dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.contributor.advisor | Moreno Hurtado, Flavio Humberto |
dc.contributor.advisor | Quinto Mosquera, Harley |
dc.contributor.author | Torres Torres, Jhon Jerley |
dc.date.accessioned | 2025-04-22T15:03:02Z |
dc.date.available | 2025-04-22T15:03:02Z |
dc.date.issued | 2025 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88039 |
dc.description | Ilustraciones, gráficos, mapas |
dc.description.abstract | Open-pit gold and platinum mining is one of the main economic activities in the tropical region of the planet. However, it destroys the ecosystem, including the soil, which has negative consequences on vegetation growth and recovery; therefore, it is expected that soil fertilization will have significant effects on tree growth. To evaluate these effects in post-gold-mining forests of the Biogeographic Chocó, we conducted a soil fertilization experiment with five treatments: nitrogen (N, 125 kg N ha⁻¹ year⁻¹), phosphorus (P, 50 kg P ha⁻¹ year⁻¹), potassium (K, 50 kg K ha⁻¹ year⁻¹), a combined NPK treatment, and a control group. Generalized Linear Models (GLM) were used to evaluate the treatment effects on the relative growth rate (RGR) of trees in two size categories (small trees, 5 cm < DBH < 10 cm, and large trees, DBH > 10 cm) and in three dominant species of the ecosystem. N increased RGR in small trees throughout the ecosystem and in the species Cosmibuena grandiflora and Cespedesia spathulata. In contrast, the P and K treatments did not affect RGR in small or large trees. The results suggest that small trees of Cosmibuena grandiflora and Cespedesia spathulata, growing in post-mining forest of the Chocó have greater capacity to respond to nutrient alterations. (Tomado de la fuente) |
dc.description.abstract | La minería de oro y platino realizada a cielo abierto es una de las principales actividades económicas en la región tropical del planeta. Sin embargo, destruye el ecosistema, incluyendo el suelo, lo que tiene consecuencias negativas sobre el crecimiento y recuperación de la vegetación; por lo tanto, se espera que la fertilización del suelo tenga efectos significativos sobre el crecimiento de los árboles. Para evaluar estos efectos en bosques post-minería del Chocó Biogeográfico, realizamos un experimento de adición de fertilizante al suelo con cinco tratamientos: N (125 kg N ha-1 año-1), P (50 kg P ha-1 año-1), K (50 kg K ha-1 año-1), NPK y control. Se utilizaron modelos lineales generalizados (GLM) para evaluar los efectos de los tratamientos sobre la tasa de crecimiento relativo (RGR) de los árboles en dos categorías de tamaño (árboles pequeños, 5 cm < DAP < 10 cm, y árboles grandes, DAP > 10 cm) y en tres especies dominantes del ecosistema. El N aumentó la RGR en los árboles pequeños de todo el ecosistema y en las especies Cosmibuena grandiflora y Cespedesia spathulata. Por el contrario, los tratamientos con P y K no afectaron a la RGR en árboles pequeños o grandes. Los resultados sugieren que los árboles pequeños de Cosmibuena grandiflora y Cespedesia spathulata, que crecen en un bosque post-minería del Chocó tienen mayor capacidad de respuesta a las alteraciones nutricionales. |
dc.format.extent | 61 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | eng |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.subject.ddc | 570 - Biología::577 - Ecología |
dc.subject.ddc | 580 - Plantas |
dc.subject.ddc | 570 - Biología::572 - Bioquímica |
dc.title | Tree growth response to nutrient addition in post-mining forests of gold and platinum depends on size and species identity |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Medellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental |
dc.coverage.region | Chocó, Colombia |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magister en Bosques y Conservación Ambiental |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ciencias Agrarias |
dc.publisher.place | Medellín, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín |
dc.relation.indexed | LaReferencia |
dc.relation.references | Alvarez-Clare, S., Mack, M.C., Brooks, M., 2013. A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology 94(7),1540-1551. https://doi.org/10.1890/12-2128.1 |
dc.relation.references | Ayala, J.H., Mosquera, J., Murillo, W.I., 2008. Evaluación de la adaptabilidad de la acacia (Acacia mangium Wild), y bija (Bixa orellana) en áreas degradadas por la actividad minera aluvial en el Chocó biogeográfico, Condoto, Chocó, Colombia. Bioetnia 5, 115-123. |
dc.relation.references | Balzergue, C., Puech-Pagès, V., Bécard, G., Rochange, S.F., 2011. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signaling events. J. Exp. Bot., 62, 1049-1060. https://doi.org/10.1093/jxb/erq335 |
dc.relation.references | Binkley, D., 1995. The influence of tree species on forest soils-processes and patterns. In: Mead, D.J., Cornforth, I.S. (Eds.), Proceedings of the Trees and Soil Workshop. Agronomy Society of New Zealand Special Publication No. 10. Lincoln University Press, Canterbury. |
dc.relation.references | Binkley, D., Stape, J.L., Bauerle, W.L., Ryan, M.G., 2010. Explaining growth of individual trees: light interception and efficiency of light use by Eucalyptus at four sites in Brazil. For. Ecol. Manage. 259, 1704–1713. https://doi.org/10.1016/j.foreco.2009.05.037 |
dc.relation.references | Bloom, A.J., Chapin, III F.S., Mooney, H.A., 1985. Resource Limitation in Plants-An Economic Analogy. Ann. Rev. of Ecol. and System. 16(16), 363-392. https://doi.org/10.1146/annurev.es.16.110185.002051 |
dc.relation.references | Bradshaw, AD, Chadwick MJ, 1980. The Restoration of Land. Blackwell Scientific Publications, Oxford. |
dc.relation.references | Campo, J., Vázquez-Yanes, C., 2004. Effects of nutrient limitation on aboveground carbon dynamics during tropical dry forest regeneration in Yucatán, Mexico. Ecosystems 7, 311-319. https://doi.org/10.1007/s10021-003-0249-2 |
dc.relation.references | Cárate-Tandalla, D., Camenzind, T., Leuschner, C., Homeier, J., 2018. Contrasting Species Responses to Continued Nitrogenand Phosphorus Addition in Tropical Montane Forest TreeSeedlings. Biotropica 50, 234–45. https://doi.org/10.1111/btp.12518 |
dc.relation.references | Ceccon, L., 2013. Restauración en bosques tropicales: Fundamentos ecológicos, prácticos y sociales. Universidad Autónoma de México. México DF, México. |
dc.relation.references | Chandra, J., Keshavkant, S., 2021. Mechanisms underlying the phytotoxicity and genotoxicity of aluminum and their alleviation strategies: A review. Chemosphere 278, 130384. https://doi.org/10.1016/j.chemosphere.2021.130384 |
dc.relation.references | Chou, C.B., Hedin, L.O., Pacala, S.W., 2018. Functional Groups, Species and Light Interact with Nutrient Limitation during Tropical Rainforest Sapling Bottleneck. Jour. Of Ecol. 106, 157–67. https://doi.org/10.1111/1365-2745.12823 |
dc.relation.references | Cornwell, W.K., Cornelissen, J., Amatangelo, K., Dorrepaal, E., Eviner, V., et al., 2010. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071. https://doi.org/10.1111/j.1461-0248.2008.01219.x |
dc.relation.references | Curtis, J.T., McIntosh, R.P., 1951. An Upland forest continuum in the prairie-Forest border region of Wisconsin. Ecology 32(3), 476-496. https://doi.org/10.2307/1931725 |
dc.relation.references | Cusack, D.F., Karpman, J., Ashdown, D., Cao, Q., Ciochina, M. Halterman, S., et al., 2016. Global change effects on humid tropical forests: Evidencefor biogeochemical and biodiversity shiftsat an ecosystem scale. Rev. Geophys. 54, 523–610. https://doi.org/10.1002/2015RG000510 |
dc.relation.references | Damián, X., Fornoni, J., Domínguez, C.A., Boege, K., 2018. Ontogenetic changes in the phenotypic integration and modularity of leaf functional traits. Funct. Ecol. 32, 234–246. https://doi.org/10.1111/1365-2435.12971 |
dc.relation.references | Davidson, E.A., de Carvalho, C.J.R., Vieira, I.C.G., Figueiredo, R.D., Moutinho, P., Ishida, F.Y., dos Santos, M.T.P., Guerrero, J.B., Kalif, K., Sabá, R.T., 2004. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol. Apps. 14(SP4), 150-163. https://doi.org/10.1890/01-6006 |
dc.relation.references | Detto, M., Wright, S.J., Calderón, O., Muller-Landau, H.C., 2018. Resource Acquisition and Reproductive Strategies of Tropical Forest in Response to the El Niño-Southern Oscillation. Nat Commun. 9, 1–8. https://doi.org/10.1038/s41467-018-03306-9 |
dc.relation.references | Garate-Quispe, J., Canahuire-Robles, R., Alarcón-Aguirre, G., Dueñas-Linares, H., Roman-Dañobeytia, F., 2024. Changes in floristic and vegetation structure in a chronosequence of abandoned gold-mining lands in a tropical Amazon forest. Heliyon 10(9), e29908. https://doi.org/10.1016/j.heliyon.2024.e29908 |
dc.relation.references | Gardi, C., Angelini, M., Barceló, S., Comerma, J., Cruz, C., Encina, A., Jones, A., Krasilnikov, P., Mendonça, M.L., Montanarella, L., Muñiz, O., Schad, P., Vara, M.I., Vargas R., (eds). 2014. Atlas de suelos de América Latina y el Caribe, Comisión Europea – Oficina de Publicaciones de la Unión Europea, L-2995 Luxembourg, 176 pp. |
dc.relation.references | Gobran, G.R., Clegg, S., Courchesne, F., 1998. Rhizospheric processes influencing the biogeochemistry of forest ecosystems. Biogeochemistry 42, 107–120. https://doi.org/10.1023/A:1005967203053 |
dc.relation.references | Hoshmand, A.R., 1998. Statistical Methods for Environmental & Agricultural Sciences. San José, CRC Press LLC, Ed. |
dc.relation.references | Jiang, L., Tian, D., Ma, S., Zhou, X., Xu, L., Zhu, J., et al., 2018. The response of tree growth to nitrogen and phosphorus additions in a tropical montane rainforest. Sci. Total Environ. 618, 1064–1070. https://doi.org/10.1016/j.scitotenv.2017.09.099 |
dc.relation.references | Jo, I., Fei, S., Oswalt, C.M, Domke, G.M., Phillips, R.P., 2019. Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. Ecology Sci Adv. 5(4), eaav6358. https://doi.org/10.1126/sciadv.aav6358 |
dc.relation.references | Johnson, N.C., Graham, J.H., Smith, F.A., 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol., 135, 575-586. https://doi.org/10.1046/j.1469-8137.1997.00729.x |
dc.relation.references | Kalamandeen, M., Gloor, E., Johnson, I., Agard, S., Katow, M., Vanbrooke, A., Ashley, D., Batterman, SA, et al., 2020. Limited biomass recovery from gold mining in Amazonian forests. Jour. of App. Ecol. 57(9), 1730-1740. https://doi.org/10.1111/1365-2664.13669 |
dc.relation.references | Lambers, H., Chapin, III. F.S., Pons, T. L., 1998. Plant physiological ecology. Springer-Verlag, New York, New York, USA. https://doi.org/10.1007/978-3-030-29639-1 |
dc.relation.references | Lambers, H., Raven, J., Shaver, G., Smith, S. 2008. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 23, 95–103. https://doi.org/10.1016/j.tree.2007.10.008 |
dc.relation.references | Li, C., Zheng, Z., Peng, Y., Nie, X., Yang, L., Xiao, Y., et al., 2019. Precipitation and nitrogen addition enhance biomass allocation to aboveground in an alpine steppe. Ecol. Evol. 9, 12193–12201. https://doi.org/10.1002/ece3.5706 |
dc.relation.references | Lieberman, M., Lieberman, D. 1994. Patterns of density and dispersion of forest trees. Pages 106–119 in L. A. McDade, K. S. Bawa, H. A. Hespenheide, and G. S. Hartshorn, editors. La Selva: ecology and natural history of a neotropical rain forest. University of Chicago Press, Chicago, Illinois, USA. |
dc.relation.references | Liebig, J. 1842. Animal chemistry, or organic chemistry in its application to physiology and pathology. Johnson Reprint Corporation, New York, New York, USA. |
dc.relation.references | Liu, B., Zhang, C., Deng, J., Zhang, B., Chen, F., Chen, W., Fang, X., Li, J., Zu, K., Bu, W., 2024. Response of tree growth to nutrient addition is size dependent in a subtropical forest. Sci. Total Env. 923, 171501. https://doi.org/10.1016/j.scitotenv.2024.171501 |
dc.relation.references | Liu, J., Peng, B., Xia, Z., Sun, J., Gao, D., Dai, W., et al., 2017. Different fates of deposited and in a temperate forest in Northeast China: a 15N tracer study. Glob. Chang. Biol. 23, 2441–2449. https://doi.org/10.1111/gcb.13533 |
dc.relation.references | Liu, J., Zhou, M., Li, X., Li, T., Jiang, H., Zhao, L., Chen, S., Tian, J., Han, W., 2023. Phosphorus Addition Reduces Seedling Growth and Survival for the Arbuscular Mycorrhizal Tree Cinnamomum camphora (Lauraceae) and Ectomycorrhizal Tree Castanopsis sclerophylla (Fagaceae) in Fragmented Forests in Eastern China. Plants 12, 2946. https://doi.org/10.3390/plants12162946 |
dc.relation.references | Malagon, D., Pulido, C., Llinas, R.D., Chamorro, C., Fernández, J., 1995. Suelos de Colombia. Origen, Evolución, Clasificación, Distribución y uso. Instituto Geográfico Agustín Codazzi. Subdirección de Agrología, Santa fe de Bogotá, Colombia. 632 p. |
dc.relation.references | Manu, R., Corre, M.D., Aleeje, A., Mwanjalolo, M.J.G., Babweteera, F., Veldkamp, E., van Straaten, O., 2022. Responses of tree growth and biomass production to nutrient addition in a semi-deciduous tropical forest in Africa. Ecology 103(6), e3659. https://doi.org/10.1002/ecy.3659 |
dc.relation.references | Marro, N., Grilli, G., Soteras, F., Caccia, M., Longo, S., Cofré, N., Borda, V., Burni, M., Janoušková, M., Urcelay, C., 2022. The effects of arbuscular mycorrhizal fungal species and taxonomic groups on stressed and unstressed plants: a global meta-analysis. New Phytol. 235(1), 320-332. https://doi.org/10.1111/nph.18102 |
dc.relation.references | Marrs, R.H., Roberts, R.D., Skeffington, R.A., Bradshaw, A.D., 1983. Nitrogen and the development of ecosystems. In: Lee, JA, McNeil1, S., Rorison, IH, (Eds.), Nitrogen as an Ecological Factor. Blackwell Scientific Publications, Oxford, pags. 113-136. |
dc.relation.references | Martins, W. B. R., Rodrigues, J. L. M., de Oliveira, V. P., Ribeiro, S. S., Barros, W. S., Schwartz, G., 2022. Mining in the Amazon: importance, impacts, and challenges to restore degraded ecosystems. Are we on the right way? Ecological Engineering 174, 106468. https://doi.org/10.1016/j.ecoleng.2021.106468 |
dc.relation.references | Milford, G.F.J., Johnston, A.E., 2007. Potassium and Nitrogen Interactions in Crop Production. Proceedings 615 International Fertilizers Society, York, UK. |
dc.relation.references | Mirmanto, E., Proctor, J., Green, J., Nagy, L., Suriantata, 1999. Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest. Phil. Trans. of the Roy. Soc. B. 354, 1825-1829. https://doi.org/10.1098/rstb.1999.0524 |
dc.relation.references | Mosquera-Mosquera, R.S., Valois-Cuesta, H., Vasco-Palacios, AM, 2023. Rol de los hongos micorrízicos arbusculares durante la sucesión natural de áreas impactadas por minería en un bosque pluvial tropical del Chocó, Colombia. Bosque 44(3), 617-627. https://doi.org/10.4067/S0717-92002023000300617 |
dc.relation.references | Osorio, N.W., 2018. Manejo de nutrientes en suelos del trópico. Tercera ed. LEO digital Ediciones & Publicaciones. Medellín. |
dc.relation.references | Peña-Venegas, C.P., (ed.), 2021. Biología de los suelos amazónicos: vida que sostiene el bosque. Instituto Amazónico de Investigaciones Científicas SINCHI, Bogotá. |
dc.relation.references | Pérez-Abadía, D. F., Quinto-Mosquera, H., Arco, J. M. D., 2025. Influence of Environmental Factors on the Aboveground Biomass of Mature and Postmining Forests in Chocó. Life, 15, 98. https://doi.org/10.3390/life15010098 |
dc.relation.references | Poveda, I.C., Rojas, C., Rudas, A., Rangel, O., 2004. El Chocó biogeográfico: Ambiente Físico. En: Rangel O, (eds.), Colombia Diversidad Biótica IV. El Chocó biogeográfico/ Costa Pacífica. Universidad Nacional de Colombia, Bogotá, págs. 1-21. |
dc.relation.references | Prach, K., Walker, L.R., 2019. Differences between primary and secondary plant succession among biomes of the world. Jour. of Ecol. 107(2), 510–516. https://doi.org/10.1111/1365-2745.13078 |
dc.relation.references | Quinto-Mosquera, H., Ayala-Vivas, G., Gutiérrez, H., 2022. Contenido de nutrientes, acidez y textura del suelo en áreas degradadas por la minería en el Chocó Biogeográfico Rev. Acad. Col. Cien. Exact., Fís. y Nat. 46, 514-528. https://doi.org/10.18257/raccefyn.1615 |
dc.relation.references | Quinto-Mosquera, H., Ibargüen-Mosquera, S., Cárdenas-Victoria, M.F., 2024. Efectos de la fertilización sobre la producción de hojarasca de bosques post-minería del Chocó Biogeográfico. Col. For. 27, e20809. https://doi.org/10.14483/2256201X.20809 |
dc.relation.references | Quinto-Mosquera, H., Moreno, F.H., 2016. Precipitation effects on soil characteristics in tropical rain forests of the Chocó biogeographical region. Rev. Fac. Nal. Agr. 69, 7813-7823. http://dx.doi.org/10.15446/rfna.v69n1.54749 |
dc.relation.references | Quinto-Mosquera, H., Rivas-Urrutia, Y., Moreno, F., 2017. Efectos de la fertilización del suelo sobre el crecimiento arbóreo en bosques pluviales tropicales del Chocó, Colombia. In Rev. Biol. Trop. 65(3), 1161-1173. https://doi.org/https://doi.org/10.15517/rbt.v65i3.29442 |
dc.relation.references | Quinto-Mosquera, H., Torres-Torres, J.J., Pérez-Abadía, D. F., 2024. Influence of Mining on Nutrient Cycling in the Tropical Rain Forests of the Colombian Pacific. Forests, 15, 1222. https://doi.org/10.3390/f15071222 |
dc.relation.references | Quinto-Mosquera, H., Valois-Cuesta, H., Pérez, D.F., 2024. Influence of soil nutrients on net primary productivity in post-mining forests in the Colombian Pacific. Rev. Bras. Cienc. Solo. 48, e0230053. https://doi.org/10.36783/18069657rbcs20230053 |
dc.relation.references | R Development Core Team, 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.r-project.org |
dc.relation.references | Ramírez-Moreno, G., Ledezma-Rentería, E., 2007. Efecto de las actividades socioeconómicas (minería y explotación maderera) sobre los bosques del departamento del Chocó. Rev. Inv. Biod. y Des. 26, 58-65. |
dc.relation.references | Ramírez-Moreno, G., Quinto-Mosquera, H., Vargas, L., Rangel, OJ, 2019. Temporary effect of mining on breathing and on the physicochemical conditions of soil. Mod. Env. Sci, and Eng. 5(9), 837–848. https://doi.org/10.15341/mese(2333-2581)/09.05.2019/007 |
dc.relation.references | Ramírez-Moreno, G., Rangel, J.O., 2019. Sucesión vegetal en áreas de minería a cielo abierto en el bosque pluvial tropical del departamento del Chocó, Colombia. Rev. Acad. Col. Cien. Exact., Fís. y Nat. 43(169), 673-688. https://doi.org/10.18257/raccefyn.896 |
dc.relation.references | Román-Dañobeytia, F., Cabanillas, F., Lefebvre, D., Farfan, J., Alferez, J., Polo-Villanueva F., et al., 2021. Survival and early growth of 51 tropical tree species in areas degraded by artisanal gold mining in the Peruvian Amazon. Ecological Engineering, 159,106097. https://doi.org/10.1016/j.ecoleng.2020.106097 |
dc.relation.references | Román-Dañobeytia, F., Huayllani, M., Michi, A., Ibarra, F., Loayza-Muro, R., Vázquez, T., Rodríguez, L., García, M., 2015. Reforestation with four native tree species after abandoned gold mining in the Peruvian Amazon. Ecol. Eng. 85, 39–46. https://doi.org/10.1016/j.ecoleng.2015.09.075 |
dc.relation.references | Sanchez, P., Logan, T., 1992. Myths and Science about the chemistry and fertility of soils in the tropics, in: Lal, R., Sanchez P., (Eds) Myths and Science of soils of the tropics. Soil Science Society of America, Madison, WI, pp. 35-42. https://doi.org/10.2136/sssaspecpub29.c3 |
dc.relation.references | Sansupa, C., Purahong, W., Wubet, T., Tiansawat, P., Pathom-Aree, W., Teaumroong, N., 2021. Soil bacterial communities and their associated functions for forest restoration on a limestone mine in northern Thailand. PLoS ONE 16(4), e0248806. https://doi.org/10.1371/journal.pone.0248806 |
dc.relation.references | Shetty, R., Vidya, CSN, Prakash, NB, Lux, A, Vaculik, M., 2021. Aluminum toxicity in plants and its possible mitigation in acid soils by biochar: A review. Sci. Tot. Env., 765(15), 14274. https://doi.org/10.1016/j.scitotenv.2020.142744 |
dc.relation.references | Stehouwer, R.C., Johnson, J.W., 1991. Soil Adsorption Interactions of Band-Injected Anhydrous Ammonia and Potassium Chloride Fertilizers. Soil Sci. Soc. Ame. Jour. 55, 1374-1381. https://doi.org/10.2136/sssaj1991.03615995005500050029x |
dc.relation.references | Torres-Torres, JJ., Quinto-Mosquera, H., Guerrero, M. 2024. Aboveground biomass in a post-mining forest succession in the Colombian Pacific. Revista de Biología Tropical, 72(1), e55276. https://doi.org/10.15517/rev.biol.trop.v72i1.55276 |
dc.relation.references | Torres-Torres, JJ, Quinto-Mosquera, H., Medina-Arroyo, HH., 2023. Diversidad de especies leñosas y su relación con variables ambientales en bosques post-minería del Chocó Biogeográfico. Bol. Cient. Mus. Hist. Nat. Univ. Caldas, 27(2), 13-29. https://doi.org/10.17151/bccm.2023.27.2.1 |
dc.relation.references | Turner, BL, Brenes-Arguedas, T., Condit, R., 2018. Pervasive Phosphorus Limitation of Tree Species but Not Communitiesin Tropical Forests. Nature 555, 367–70. https://doi.org/10.1038/nature25789 |
dc.relation.references | Vadeboncoeur, M.A., 2010. Meta-analysis of fertilization experiments indicates multiple limiting nutrients in northeastern deciduous forests. Can. J. For. Res. 40, 1766–1780. https://doi.org/10.1139/X10-127 |
dc.relation.references | Valois-Cuesta, H., Jiménez-Ortega, AM, Ramírez-Moreno, G., Martínez-Ruiz, C., Cuesta-Borja, T., 2019. Vegetación pionera en suelos impactados por minería aurífera en el departamento del Chocó, Colombia. Editorial Universidad Tecnológica del Chocó, Quibdó. |
dc.relation.references | Valois-Cuesta, H., Martínez-Ruiz, C., 2016. Vulnerabilidad de los bosques naturales en el Chocó biogeográfico colombiano: actividad minera y conservación de la biodiversidad. Bosque, 37(2), 295–305. http://dx.doi.org/10.4067/S0717-92002016000200008 |
dc.relation.references | Valois-Cuesta, H., Martínez-Ruiz, C., Quinto-Mosquera, H., 2022. Revegetación natural de áreas afectadas por minería de oro en la selva pluvial tropical del Chocó, Colombia. Rev. Biol. Trop. 70(1). https://doi.org/10.15517/rev.biol.trop..v70i1.50653 |
dc.relation.references | Valois-Cuesta, H.; Martínez-Ruiz, C., Valoyes, Z.Q., 2024. Linking topography, soil variability, and early successional vegetation in abandoned gold mines in the tropical rainforest of Colombia’s Choc o Biogeographic region. Restoration Ecology. https://doi.org/10.1111/rec.14202 |
dc.relation.references | Vitousek, P.M., Walker, L.R., Whiteaker, L.D., Matson, P.A., 1993. Nutrient limitations to plant growth during primary succession in Hawaii Volcanoes National Park. Biogeo. 23, 197-215. https://doi.org/10.1007/BF00023752 |
dc.relation.references | Walker, L.R., 1993. Nitrogen fixers and species replacements in primary succession. En J. Miles & D. W. H. Walton (Eds.), Primary Succession on Land (pp. 249-272). Blackwell. |
dc.relation.references | Walker, T.W., Syers, J.K., 1976. The fate of phosphorus during pedogenesis. Geoderma 15, l-19. https://doi.org/10.1016/0016-7061(76)90066-5 |
dc.relation.references | Waring, B.G., Pérez-Aviles, D., Murray, J.G., Powers, J.S., 2019. Plant Community Responses to Stand-Level Nutrient Fertilization in a Secondary Tropical Dry Forest. Ecology 100: 1–12. https://doi.org/10.1002/ecy.2691 |
dc.relation.references | Weand, M.P., Arthur, M.A., Lovett, G.M., McCulley, R.L., Weathers, K.C., 2010. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities. Soil Biol. Biochem. 42, 2161–2173. https://doi.org/10.1016/j.soilbio.2010.08.012 |
dc.relation.references | Wright, S.J., 2019. Plant Responses to Nutrient Addition Experiments Conducted in Tropical Forests. Ecol. Monogr. 89(4), e01382. https://doi.org/10.1002/ecm.1382 |
dc.relation.references | Wright, S.J., Turner, B.L., Yavitt, J.B., Harms, K.E., Kaspari, M., Tanner, E.V.J., et al., 2018. Plant responses to fertilization experiments in lowland, species-rich, tropical forests. Ecology 99(5), 1129-1138. https://doi.org/10.1002/ecy.2193 |
dc.relation.references | Wright, S.J., Yavitt, J.B., Wurzburger, N., Turner, B.L., Tanner, E.V.J., Sayer, E.J., Santiago, L.S., Kaspari, M., Hedin, L.O., et al., 2011. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92(8), 1616-1625. https://doi.org/10.1890/10-1558.1 |
dc.relation.references | Yan, Z., Eziz, A., Tian, D., Li, X., Hou, X., Peng, H., et al., 2019. Biomass allocation in response to nitrogen and phosphorus availability: insight from experimental manipulations of Arabidopsis thaliana. Front. Plant Sci. 10, 598. https://doi.org/10.3389/fpls.2019.00598 |
dc.relation.references | Ye, X., Bu, W., Huc, X., Wang, F., Sun, R., He, P., Liang, X., Chen, F., 2023. Are small trees more responsive to nutrient addition than large trees in an evergreen broadleaved forest? For. Ecol. Manage. 543, 121129. https://doi.org/10.1016/j.foreco.2023.121129 |
dc.relation.references | Zhang, F., Niu, J., Zhang, W., Chen, X., Li, C., Yuan, L., Xie. J., 2010. Potassium Nutrition of Crops under Varied Regimes of Nitrogen Supply. Plant and Soil. 335, 21-34. https://doi.org/10.1007/s11104-010-0323-4 |
dc.relation.references | Zhao, Q., Zeng, D., 2019. Nitrogen addition effects on tree growth and soil properties mediated by soil phosphorus availability and tree species identity. For. Ecol. Manage. 449, 117478. https://doi.org/10.1016/j.foreco.2019.117478 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.lemb | Ecosistemas - Chocó, Colombia |
dc.subject.lemb | Minas de oro - Aspectos ambientales - Chocó, Colombia |
dc.subject.lemb | Descontaminación de suelos - Chocó, Colombia |
dc.subject.lemb | Conservación de bosques - Chocó, Colombia |
dc.subject.lemb | Crecimiento (Plantas) - Chocó, Colombia |
dc.subject.lemb | Regeneración (Botánica) - Chocó, Colombia |
dc.subject.proposal | Biogeographic Chocó |
dc.subject.proposal | Gold mining |
dc.subject.proposal | Nitrogen limitation |
dc.subject.proposal | Plant recovery |
dc.subject.proposal | Relative Growth Rate |
dc.subject.proposal | Tree sizes |
dc.subject.proposal | Chocó Biogeográfico |
dc.subject.proposal | Minería de oro |
dc.subject.proposal | Limitación de nitrógeno |
dc.subject.proposal | Recuperación de plantas |
dc.subject.proposal | Tasa de crecimiento relativo |
dc.subject.proposal | Tamaños de árboles |
dc.title.translated | La respuesta del crecimiento arbóreo a la adición de nutrientes en bosques post-minería de oro y platino depende del tamaño y de la identidad de las especies |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Estudiantes |
dcterms.audience.professionaldevelopment | Investigadores |
dcterms.audience.professionaldevelopment | Maestros |
dcterms.audience.professionaldevelopment | Responsables políticos |
dc.description.curriculararea | Bosques Y Conservación Ambiental.Sede Medellín |
dc.contributor.orcid | Torres Torres, Jhon Jerley [0000-0002-0503-837X] |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000011957 |
dc.contributor.scopus | 57203835350 |
dc.contributor.researchgate | https://www.researchgate.net/profile/Jhon-Torres-Torres |
dc.contributor.googlescholar | https://scholar.google.com.co/citations?user=NU1aWaoAAAAJ&hl=es |