougnolle, I. (2013). Thiamine modulates metabolism of the phenylpropanoid pathway leading to enhanced resistance to Plasmopara viticola in grapevine. BMC Plant Biology, 13(1), 1–15. https://doi.org/10.1186/1471-2229-13-31 |
dc.relation.references | Brestic, M., & Zivcak, M. (2013). PSII fluorescence techniques for measurement of droughtand high temperature stress signal in crop plants: Protocols and applications. Molecular Stress Physiology of Plants, 87–131. https://doi.org/10.1007/978-81-322-0807-5_4 |
dc.relation.references | Bruns, H. A. (2009). A survey of factors involved in crop maturity. Agronomy Journal, 101(1), 60–66. https://doi.org/10.2134/AGRONJ2007.0271R |
dc.relation.references | Bustos Caro E. (2022). Aproximación transcriptómica y fisiológica para el estudio de los mecanismos moleculares involucrados en la interacción clavel (Dianthus caryophyllus L.) – Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia, Sede Bogotá. |
dc.relation.references | Bustos-Caro, E., Melgarejo, L. M., Pinzón, A. M., & Ardila, H. D. (2024). Physiological responses and differential expression of genes involved in ABA and SA signaling during the interaction of the carnation (Dianthus caryophyllus L.) and the fungus Fusarium oxysporum f. sp. dianthi. Journal of Plant Pathology, 1–14. https://doi.org/10.1007/S42161-024-01687-Z/METRICS |
dc.relation.references | Camarena-Gutiérrez, G., & De La Torre-Almaráz; R. (2007). RESISTENCIA SISTÉMICA ADQUIRIDA EN PLANTAS: ESTADO ACTUAL. Revista Chapingo Serie Ciencias Forestales y Del Ambiente, 13(2), 157–162. |
dc.relation.references | Carmona, S. L., Villarreal-Navarrete, A., Burbano-David, D., & Soto-Suárez, M. (2020). Cambios fisiológicos y mecanismos genéticos asociados a la marchitez vascular causada por Fusarium en tomate: una revisión actualizada. Temas Agrarios, 25(2). https://doi.org/10.21897/rta.v25i2.2457 |
dc.relation.references | Carr, J. P., Lewsey, M. G., & Palukaitis, P. (2010). Signaling in induced resistance. Advances in Virus Research, 76(C), 57–121. https://doi.org/10.1016/S0065-3527(10)76003-6 |
dc.relation.references | Chakravarthy, S., Tuori, R. P., D’Ascenzo, M. D., Fobert, P. R., Després, C., & Martin, G. B. (2003). The Tomato Transcription Factor Pti4 Regulates Defense-Related Gene Expression via GCC Box and Non-GCC Box cis Elements. Plant Cell, 15(12), 3033–3050. https://doi.org/10.1105/TPC.017574/REFERENCES |
dc.relation.references | Coca, M., & San Segundo, B. (2010). AtCPK1 calcium-dependent protein kinase mediates pathogen resistance in Arabidopsis. The Plant Journal : For Cell and Molecular Biology, 63(3), 526–540. https://doi.org/10.1111/J.1365-313X.2010.04255.X |
dc.relation.references | Cosgrove, J., & Borowitzka, M. A. (2010). Chlorophyll Fluorescence Terminology: An Introduction. Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications, 1–17. https://doi.org/10.1007/978-90-481-9268-7_1 |
dc.relation.references | Cuervo-Plata, D. C. (2017). Estudio bioquímico y molecular de algunas enzimas asociadas al stress oxidativo en apoplasto de clavel (Dianthus caryophyllus L.) durante su interacción con Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia, Sede Bogotá. |
dc.relation.references | da Cunha, L., McFall, A. J., & Mackey, D. (2006). Innate immunity in plants: a continuum of layered defenses. Microbes and Infection, 8(5), 1372–1381. https://doi.org/10.1016/J.MICINF.2005.12.018 |
dc.relation.references | Delgadillo Rodríguez, I. P., Montenegro Ruíz, L. C., Pinilla Agudelo, G. A., & Marina Melgarejo, L. (2017). Medición de la fluorescencia de la clorofila a en algas encapsuladas en alginato de calcio. Acta Biologica Colombiana, 22(2), 199–208. https://doi.org/10.15446/ABC.V22N2.56166 |
dc.relation.references | Di Pietro, A., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. G. (2003). Fusarium oxysporum: Exploring the molecular arsenal of a vascular wilt fungus. In Molecular Plant Pathology (Vol. 4, Issue 5, pp. 315–325). https://doi.org/10.1046/j.1364-3703.2003.00180.x |
dc.relation.references | Diaz-Puentes, L.-N. (2012). RESISTENCIA SISTÉMICA ADQUIRIDA MEDIADA POR EL ÁCIDO SALICÍLICO SYSTEMIC ACQUIRED RESISTANCE INDUCED BY SALICYLIC ACID RESISTÊNCIA SISTÊMICA ADQUIRIDA MEDIADA POR O ÁCIDO SALICÍLICO Artículo de Revisión. In Biotecnología en el Sector Agropecuario y Agroindustrial (Vol. 10, Issue 2). Julio-Diciembre. |
dc.relation.references | Ding, B., & Wang, G. L. (2015). Chromatin versus pathogens: The function of epigenetics in plant immunity. Frontiers in Plant Science, 6(september). https://doi.org/10.3389/FPLS.2015.00675 |
dc.relation.references | Driesen, E., Van den Ende, W., De Proft, M., & Saeys, W. (2020). Influence of Environmental Factors Light, CO2, Temperature, and Relative Humidity on Stomatal Opening and Development: A Review. Agronomy 2020, Vol. 10, Page 1975, 10(12), 1975. https://doi.org/10.3390/AGRONOMY10121975 |
dc.relation.references | Durrant, W. E., & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology, 42(Volume 42, 2004), 185–209. https://doi.org/10.1146/ANNUREV.PHYTO.42.040803.140421/CITE/REFWORKS |
dc.relation.references | El Kasmi, F., Horvath, D., & Lahaye, T. (2018). Microbial effectors and the role of water and sugar in the infection battle ground. Current Opinion in Plant Biology, 44, 98–107. https://doi.org/10.1016/J.PBI.2018.02.011 |
dc.relation.references | Fantino, E. I. (2017). Identificación y caracterización de nuevas CDPKs en la planta de papa. Estudio de su participación en respuesta a infección por P. Infestans. Producción de plantas de papa sobreexpresantes de CDPKs y evaluación de su resistencia. https://bibliotecadigital.exactas.uba.ar/collection/tesis/document/tesis_n6230_Fantino |
dc.relation.references | Ferrarotto S, M. (2003). Proline accumulation in pigweed plants (Amaranthus dubius Mart, and Amaranthus cruentus L.) growing under water stress conditions. Revista de La Facultad de Agronomía, 20(4), 453–460. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-78182003000400005&lng=es&nrm=iso&tlng=en |
dc.relation.references | Flexas, J., Escalona, J. M., Evain, S., Gulías, J., Moya, I., Osmond, C. B., & Medrano, H. (2002). Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiologia Plantarum, 114(2), 231–240. https://doi.org/10.1034/J.1399-3054.2002.1140209.X |
dc.relation.references | Fukui, Y., Tanaka, Y., Kusumi, T., Iwashita, T., & Nomoto, K. (2003). A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3′,5′-hydroxylase gene. Phytochemistry, 63(1), 15–23. https://doi.org/10.1016/S0031-9422(02)00684-2 |
dc.relation.references | Furtado, L. L. (2017). UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONHA E MUCURI INSTITUTO DE CIÊNCIAS AGRÁRIAS CURSO DE CIÊNCIAS AGRÁRIAS RELAÇÕES FILOGENÉTICAS DOS GENES DA VIA DE BIOSSÍNTESE DE TIAMINA NA EVOLUÇÃO DE PLANTAS. |
dc.relation.references | Galeotti, F., Barile, E., Curir, P., Dolci, M., & Lanzotti, V. (2008). Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochemistry Letters, 1(1), 44–48. https://doi.org/10.1016/J.PHYTOL.2007.10.001 |
dc.relation.references | Gechev, T. S., & Hille, J. (2012). Molecular basis of plant stress. Cellular and Molecular Life Sciences, 69(19), 3161–3163. https://doi.org/10.1007/S00018-012-1086-2/METRICS |
dc.relation.references | González, F. J., Walls, S., & Mancilla, M. (2005). Fusarium oxysporum f.sp. fragariae AGENTE CAUSAL DE FUSARIOSIS EN FRUTILLA. In Boletín Micológico (Vol. 20, Issue 0). |
dc.relation.references | Granada, E. G. De, Amezquita, M. C. O. De, Mendoza, G. R. B., & Zapata, H. A. V. (2001). Fusarium Oxysporum el hongo que nos falta conocer. Acta Biológica Colombiana, 6(1), 7–25. |
dc.relation.references | Grudkowska, M., & Zagdańska, B. (2004). Multifunctional role of plant cysteine proteinases. Acta Biochimica Polonica, 51(3), 609–624. |
dc.relation.references | Hafizi, R., Salleh, B., & Latiffah, Z. (2013). Morphological and molecular characterization of Fusarium. solani and F. oxysporum associated with crown disease of oil palm. Brazilian Journal of Microbiology, 44(3), 959. https://doi.org/10.1590/S1517-83822013000300047 |
dc.relation.references | Hammerschmidt, R. (2009a). Chapter 5 Systemic Acquired Resistance. Advances in Botanical Research, 51(C), 173–222. https://doi.org/10.1016/S0065-2296(09)51005-1 |
dc.relation.references | Han, S. K., & Wagner, D. (2014). Role of chromatin in water stress responses in plants. Journal of Experimental Botany, 65(10), 2785–2799. https://doi.org/10.1093/JXB/ERT403 |
dc.relation.references | Hao, K., Wang, F., Nong, X., McNeill, M. R., Liu, S., Wang, G., Cao, G., & Zhang, Z. (2017). Response of peanut Arachis hypogaea roots to the presence of beneficial and pathogenic fungi by transcriptome analysis. Scientific Reports 2017 7:1, 7(1), 1–15. https://doi.org/10.1038/s41598-017-01029-3 |
dc.relation.references | Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments. Plant Signaling & Behavior, 7(11). https://doi.org/10.4161/PSB.21949 |
dc.relation.references | Hernández, J., & Montaner, D. (2022). PATRONES DE RESPUESTA ESPECTRAL. Lab. Geomática y Ecología Del Paisaje (GEP). |
dc.relation.references | Hetherington, A. M., & Woodward, F. I. (2003). The role of stomata in sensing and driving environmental change. Nature 2003 424:6951, 424(6951), 901–908. https://doi.org/10.1038/nature01843 |
dc.relation.references | Hidalgo Rodríguez, J. E. M. (2021). Transcriptoma de Tarwi (Lupinus mutabilis Sweet) sometido a estrés hídrico. http://repositorio.lamolina.edu.pe/handle/20.500.12996/5144 |
dc.relation.references | Huang, W. K., Ji, H. L., Gheysen, G., & Kyndt, T. (2016). Thiamine-induced priming against root-knot nematode infection in rice involves lignification and hydrogen peroxide generation. Molecular Plant Pathology, 17(4), 614–624. https://doi.org/10.1111/mpp.12316 |
dc.relation.references | Ihuoma, S. O., & Madramootoo, C. A. (2017). Recent advances in crop water stress detection. Computers and Electronics in Agriculture, 141, 267–275. https://doi.org/10.1016/J.COMPAG.2017.07.026 |
dc.relation.references | Iseppon, A., Lins Galdino, S., Calsa Junior, T., Akio Kido, E., Maria Benko-Iseppon, A., Calsa Jr, T., Tossi, A., Belarmino, L. C., & Crovella, S. (2010). Overview on Plant Antimicrobial Peptides. https://doi.org/10.2174/138920310791112075 |
dc.relation.references | José, M., Llopis, C., Vera, P., Jose, V., Carrasco, L., & Valencia, J. (2008). Identificación y caracterización de la familia de factores DBP, nuevos reguladores de la expresión génica en plantas. |
dc.relation.references | Kamarudin, A. N., Seman, I. A., & Yusof, Z. N. B. (2017). Thiamine biosynthesis gene expression analysis in Elaeis guineensis during interactions with Hendersonia toruloidea. Journal of Oil Palm Research, 29(2), 218–226. https://doi.org/10.21894/JOPR.2017.2902.06 |
dc.relation.references | Karadağ, K., Tenekeci, M. E., Taşaltın, R., & Bilgili, A. (2020). Detection of pepper fusarium disease using machine learning algorithms based on spectral reflectance. Sustainable Computing: Informatics and Systems, 28, 100299. https://doi.org/10.1016/J.SUSCOM.2019.01.001 |
dc.relation.references | Kavi Kishor, P. B., Hong, Z., Miao, G. H., Hu, C. A. A., & Verma, D. P. S. (1995). Overexpression of [delta]-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Osmotolerance in Transgenic Plants. Plant Physiology, 108(4), 1387. https://doi.org/10.1104/PP.108.4.1387 |
dc.relation.references | Kavi Kishor, P. B., & Sreenivasulu, N. (2014). Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell & Environment, 37(2), 300–311. https://doi.org/10.1111/PCE.12157 |
dc.relation.references | Kistler, H. C. (1997). Population Genetics of Soilborne Fungal Plant Pathogens Genetic Diversity in the Plant-Pathogenic Fungus Fusarium oxysporum. |
dc.relation.references | Kombrink, E., & Somssich, I. E. (1995). Defense Responses of Plants to Pathogens. Advances in Botanical Research, 21(C), 1–34. https://doi.org/10.1016/S0065-2296(08)60007-5 |
dc.relation.references | Kumar, M. N., Hsieh, Y. F., & Verslues, P. E. (2015). At14a-Like1 participates in membrane-associated mechanisms promoting growth during drought in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 112(33), 10545–10550. https://doi.org/10.1073/PNAS.1510140112/SUPPL_FILE/PNAS.1510140112.SD01.XLSX |
dc.relation.references | Kumar, Y., Dholakia, B. B., Panigrahi, P., Kadoo, N. Y., Giri, A. P., & Gupta, V. S. (2015). Metabolic profiling of chickpea-Fusarium interaction identifies differential modulation of disease resistance pathways. Phytochemistry, 116(1), 120–129. https://doi.org/10.1016/j.phytochem.2015.04.001 |
dc.relation.references | Kuska, M. T., Heim, R. H. J., Geedicke, I., Gold, K. M., Brugger, A., & Paulus, S. (2022). Digital plant pathology: a foundation and guide to modern agriculture. Journal of Plant Diseases and Protection 2022 129:3, 129(3), 457–468. https://doi.org/10.1007/S41348-022-00600-Z |
dc.relation.references | Kuska, M. T., & Mahlein, A. K. (2018). Aiming at decision making in plant disease protection and phenotyping by the use of optical sensors. European Journal of Plant Pathology, 152(4), 987–992. https://doi.org/10.1007/S10658-018-1464-1/METRICS |
dc.relation.references | Laluk, K., & Mengiste, T. (2010). Necrotroph Attacks on Plants: Wanton Destruction or Covert Extortion? The Arabidopsis Book, 8, e0136. https://doi.org/10.1199/tab.0136 |
dc.relation.references | Laredo Alcalá, E. I., Martínez Hernández, J. L., Iliná, A., Guillen Cisneros, L., Hernández Castillo, F. D., Laredo Alcalá, E. I., Martínez Hernández, J. L., Iliná, A., Guillen Cisneros, L., & Hernández Castillo, F. D. (2017). Aplicación de ácido jasmónico como inductor de resistencia vegetal frente a patógenos. Revista Mexicana de Ciencias Agrícolas, 8(3), 673–683. https://doi.org/10.29312/REMEXCA.V8I3.40 |
dc.relation.references | León, J., Arbeláez, G., González, M., Molina, J. C., Parra, J., Gúzman, S., Angulo, J. F., & Alvarez, J. D. (1993). Control integrado del marchitamiento vascular del clavel ocasionado por Fusarium oxysporum f.sp. dianthi. Agronomía Colombiana, 10(1), 68–89. |
dc.relation.references | Lewandowska, M., Keyl, A., & Feussner, I. (2020). Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress. New Phytologist, 227(3), 698–713. https://doi.org/10.1111/NPH.16571 |
dc.relation.references | Li, C., Bai, Y., Jacobsen, E., Visser, R., Lindhout, P., & Bonnema, G. (2006). Tomato defense to the powdery mildew fungus: Differences in expression of genes in susceptible, monogenic- and polygenic resistance responses are mainly in timing. Plant Molecular Biology, 62(1–2), 127–140. https://doi.org/10.1007/S11103-006-9008-Z/METRICS |
dc.relation.references | Li, Y., Kabbage, M., Liu, W., & Dickman, M. B. (2016). Aspartyl Protease-Mediated Cleavage of BAG6 Is Necessary for Autophagy and Fungal Resistance in Plants. The Plant Cell, 28(1), 233–247. https://doi.org/10.1105/TPC.15.00626 |
dc.relation.references | Lindemose, S., O’Shea, C., Jensen, M. K., & Skriver, K. (2013). Structure, Function and Networks of Transcription Factors Involved in Abiotic Stress Responses. International Journal of Molecular Sciences 2013, Vol. 14, Pages 5842-5878, 14(3), 5842–5878. https://doi.org/10.3390/IJMS14035842 |
dc.relation.references | Liu, H., Hu, M., Wang, Q., Cheng, L., & Zhang, Z. (2018). Role of papain-like cysteine proteases in plant development. Frontiers in Plant Science, 871, 417367. https://doi.org/10.3389/FPLS.2018.01717/BIBTEX |
dc.relation.references | Liu, P., Shi, C., Liu, S., Lei, J., Lu, Q., Hu, H., Ren, Y., Zhang, N., Sun, C., Chen, L., Jiang, Y., Feng, L., Zhang, T., Zhong, K., Liu, J., Zhang, J., Zhang, Z., Sun, B., Chen, J., … Yang, J. (2023). A papain-like cysteine protease-released small signal peptide confers wheat resistance to wheat yellow mosaic virus. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-43643-y |
dc.relation.references | Mahlein, A. K., Rumpf, T., Welke, P., Dehne, H. W., Plümer, L., Steiner, U., & Oerke, E. C. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128, 21–30. https://doi.org/10.1016/J.RSE.2012.09.019 |
dc.relation.references | Mahlein, A. K., Steiner, U., Dehne, H. W., & Oerke, E. C. (2010). Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precision Agriculture, 11(4), 413–431. https://doi.org/10.1007/S11119-010-9180-7/METRICS |
dc.relation.references | Malamy, J., Sánchez-Casas, P., Hennig, J., Guo, A., & Klessig, D. F. (1996). Dissection of the salicylic acid signaling pathway in tobacco. Molecular Plant-Microbe Interactions, 9(6), 474–482. https://doi.org/10.1094/MPMI-9-0474 |
dc.relation.references | Marín-Ortiz, J. C., Gutierrez-Toro, N., Botero-Fernández, V., & Hoyos-Carvajal, L. M. (2020). Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi Journal of Biological Sciences, 27(1), 88–99. https://doi.org/10.1016/J.SJBS.2019.05.007 |
dc.relation.references | Martínez González A. (2019). Contribución al estudio de los fenómenos bioquímicos y moleculares del apoplasto de clavel (Dianthus caryophyllus L) durante su interacción con Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia, Sede Bogotá. |
dc.relation.references | Medrano, H., Na Bota, J., Cifre, J., Flexas, J., Ribas-Carbó, M., & Gulías, J. (2007). EFICIENCIA EN EL USO DEL AGUA POR LAS PLANTAS. Investigaciones Geográfi Cas, No, 43, 63–84. |
dc.relation.references | Melotto, M., Underwood, W., & Sheng, Y. H. (2008). Role of Stomata in Plant Innate Immunity and Foliar Bacterial Diseases. Annual Review of Phytopathology, 46, 101. https://doi.org/10.1146/ANNUREV.PHYTO.121107.104959 |
dc.relation.references | Menéndez, E., Navarro, J., López, J., & Dalmau, A. (2020). Mecanismos de defensa en plantas. Proteínas relacionadas con la patogenicidad. Revista de Investigaciones de La Universidad Le Cordon Bleu, 7(2), 98–109. https://doi.org/10.36955/RIULCB.2020V7N2.010 |
dc.relation.references | Miguel Rojas, C. de. (2014). Papel de los reguladores moleculares Fbp1 y Bmh2 en la virulencia de Fusarium oxysporum. |
dc.relation.references | Miller, G., Honig, A., Stein, H., Suzuki, N., Mittler, R., & Zilberstein, A. (2009). Unraveling Δ1-Pyrroline-5-Carboxylate-Proline Cycle in Plants by Uncoupled Expression of Proline Oxidation Enzymes. Journal of Biological Chemistry, 284(39), 26482–26492. https://doi.org/10.1074/JBC.M109.009340 |
dc.relation.references | Monroy Mena S. (2019). Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f sp dianthi. Universidad Nacional de Colombia, Sede Bogotá. |
dc.relation.references | Monzón, A., Luis, J., & Tudela, R. (2008). INFECCIONES CAUSADAS POR EL GÉNERO Fusarium. |
dc.relation.references | Moreno, S. G., Vela, H. P., & Alvarez, M. O. S. (2008). La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. Revista de Educación Bioquímica, 27(4), 119–129. |
dc.relation.references | Naik, P. M., Al–Khayri, J. M., Naik, P. M., & Al–Khayri, J. M. (2016). Abiotic and Biotic Elicitors–Role in Secondary Metabolites Production through In Vitro Culture of Medicinal Plants. Abiotic and Biotic Stress in Plants - Recent Advances and Future Perspectives. https://doi.org/10.5772/61442 |
dc.relation.references | Nash, D., Paleg, L., & Wiskich, J. (1982). Effect of Proline, Betaine and Some Other Solutes on the Heat Stability of Mitochondrial Enzymes. Functional Plant Biology, 9(1), 47–57. https://doi.org/10.1071/PP9820047 |
dc.relation.references | Norhana, Z., & Yusof, B. (2017). Thiamine biosynthesis gene expression analysis in Elaeis guineensis during interactions with Hendersonia toruloidea Idris Abu Seman Malaysian Palm Oil Board THIAMINE BIOSYNTHESIS GENE EXPRESSION ANALYSIS IN Elaeis guineensis DURING INTERACTIONS WITH Hendersonia toruloidea AMIRAH NOR KAMARUDIN*; IDRIS ABU SEMAN** and ZETTY NORHANA BALIA YUSOF*. Article in Journal of Oil Palm Research, 29(2), 218–226. https://doi.org/10.21894/jopr.2017.2902.06 |
dc.relation.references | Nürnberger, T., Brunner, F., Kemmerling, B., & Piater, L. (2004). Innate immunity in plants and animals: striking similarities and obvious differences. Immunological Reviews, 198(1), 249–266. https://doi.org/10.1111/J.0105-2896.2004.0119.X |
dc.relation.references | Orosa Puente, B. (2011). Participación del gen AtCPK1 en la defensa de Arabidopsis thaliana frente a patógenos. Tesis Doctorals - Departament - Bioquímica i Biologia Molecular (Farmàcia). https://diposit.ub.edu/dspace/handle/2445/173980 |
dc.relation.references | Pablo Alejandro, B. R., & Alejandro, P. P. (2024). Desarrollo de un nuevo indicador del estado hídrico de las plantas basado en el espectro foliar. https://doi.org/10.31428/10317/12384 |
dc.relation.references | Peñafiel Saquicaray, P. A. (2021). Análisis estadístico funcional de la reflectancia obtenida mediante imágenes satelitales y espectroradiometro del cultivo de Quinua en Colta. http://dspace.espoch.edu.ec/handle/123456789/14809 |
dc.relation.references | Pérez Cárcamo, J., & PEREZ CARCAMO, J. 789790. (2019). Evaluación morfológica y fisiológica de genotipos de clavel (Dianthus caryophyllus L.) infestados con Fusarium oxysporum. |
dc.relation.references | Pérez Mora, W. H., Castillejo, M. Á., Jorrín Novo, J., Melgarejo, L. M., & Ardila, H. D. (2024). Thiamine-induced resistance in carnation against Fusarium oxysporum f. sp dianthi and mode of action studies based on the proteomics analysis of root tissue. Scientia Horticulturae, 323, 112549. https://doi.org/10.1016/J.SCIENTA.2023.112549 |
dc.relation.references | Pérez Mora, W., Melgarejo, L. M., & Ardila, H. D. (2021). Effectiveness of some resistance inducers for controlling carnation vascular wilting caused by Fusarium oxysporum f. sp. dianthi. Archives of Phytopathology and Plant Protection, 54(13–14), 886–902. https://doi.org/10.1080/03235408.2020.1868734 |
dc.relation.references | Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M., & Bakker, P. A. H. M. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347–375. https://doi.org/10.1146/ANNUREV-PHYTO-082712-102340 |
dc.relation.references | Pinheiro, C., Passarinho, A., & Ricardo, P. (2004). Effect of drought and rewatering on the metabolism of Lupinus albus organs. https://doi.org/10.1016/j.jplph.2004.01.016 |
dc.relation.references | Pye, M. F., Hakuno, F., MacDonald, J. D., & Bostock, R. M. (2013). Induced resistance in tomato by SAR activators during predisposing salinity stress. Frontiers in Plant Science, 4(MAY), 48682. https://doi.org/10.3389/FPLS.2013.00116/BIBTEX |
dc.relation.references | Robayo, M. Y. D., & Gutiérrez, M. C. (2014). MECANISMOS DE RESISTENCIA SISTÉMICA EN PLANTAS. Acta Iguazu, 3(2), 1–19. https://doi.org/10.48075/ACTAIGUAZ.V3I2.10277 |
dc.relation.references | Romero Rincón A. (2020). Efecto de la aplicación de elicitores de origen biótico en la biosíntesis de flavonoides en clavel (Dianthus caryophyllus L) durante la interacción con Fusarium oxysporum f sp. dianthi. |
dc.relation.references | Saenz Mariana. (2022, January 20). Evaluación de diformíl urea para el manejo de estrés abiótico en el cultivo de maracuyá. https://repositorio.ucaldas.edu.co/handle/ucaldas/17355 |
dc.relation.references | Sampaio, A. M., De Sousa Araújo, S., Rubiales, D., & Patto, M. C. V. (2020). Fusarium Wilt Management in Legume Crops. Agronomy 2020, Vol. 10, Page 1073, 10(8), 1073. https://doi.org/10.3390/AGRONOMY10081073 |
dc.relation.references | Sawahel, W. A., & Hassan, A. H. (2002). Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnology Letters, 24(9), 721–725. https://doi.org/10.1023/A:1015294319114/METRICS |
dc.relation.references | Sawinski, K., Mersmann, S., Robatzek, S., & Böhmer, M. (2013). Guarding the Green: Pathways to Stomatal Immunity. Https://Doi.Org/10.1094/MPMI-12-12-0288-CR, 26(6), 626–632. https://doi.org/10.1094/MPMI-12-12-0288-CR |
dc.relation.references | Sewelam, N., Kazan, K., & Schenk, P. M. (2016). Global plant stress signaling: Reactive oxygen species at the cross-road. Frontiers in Plant Science, 7(FEB2016), 170027. https://doi.org/10.3389/FPLS.2016.00187/BIBTEX |
dc.relation.references | Shah, J. (2009). Plants under attack: systemic signals in defence. Current Opinion in Plant Biology, 12(4), 459–464. https://doi.org/10.1016/J.PBI.2009.05.011 |
dc.relation.references | Shinde, S., Villamor, J. G., Lin, W., Sharma, S., & Verslues, P. E. (2016). Proline Coordination with Fatty Acid Synthesis and Redox Metabolism of Chloroplast and Mitochondria. Plant Physiology, 172(2), 1074–1088. https://doi.org/10.1104/PP.16.01097 |
dc.relation.references | Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89–97. https://doi.org/10.1016/J.TPLANTS.2009.11.009 |
dc.relation.references | Tang, K., Struik, P. C., Amaducci, S., Stomph, T. J., & Yin, X. (2017). Hemp (Cannabis sativa L.) leaf photosynthesis in relation to nitrogen content and temperature: implications for hemp as a bio-economically sustainable crop. GCB Bioenergy, 9(10), 1573–1587. https://doi.org/10.1111/GCBB.12451 |
dc.relation.references | Tombesi, S., Nardini, A., Frioni, T., Soccolini, M., Zadra, C., Farinelli, D., Poni, S., & Palliotti, A. (2015). Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Scientific Reports 2015 5:1, 5(1), 1–12. https://doi.org/10.1038/srep12449 |
dc.relation.references | Turlier, M. F., Eparvier, A., & Alabouvette, C. (1994). Early dynamic interactions between Fusarium oxysporum f.sp. lini and the roots of Linum usitatissimum as revealed by transgenic GUS-marked hyphae. Canadian Journal of Botany, 72(11), 1605–1612. https://doi.org/10.1139/b94-198 |
dc.relation.references | Valeria, I. A., Directora, F. B., Marcela, D., & Ruscitti, F. (2022). Caracterización de interacciones planta-microorganismos beneficiosas para el control de Nacobbus aberrans en pimiento. https://doi.org/10.35537/10915/140520 |
dc.relation.references | Vanegas Cano L. (2019). Aproximación bioquímica al estudio de las rutas de señalización involucradas en la resistencia del clavel (Dianthus caryophyllus L.) al patógeno Fusarium oxysporum f. sp. dianthi. |
dc.relation.references | Vásquez-Ramírez, L. M., & Castaño-Zapata, J. (2017). MANEJO INTEGRADO DE LA MARCHITEZ VASCULAR DEL TOMATE [Fusarium oxysporum f. sp. lycopersici (SACC.) W.C. SNYDER & H.N. HANSEN]:: UNA REVISIÓN. Revista U.D.C.A Actualidad & Divulgación Científica, 20(2), 363–374. |
dc.relation.references | Verslues, P. E., & Sharma, S. (2010). Proline metabolism and its implications for plant-environment interaction. The Arabidopsis Book, 8, e0140. https://doi.org/10.1199/TAB.0140 |
dc.relation.references | Villa-Martínez, A., Pérez-Leal, R., Morales-Morales, H. A., Ba-Surto-Sotelo, M., Soto-Parra, J. M., & Martínez-Escudero, E. (2014). Situación actual en el control de Fusarium spp. y evaluación de la actividad antifúngica de extractos vegetales. Acta Agronomica, 64(2). https://doi.org/10.15446/acag.v64n2.43358 |
dc.relation.references | Viña, A., Gitelson, A. A., Nguy-Robertson, A. L., & Peng, Y. (2011). Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment, 115(12), 3468–3478. https://doi.org/10.1016/J.RSE.2011.08.010 |
dc.relation.references | Vlot, A. C., Klessig, D. F., & Park, S. W. (2008). Systemic acquired resistance: the elusive signal(s). Current Opinion in Plant Biology, 11(4), 436–442. https://doi.org/10.1016/J.PBI.2008.05.003 |
dc.relation.references | Vorster, B. J., Cullis, C. A., & Kunert, K. J. (2019). Plant Vacuolar Processing Enzymes. Frontiers in Plant Science, 10. https://doi.org/10.3389/FPLS.2019.00479 |
dc.relation.references | Wang, G., Ding, X., Yuan, M., Qiu, D., Li, X., Xu, C., & Wang, S. (2006). Dual function of rice OsDR8 gene in disease resistance and thiamine accumulation. Plant Molecular Biology, 60(3), 437–449. https://doi.org/10.1007/s11103-005-4770-x |
dc.relation.references | Wang, M., Sun, Y., Sun, G., Liu, X., Zhai, L., Shen, Q., & Guo, S. (2015). Water balance altered in cucumber plants infected with Fusarium oxysporum f. sp. cucumerinum. Scientific Reports 2015 5:1, 5(1), 1–7. https://doi.org/10.1038/srep07722 |
dc.relation.references | Wiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R. J., & Hein, I. (2014). Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science, 5(NOV), 111484. https://doi.org/10.3389/FPLS.2014.00655/ABSTRACT |
dc.relation.references | Wildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414(6863), 562–565. https://doi.org/10.1038/35107108 |
dc.relation.references | Xingming, Z., Yanling, D., Xiaowei, Z., Yu, B., Xiaofeng, L., Kai, Z., & Tao, J. (2019). Uncertainty evaluation at three spatial scales for the NDVI-based VWC estimation method used in the SMAP algorithm. Remote Sensing Letters, 10(6), 563–572. https://doi.org/10.1080/2150704X.2019.1577574 |
dc.relation.references | Xu, X., Chen, Y., Li, B., Zhang, Z., Qin, G., Chen, T., & Tian, S. (2022). Molecular mechanisms underlying multi-level defense responses of horticultural crops to fungal pathogens. Horticulture Research, 9. https://doi.org/10.1093/HR/UHAC066 |
dc.relation.references | Ying, W., Yang, R., Cai, Y., Wang, J., Xing, K., Zhang, Y., & Hua, X. (2023). The correlation between proline/P5C cycle and the response to avirulent pathogen infection in Arabidopsis. Current Plant Biology, 35–36, 100293. https://doi.org/10.1016/J.CPB.2023.100293 |
dc.relation.references | Zacchino, S. A., Butassi, E., Liberto, M. Di, Raimondi, M., Postigo, A., & Sortino, M. (2017). Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine, 37, 27–48. https://doi.org/10.1016/J.PHYMED.2017.10.018 |
dc.relation.references | Zhang, Y., Liu, R., -, al, Kou, Y., Wu, T., Xing, G., Mohammadrezaei, D., Podina, L., De Silva, J., & Fernandez, J. (2015). An optimization model to agroindustrial sector in antioquia (Colombia, South America). Journal of Physics: Conference Series, 622(1), 012002. https://doi.org/10.1088/1742-6596/622/1/012002 |
dc.relation.references | Zhang, Y., Lubberstedt, T., & Xu, M. (2013). The Genetic and Molecular Basis of Plant Resistance to Pathogens. In Journal of Genetics and Genomics (Vol. 40, Issue 1, pp. 23–35). Elsevier. https://doi.org/10.1016/j.jgg.2012.11.003 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.lemb | CONTROL BIOLOGICO DE PLAGAS |
dc.subject.lemb | Pests - Biological control |
dc.subject.lemb | AGENTES BIOLOGICOS PARA EL CONTROL DE PLAGAS |
dc.subject.lemb | Biological pest control agents |
dc.subject.lemb | PLAGAS AGRICOLAS |
dc.subject.lemb | Agricultural pests |
dc.subject.lemb | MICROORGANISMOS FITOPATOGENOS |
dc.subject.lemb | Micro-organisms, phytopathogenic |
dc.subject.lemb | ASPERSION EN AGRICULTURA |
dc.subject.lemb | Spraying and dusting in agriculture |
dc.subject.lemb | VITAMINA B1 |
dc.subject.lemb | Vitamin B1 |
dc.subject.lemb | ENFERMEDADES DE LAS HOJAS |
dc.subject.lemb | Leaves - Diseases and pests |
dc.subject.proposal | Tiamina |
dc.subject.proposal | SAR |
dc.subject.proposal | Elicitor |
dc.subject.proposal | Priming |
dc.subject.proposal | Thiamine |
dc.title.translated | Evaluation of the role of Thiamine as an inducer of acquired systemic resistance in carnation (Dianthus Caryophyllus l.) For the control of vascular wilt |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Estudiantes |
dcterms.audience.professionaldevelopment | Investigadores |
dcterms.audience.professionaldevelopment | Maestros |
dcterms.audience.professionaldevelopment | Público general |