dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.contributor.advisor | Tobón, Jorge Iván |
dc.contributor.advisor | Restrepo Baena, Oscar Jaime |
dc.contributor.author | Bedoya Henao, Carlos Andrés |
dc.date.accessioned | 2025-04-22T14:06:56Z |
dc.date.available | 2025-04-22T14:06:56Z |
dc.date.issued | 2025-04 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88034 |
dc.description | Ilustraciones, gráficos, tablas |
dc.description.abstract | La incineración de residuos sólidos urbanos (MSW) es una práctica habitual y cada vez más adoptada al momento de gestionar la disposición de MSW en todo el mundo. Derivado del proceso de incineración se generan algunos subproductos como cenizas volantes (MSWI FA) y cenizas de fondo (MSWI BA). Contribuyendo con la economía circular, sostenibilidad y el desarrollo de nuevos materiales, las MSWI FA han cobrado un gran interés en el sector de la construcción al poderse incorporar como material de relleno en mezclas de mortero y concreto, e incluso como materia prima en la producción de diferentes tipos de cementos. Los cementos base sulfoaluminato de cálcico (CSA) han demostrado ser una alternativa al cemento portland ordinario (OPC) debido principalmente a sus bajas emisiones de CO₂, menores consumos energéticos para su producción, y sobresalientes desempeños mecánicos y de durabilidad. La posibilidad de usar las MSWI FA como materia prima para producir cemento CSA ha sido demostrada, sin embargo, los estudios realizados hasta el momento en torno al tema exponen una gran oportunidad de profundizar temas que aún no han sido abordados, tal como el rol del cloro y metales traza en el sistema CaO–SiO₂–Al₂O₃–SO₃ durante la elaboración de cementos CSA. La presente investigación pretende evaluar la influencia de los cloruros y metales traza presentes en las MSWI FA sobre el desarrollo de fases cementantes durante la clinkerización de CSA mediante la formulación de módulos de cloruros y de metales traza que permitan proponer una solución general al problema de investigación. (Tomado de la fuente) |
dc.description.abstract | The incineration of municipal solid waste (MSW) is a common and increasingly adopted practice for MSW disposal worldwide. As a result of the incineration process, by-products such as fly ash (MSWI FA) and bottom ash (MSWI BA) are generated. Contributing to the circular economy, sustainability, and the development of new materials, MSWI FA has gained significant interest in the construction sector due to its potential use as a filler material in mortar and concrete mixtures, and even as a raw material in the production of different types of cement. Calcium sulfoaluminate (CSA) cements have proven to be a viable alternative to ordinary Portland cement (OPC), mainly due to their lower CO₂ emissions, reduced energy consumption during production, and outstanding mechanical performance and durability. The possibility of using MSWI FA as a raw material for producing CSA cement has been demonstrated; however, studies conducted to date reveal a major opportunity to delve into aspects that remain unexplored, such as the role of chlorine and trace metals in the CaO-SiO₂-Al₂O₃-SO₃ system during the production of CSA cement. This research aims to evaluate the influence of chlorides and trace metals present in MSWI FA on the development of cementitious phases during CSA clinkering, by formulating chloride and trace metal modules that could lead to a general solution to the research problem. |
dc.description.sponsorship | Programa de Becas Bicentenario de la Universidad Nacional de Colombia por el departamento de San Andrés Islas. Convocatoria número 15. |
dc.format.extent | 84 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.subject.ddc | 690 - Construcción de edificios::691 - Materiales de construcción |
dc.title | Influencia de cloruros y metales traza presentes en las MSWI FA sobre el desarrollo de fases cementantes durante la clinkerización de CSA |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Materiales y Procesos |
dc.contributor.researchgroup | Grupo del Cemento y Materiales de Construcción |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magister en Ingeniería - Materiales y Procesos |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Minas |
dc.publisher.place | Medellín, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín |
dc.relation.indexed | LaReferencia |
dc.relation.references | S. Sondh, D. S. Upadhyay, S. Patel, and R. N. Patel, “A strategic review on Municipal Solid Waste (living solid waste) management system focusing on policies, selection criteria and techniques for waste-to-value,” J Clean Prod, vol. 356, p. 131908, 2022, doi: 10.1016/j.jclepro.2022.131908. |
dc.relation.references | S. C. Pal, A. Mukherjee, and S. R. Pathak, “Investigation of hydraulic activity of ground granulated blast furnace slag in concrete,” 2003. doi: 10.1016/S0008-8846(03)00062-0. |
dc.relation.references | O. K. M. Ouda, H. M. Cekirge, and S. A. R. Raza, “An assessment of the potential contribution from waste-to-energy facilities to electricity demand in Saudi Arabia,” Energy Convers Manag, vol. 75, pp. 402–406, 2013, doi: 10.1016/j.enconman.2013.06.056. |
dc.relation.references | L. Yang, Y. Zhao, X. Niu, Z. Song, Q. Gao, and J. Wu, “Municipal Solid Waste Forecasting in China Based on Machine Learning Models,” Front Energy Res, vol. 9, Nov. 2021, doi: 10.3389/fenrg.2021.763977. |
dc.relation.references | S. Wu et al., “Dioxin distribution characteristics and health risk assessment in different size particles of fly ash from MSWIs in China,” 2016, doi: 10.1016/j.wasman.2016.01.038. |
dc.relation.references | B. H. Cho, B. H. Nam, J. An, and H. Youn, “Municipal Solid Waste Incineration (MSWI) Ashes as Construction Materials—A Review,” Materials 2020, Vol. 13, Page 3143, vol. 13, no. 14, p. 3143, Jul. 2020, doi: 10.3390/MA13143143. |
dc.relation.references | C. Ferreira, A. Ribeiro, and L. Ottosen, “Possible applications for municipal solid waste fly ash,” J Hazard Mater, vol. 96, no. 2–3, pp. 201–216, Jan. 2003, doi: 10.1016/S0304-3894(02)00201-7. |
dc.relation.references | A. Singh, Y. Zhou, V. Gupta, and R. Sharma, “Sustainable use of different size fractions of municipal solid waste incinerator bottom ash and recycled fine aggregates in cement mortar,” Case Studies in Construction Materials, vol. 17, p. e01434, Dec. 2022, doi: 10.1016/J.CSCM.2022.E01434. |
dc.relation.references | Y. Xue and X. Liu, “Detoxification, solidification and recycling of municipal solid waste incineration fly ash: A review,” Chemical Engineering Journal, vol. 420, pp. 1385–8947, 2021, doi: 10.1016/j.cej.2021.130349. |
dc.relation.references | Y. Zhang et al., “Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives,” J Hazard Mater, vol. 411, p. 125132, Jun. 2021, doi: 10.1016/J.JHAZMAT.2021.125132. |
dc.relation.references | S. Rémond, P. Pimienta, and D. P. Bentz, “Effects of the incorporation of Municipal Solid Waste Incineration fly ash in cement pastes and mortars: I. Experimental study,” Cem Concr Res, vol. 32, no. 2, pp. 303–311, Feb. 2002, doi: 10.1016/S0008-8846(01)00674-3. |
dc.relation.references | R. Siddique, “Utilization of municipal solid waste (MSW) ash in cement and mortar,” Resour Conserv Recycl, vol. 54, no. 12, pp. 1037–1047, Oct. 2010, doi: 10.1016/J.RESCONREC.2010.05.002. |
dc.relation.references | T. Lan et al., “Synthesis and application of geopolymers from municipal waste incineration fly ash (MSWI FA) as raw ingredient - A review,” Resour Conserv Recycl, vol. 182, p. 106308, Jul. 2022, doi: 10.1016/J.RESCONREC.2022.106308. |
dc.relation.references | M. Niu, P. Zhang, J. Guo, and J. Wang, “Effect of Municipal Solid Waste Incineration Fly Ash on the Mechanical Properties and Microstructure of Geopolymer Concrete,” Gels 2022, Vol. 8, Page 341, vol. 8, no. 6, p. 341, May 2022, doi: 10.3390/GELS8060341. |
dc.relation.references | E. Romeo, L. Mantovani, M. Tribaudino, and A. Montepara, “Reuse of Stabilized Municipal Solid Waste Incinerator Fly Ash in Asphalt Mixtures,” Journal of Materials in Civil Engineering, vol. 30, Aug. 2018, doi: 10.1061/(ASCE)MT.1943-5533.0002347. |
dc.relation.references | J. R. Pan, C. Huang, J. J. Kuo, and S. H. Lin, “Recycling MSWI bottom and fly ash as raw materials for Portland cement,” Waste Management, vol. 28, no. 7, pp. 1113–1118, Jan. 2008, doi: 10.1016/J.WASMAN.2007.04.009. |
dc.relation.references | N. Saikia, S. Kato, and T. Kojima, “Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash,” Waste Management, vol. 27, no. 9, pp. 1178–1189, Jan. 2007, doi: 10.1016/J.WASMAN.2006.06.004. |
dc.relation.references | M. Carmen Martín-Sedeño et al., “Aluminum-rich belite sulfoaluminate cements: Clinkering and early age hydration,” 2009, doi: 10.1016/j.cemconres.2009.11.003. |
dc.relation.references | FTM, “Global Use of Bauxite and Bauxite Reserves Left to Human,” https://www.ftmmachinery.com/blog/global-use-of-bauxite-and-bauxite-reserves-left-to-human.html. |
dc.relation.references | S. Nie et al., “Analysis of theoretical carbon dioxide emissions from cement production: Methodology and application,” J Clean Prod, vol. 334, p. 130270, Feb. 2022, doi: 10.1016/J.JCLEPRO.2021.130270. |
dc.relation.references | T. Hanein, J. L. Galvez-Martos, and M. N. Bannerman, “Carbon footprint of calcium sulfoaluminate clinker production,” J Clean Prod, vol. 172, pp. 2278–2287, Jan. 2018, doi: 10.1016/J.JCLEPRO.2017.11.183. |
dc.relation.references | A. Mobili, A. Telesca, M. Marroccoli, and F. Tittarelli, “Calcium sulfoaluminate and alkali-activated fly ash cements as alternative to Portland cement: study on chemical, physical-mechanical, and durability properties of mortars with the same strength class,” 2020, doi: 10.1016/j.conbuildmat.2020.118436. |
dc.relation.references | K. Wu, H. Shi, and X. Guo, “Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production,” Waste Management, vol. 31, no. 9–10, pp. 2001–2008, Sep. 2011, doi: 10.1016/J.WASMAN.2011.04.022. |
dc.relation.references | Y. Mao, H. Wu, W. Wang, M. Jia, and X. Che, “Pretreatment of municipal solid waste incineration fly ash and preparation of solid waste source sulphoaluminate cementitious material,” J Hazard Mater, vol. 385, Mar. 2020, doi: 10.1016/J.JHAZMAT.2019.121580. |
dc.relation.references | L. Wang, I. A. Jamro, Q. Chen, S. Li, J. Luan, and T. Yang, “Immobilization of trace elements in municipal solid waste incinerator (MSWI) fly ash by producing calcium sulphoaluminate cement after carbonation and washing,” Waste Management and Research, vol. 34, no. 3, pp. 184–194, Mar. 2016, doi: 10.1177/0734242X15617846/ASSET/IMAGES/LARGE/10.1177_0734242X15617846-FIG2.JPEG. |
dc.relation.references | M. Simoni, T. Hanein, T. Y. Duvallet, R. B. Jewell, J. L. Provis, and H. Kinoshita, “Producing cement clinker assemblages in the system: CaO-SiO2-Al2O3-SO3-CaCl2-MgO,” Cem Concr Res, vol. 144, Jun. 2021, doi: 10.1016/j.cemconres.2021.106418. |
dc.relation.references | E. N. Nedkvitne, Ø. Borgan, D. Ø. Eriksen, and H. Rui, “Variation in chemical composition of MSWI fly ash and dry scrubber residues,” Waste Management, vol. 126, pp. 623–631, May 2021, doi: 10.1016/J.WASMAN.2021.04.007. |
dc.relation.references | K. Kolovos, S. Tsivilis, and G. Kakali, “The effect of foreign ions on the reactivity of the CaO–SiO2–Al2O3–Fe2O3 system: Part II: Cations,” Cem Concr Res, vol. 32, no. 3, pp. 463–469, Mar. 2002, doi: 10.1016/S0008-8846(01)00705-0. |
dc.relation.references | H. Justnes Harald Justnes, T. Arne Hammer, and C. Manager, “SINTEF REPORT COIN P1 Advanced cementing materials SP 1.1 F Reduced CO 2-emissions Effect of mineralizers in cement production State of the art SINTEF Building and Infrastructure COIN-Concrete Innovation Centre,” 2007, Accessed: Nov. 29, 2022. [Online]. Available: www.sintef.no/coin |
dc.relation.references | I. Lancellotti, E. Kamseu, M. Michelazzi, L. Barbieri, A. Corradi, and C. Leonelli, “Chemical stability of geopolymers containing municipal solid waste incinerator fly ash,” Waste Management, vol. 30, no. 4, pp. 673–679, Apr. 2010, doi: 10.1016/J.WASMAN.2009.09.032. |
dc.relation.references | F. Bullerjahn, M. Zajac, and M. Ben Haha, “CSA raw mix design: effect on clinker formation and reactivity,” Mater Struct, vol. 48, no. 12, pp. 3895–3911, 2015, doi: 10.1617/s11527-014-0451-z. |
dc.relation.references | M. Montes, E. Pato, P. M. Carmona-Quiroga, and M. T. Blanco-Varela, “Can calcium aluminates activate ternesite hydration?,” Cem Concr Res, vol. 103, pp. 204–215, 2018, doi: https://doi.org/10.1016/j.cemconres.2017.10.017. |
dc.relation.references | K. Garbev, A. Ullrich, G. Beuchle, B. Bergfeldt, and P. Stemmermann, “Chlorellestadite (Synth): Formation, Structure, and Carbonate Substitution during Synthesis of Belite Clinker from Wastes in the Presence of CaCl2 and CO2,” Minerals, vol. 12, no. 9, 2022, doi: 10.3390/min12091179. |
dc.relation.references | C. W. Hargis, J. Moon, B. Lothenbach, F. Winnefeld, H.-R. Wenk, and P. J. M. Monteiro, “Calcium Sulfoaluminate Sodalite () Crystal Structure Evaluation and Bulk Modulus Determination,” Journal of the American Ceramic Society, vol. 97, no. 3, pp. 892–898, 2014, doi: https://doi.org/10.1111/jace.12700. |
dc.relation.references | Y. Xie, M. Bu, and G. Lu, “Insights into CaCl2-NaCl-KCl molten salt: A machine learning approach to unraveling structure and properties,” J Energy Storage, vol. 102, p. 114156, 2024, doi: https://doi.org/10.1016/j.est.2024.114156. |
dc.relation.references | M. Singh, P. C. Kapur, and Pradip, “Preparation of alinite based cement from incinerator ash,” Waste Management, vol. 28, no. 8, pp. 1310–1316, 2008, doi: 10.1016/j.wasman.2007.08.025. |
dc.relation.references | D. Środek et al., “Chlorellestadite, Ca5(SiO4)1.5(SO4)1.5Cl, a new ellestadite- group mineral from the Shadil-Khokh volcano, South Ossetia,” Mineral Petrol, vol. 112, no. 5, pp. 743–752, 2018, doi: 10.1007/s00710-018-0571-1. |
dc.relation.references | A. Ullrich, K. Garbev, U. Schweike, M. Köhler, B. Bergfeldt, and P. Stemmermann, “CaCl2 as a Mineralizing Agent in Low-Temperature Recycling of Autoclaved Aerated Concrete: Cl-Immobilization by Formation of Chlorellestadite,” Minerals, vol. 12, no. 9, 2022, doi: 10.3390/min12091142. |
dc.relation.references | M. Simoni, T. Hanein, T. Y. Duvallet, R. B. Jewell, J. L. Provis, and H. Kinoshita, “Producing cement clinker assemblages in the system: CaO-SiO2-Al2O3-SO3-CaCl2-MgO,” Cem Concr Res, vol. 144, Jun. 2021, doi: 10.1016/j.cemconres.2021.106418. |
dc.relation.references | K. Kolovos, S. Barafaka, G. Kakali, and S. Tsivilis, “CuO and ZnO addition in the cement raw mix: Effect on clinkering process and cement hydration and properties,” Ceramics Silikaty, vol. 49, pp. 205–212, Mar. 2005. |
dc.relation.references | M. Boháč et al., “The role of Li2O, MgO and CuO on SO3 activated clinkers,” Cem Concr Res, vol. 152, Feb. 2022, doi: 10.1016/j.cemconres.2021.106672. |
dc.relation.references | T. Staněk, M. Dzurov, I. Khongová, and M. Boháč, “The incorporation of Cu into the clinker phases,” J Microsc, vol. 286, no. 2, pp. 108–113, 2022, doi: https://doi.org/10.1111/jmi.13075. |
dc.relation.references | X. Ma, H. Chen, and P. Wang, “Effect of TiO2 on the Formation of Clinker with High C3S,” Journal of Wuhan University of Technology-Mater Sci Ed, vol. 24, pp. 830–833, Oct. 2009, doi: 10.1007/s11595-009-5830-x. |
dc.relation.references | X. Liu, B. Li, T. Qi, X. Liu, and Y. Li, “Effect of TiO 2 on mineral formation and properties of alite-sulphoaluminate cement,” Materials Research Innovations - MATER RES INNOV, vol. 13, pp. 92–97, Jun. 2009, doi: 10.1179/143307509X435178. |
dc.relation.references | J. H. Potgieter, K. A. Horne, S. S. Potgieter, and W. Wirth, “An evaluation of the incorporation of a titanium dioxide producer’s waste material in Portland cement clinker,” Mater Lett, vol. 57, no. 1, pp. 157–163, 2002, doi: https://doi.org/10.1016/S0167-577X(02)00723-1. |
dc.relation.references | D. Bordoloi, A. C. H. Baruah, P. Barkakati, and P. C. H. Borthakur, “Influence of ZnO on Clinkerization and Properties of VSK Cement 11Communicated by A.J. Majundar.,” Cem Concr Res, vol. 28, no. 3, pp. 329–333, 1998, doi: https://doi.org/10.1016/S0008-8846(97)00266-4. |
dc.relation.references | H. Bolio-Arceo and F. P. Glasser, “Zinc oxide in cement clinkering : Part 1. Systems CaO-ZnO-Al2O3 and CaO-ZnO-Fe2O3,” Advances in Cement Research, vol. 10, pp. 25–32, 1998, [Online]. Available: https://api.semanticscholar.org/CorpusID:135778423 |
dc.relation.references | A. Berrio, C. Rodriguez, and J. I. Tobón, “Effect of Al2O3/SiO2 ratio on ye’elimite production on CSA cement,” Constr Build Mater, vol. 168, pp. 512–521, Apr. 2018, doi: 10.1016/j.conbuildmat.2018.02.153. |
dc.relation.references | F. V Lampe, W. Hilmer, and K. H. Jost, “SYr,WHESIS, STRUCTURE AND THERMAL DECOMPOS!TIO~[ OF ALINiTE,” 1986. |
dc.relation.references | M. El Hazzat, A. Sifou, S. Arsalane, and A. El Hamidi, “Novel approach to thermal degradation kinetics of gypsum: application of peak deconvolution and Model-Free isoconversional method,” J Therm Anal Calorim, vol. 140, no. 2, pp. 657–671, 2020, doi: 10.1007/s10973-019-08885-3. |
dc.relation.references | M. Broström, S. Enestam, R. Backman, and K. Mäkelä, “Condensation in the KCl–NaCl system,” Fuel Processing Technology, vol. 105, pp. 142–148, Jan. 2011, doi: 10.1016/j.fuproc.2011.08.006. |
dc.relation.references | A. Berrio, J. I. Tobón, and A. G. De la Torre, “Kinetic model for ye’elimite polymorphs formation during clinkering production of CSA cement,” Constr Build Mater, vol. 321, Feb. 2022, doi: 10.1016/j.conbuildmat.2022.126336. |
dc.relation.references | J. Zhao, J. Huang, C. Yu, C. Cui, and J. Chang, “Phosphorus Substitution Preference in Ye’elimite: Experiments and Density Functional Theory Simulations,” Materials (Basel), vol. 14, Oct. 2021, doi: 10.3390/ma14195874. |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.lemb | Transformación de residuos |
dc.subject.lemb | Residuos sólidos |
dc.subject.lemb | Disposición de residuos |
dc.subject.lemb | Residuos de la combustión |
dc.subject.lemb | Cemento - Producción |
dc.subject.lemb | Materiales de construcción - Aprovechamiento de residuos |
dc.subject.proposal | Cenizas de Incineración de RSU |
dc.subject.proposal | Economía Circular |
dc.subject.proposal | Cementos CSA |
dc.subject.proposal | Clinkerización |
dc.subject.proposal | Municipal Solid Waste Incineration Fly Ash |
dc.subject.proposal | Circular Economy |
dc.subject.proposal | CSA Cements |
dc.subject.proposal | Clinkering |
dc.title.translated | Influence of chlorides and trace metals in MSWI FA on the development of cementitious phases during CSA clinkering |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Administradores |
dcterms.audience.professionaldevelopment | Estudiantes |
dcterms.audience.professionaldevelopment | Investigadores |
dcterms.audience.professionaldevelopment | Maestros |
dcterms.audience.professionaldevelopment | Proveedores de ayuda financiera para estudiantes |
dc.description.curriculararea | Materiales Y Nanotecnología.Sede Medellín |
dc.contributor.orcid | Bedoya Henao, Carlos Andrés [0009-0006-8219-6714] |
dc.contributor.researchgate | https://www.researchgate.net/profile/Carlos-Bedoya-Henao?ev=hdr_xprf |
dc.contributor.googlescholar | https://scholar.google.com/citations?user=7TeSjZgAAAAJ&hl=es |