Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorMoreno Hurtado, Flavio Humberto
dc.contributor.advisorQuinto Mosquera, Harley
dc.contributor.authorTorres Torres, Jhon Jerley
dc.date.accessioned2025-04-22T15:03:02Z
dc.date.available2025-04-22T15:03:02Z
dc.date.issued2025
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88039
dc.descriptionIlustraciones, gráficos, mapas
dc.description.abstractOpen-pit gold and platinum mining is one of the main economic activities in the tropical region of the planet. However, it destroys the ecosystem, including the soil, which has negative consequences on vegetation growth and recovery; therefore, it is expected that soil fertilization will have significant effects on tree growth. To evaluate these effects in post-gold-mining forests of the Biogeographic Chocó, we conducted a soil fertilization experiment with five treatments: nitrogen (N, 125 kg N ha⁻¹ year⁻¹), phosphorus (P, 50 kg P ha⁻¹ year⁻¹), potassium (K, 50 kg K ha⁻¹ year⁻¹), a combined NPK treatment, and a control group. Generalized Linear Models (GLM) were used to evaluate the treatment effects on the relative growth rate (RGR) of trees in two size categories (small trees, 5 cm < DBH < 10 cm, and large trees, DBH > 10 cm) and in three dominant species of the ecosystem. N increased RGR in small trees throughout the ecosystem and in the species Cosmibuena grandiflora and Cespedesia spathulata. In contrast, the P and K treatments did not affect RGR in small or large trees. The results suggest that small trees of Cosmibuena grandiflora and Cespedesia spathulata, growing in post-mining forest of the Chocó have greater capacity to respond to nutrient alterations. (Tomado de la fuente)
dc.description.abstractLa minería de oro y platino realizada a cielo abierto es una de las principales actividades económicas en la región tropical del planeta. Sin embargo, destruye el ecosistema, incluyendo el suelo, lo que tiene consecuencias negativas sobre el crecimiento y recuperación de la vegetación; por lo tanto, se espera que la fertilización del suelo tenga efectos significativos sobre el crecimiento de los árboles. Para evaluar estos efectos en bosques post-minería del Chocó Biogeográfico, realizamos un experimento de adición de fertilizante al suelo con cinco tratamientos: N (125 kg N ha-1 año-1), P (50 kg P ha-1 año-1), K (50 kg K ha-1 año-1), NPK y control. Se utilizaron modelos lineales generalizados (GLM) para evaluar los efectos de los tratamientos sobre la tasa de crecimiento relativo (RGR) de los árboles en dos categorías de tamaño (árboles pequeños, 5 cm < DAP < 10 cm, y árboles grandes, DAP > 10 cm) y en tres especies dominantes del ecosistema. El N aumentó la RGR en los árboles pequeños de todo el ecosistema y en las especies Cosmibuena grandiflora y Cespedesia spathulata. Por el contrario, los tratamientos con P y K no afectaron a la RGR en árboles pequeños o grandes. Los resultados sugieren que los árboles pequeños de Cosmibuena grandiflora y Cespedesia spathulata, que crecen en un bosque post-minería del Chocó tienen mayor capacidad de respuesta a las alteraciones nutricionales.
dc.format.extent61 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 - Biología::577 - Ecología
dc.subject.ddc580 - Plantas
dc.subject.ddc570 - Biología::572 - Bioquímica
dc.titleTree growth response to nutrient addition in post-mining forests of gold and platinum depends on size and species identity
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental
dc.coverage.regionChocó, Colombia
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Bosques y Conservación Ambiental
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesAlvarez-Clare, S., Mack, M.C., Brooks, M., 2013. A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology 94(7),1540-1551. https://doi.org/10.1890/12-2128.1
dc.relation.referencesAyala, J.H., Mosquera, J., Murillo, W.I., 2008. Evaluación de la adaptabilidad de la acacia (Acacia mangium Wild), y bija (Bixa orellana) en áreas degradadas por la actividad minera aluvial en el Chocó biogeográfico, Condoto, Chocó, Colombia. Bioetnia 5, 115-123.
dc.relation.referencesBalzergue, C., Puech-Pagès, V., Bécard, G., Rochange, S.F., 2011. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signaling events. J. Exp. Bot., 62, 1049-1060. https://doi.org/10.1093/jxb/erq335
dc.relation.referencesBinkley, D., 1995. The influence of tree species on forest soils-processes and patterns. In: Mead, D.J., Cornforth, I.S. (Eds.), Proceedings of the Trees and Soil Workshop. Agronomy Society of New Zealand Special Publication No. 10. Lincoln University Press, Canterbury.
dc.relation.referencesBinkley, D., Stape, J.L., Bauerle, W.L., Ryan, M.G., 2010. Explaining growth of individual trees: light interception and efficiency of light use by Eucalyptus at four sites in Brazil. For. Ecol. Manage. 259, 1704–1713. https://doi.org/10.1016/j.foreco.2009.05.037
dc.relation.referencesBloom, A.J., Chapin, III F.S., Mooney, H.A., 1985. Resource Limitation in Plants-An Economic Analogy. Ann. Rev. of Ecol. and System. 16(16), 363-392. https://doi.org/10.1146/annurev.es.16.110185.002051
dc.relation.referencesBradshaw, AD, Chadwick MJ, 1980. The Restoration of Land. Blackwell Scientific Publications, Oxford.
dc.relation.referencesCampo, J., Vázquez-Yanes, C., 2004. Effects of nutrient limitation on aboveground carbon dynamics during tropical dry forest regeneration in Yucatán, Mexico. Ecosystems 7, 311-319. https://doi.org/10.1007/s10021-003-0249-2
dc.relation.referencesCárate-Tandalla, D., Camenzind, T., Leuschner, C., Homeier, J., 2018. Contrasting Species Responses to Continued Nitrogenand Phosphorus Addition in Tropical Montane Forest TreeSeedlings. Biotropica 50, 234–45. https://doi.org/10.1111/btp.12518
dc.relation.referencesCeccon, L., 2013. Restauración en bosques tropicales: Fundamentos ecológicos, prácticos y sociales. Universidad Autónoma de México. México DF, México.
dc.relation.referencesChandra, J., Keshavkant, S., 2021. Mechanisms underlying the phytotoxicity and genotoxicity of aluminum and their alleviation strategies: A review. Chemosphere 278, 130384. https://doi.org/10.1016/j.chemosphere.2021.130384
dc.relation.referencesChou, C.B., Hedin, L.O., Pacala, S.W., 2018. Functional Groups, Species and Light Interact with Nutrient Limitation during Tropical Rainforest Sapling Bottleneck. Jour. Of Ecol. 106, 157–67. https://doi.org/10.1111/1365-2745.12823
dc.relation.referencesCornwell, W.K., Cornelissen, J., Amatangelo, K., Dorrepaal, E., Eviner, V., et al., 2010. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071. https://doi.org/10.1111/j.1461-0248.2008.01219.x
dc.relation.referencesCurtis, J.T., McIntosh, R.P., 1951. An Upland forest continuum in the prairie-Forest border region of Wisconsin. Ecology 32(3), 476-496. https://doi.org/10.2307/1931725
dc.relation.referencesCusack, D.F., Karpman, J., Ashdown, D., Cao, Q., Ciochina, M. Halterman, S., et al., 2016. Global change effects on humid tropical forests: Evidencefor biogeochemical and biodiversity shiftsat an ecosystem scale. Rev. Geophys. 54, 523–610. https://doi.org/10.1002/2015RG000510
dc.relation.referencesDamián, X., Fornoni, J., Domínguez, C.A., Boege, K., 2018. Ontogenetic changes in the phenotypic integration and modularity of leaf functional traits. Funct. Ecol. 32, 234–246. https://doi.org/10.1111/1365-2435.12971
dc.relation.referencesDavidson, E.A., de Carvalho, C.J.R., Vieira, I.C.G., Figueiredo, R.D., Moutinho, P., Ishida, F.Y., dos Santos, M.T.P., Guerrero, J.B., Kalif, K., Sabá, R.T., 2004. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol. Apps. 14(SP4), 150-163. https://doi.org/10.1890/01-6006
dc.relation.referencesDetto, M., Wright, S.J., Calderón, O., Muller-Landau, H.C., 2018. Resource Acquisition and Reproductive Strategies of Tropical Forest in Response to the El Niño-Southern Oscillation. Nat Commun. 9, 1–8. https://doi.org/10.1038/s41467-018-03306-9
dc.relation.referencesGarate-Quispe, J., Canahuire-Robles, R., Alarcón-Aguirre, G., Dueñas-Linares, H., Roman-Dañobeytia, F., 2024. Changes in floristic and vegetation structure in a chronosequence of abandoned gold-mining lands in a tropical Amazon forest. Heliyon 10(9), e29908. https://doi.org/10.1016/j.heliyon.2024.e29908
dc.relation.referencesGardi, C., Angelini, M., Barceló, S., Comerma, J., Cruz, C., Encina, A., Jones, A., Krasilnikov, P., Mendonça, M.L., Montanarella, L., Muñiz, O., Schad, P., Vara, M.I., Vargas R., (eds). 2014. Atlas de suelos de América Latina y el Caribe, Comisión Europea – Oficina de Publicaciones de la Unión Europea, L-2995 Luxembourg, 176 pp.
dc.relation.referencesGobran, G.R., Clegg, S., Courchesne, F., 1998. Rhizospheric processes influencing the biogeochemistry of forest ecosystems. Biogeochemistry 42, 107–120. https://doi.org/10.1023/A:1005967203053
dc.relation.referencesHoshmand, A.R., 1998. Statistical Methods for Environmental & Agricultural Sciences. San José, CRC Press LLC, Ed.
dc.relation.referencesJiang, L., Tian, D., Ma, S., Zhou, X., Xu, L., Zhu, J., et al., 2018. The response of tree growth to nitrogen and phosphorus additions in a tropical montane rainforest. Sci. Total Environ. 618, 1064–1070. https://doi.org/10.1016/j.scitotenv.2017.09.099
dc.relation.referencesJo, I., Fei, S., Oswalt, C.M, Domke, G.M., Phillips, R.P., 2019. Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. Ecology Sci Adv. 5(4), eaav6358. https://doi.org/10.1126/sciadv.aav6358
dc.relation.referencesJohnson, N.C., Graham, J.H., Smith, F.A., 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol., 135, 575-586. https://doi.org/10.1046/j.1469-8137.1997.00729.x
dc.relation.referencesKalamandeen, M., Gloor, E., Johnson, I., Agard, S., Katow, M., Vanbrooke, A., Ashley, D., Batterman, SA, et al., 2020. Limited biomass recovery from gold mining in Amazonian forests. Jour. of App. Ecol. 57(9), 1730-1740. https://doi.org/10.1111/1365-2664.13669
dc.relation.referencesLambers, H., Chapin, III. F.S., Pons, T. L., 1998. Plant physiological ecology. Springer-Verlag, New York, New York, USA. https://doi.org/10.1007/978-3-030-29639-1
dc.relation.referencesLambers, H., Raven, J., Shaver, G., Smith, S. 2008. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 23, 95–103. https://doi.org/10.1016/j.tree.2007.10.008
dc.relation.referencesLi, C., Zheng, Z., Peng, Y., Nie, X., Yang, L., Xiao, Y., et al., 2019. Precipitation and nitrogen addition enhance biomass allocation to aboveground in an alpine steppe. Ecol. Evol. 9, 12193–12201. https://doi.org/10.1002/ece3.5706
dc.relation.referencesLieberman, M., Lieberman, D. 1994. Patterns of density and dispersion of forest trees. Pages 106–119 in L. A. McDade, K. S. Bawa, H. A. Hespenheide, and G. S. Hartshorn, editors. La Selva: ecology and natural history of a neotropical rain forest. University of Chicago Press, Chicago, Illinois, USA.
dc.relation.referencesLiebig, J. 1842. Animal chemistry, or organic chemistry in its application to physiology and pathology. Johnson Reprint Corporation, New York, New York, USA.
dc.relation.referencesLiu, B., Zhang, C., Deng, J., Zhang, B., Chen, F., Chen, W., Fang, X., Li, J., Zu, K., Bu, W., 2024. Response of tree growth to nutrient addition is size dependent in a subtropical forest. Sci. Total Env. 923, 171501. https://doi.org/10.1016/j.scitotenv.2024.171501
dc.relation.referencesLiu, J., Peng, B., Xia, Z., Sun, J., Gao, D., Dai, W., et al., 2017. Different fates of deposited and in a temperate forest in Northeast China: a 15N tracer study. Glob. Chang. Biol. 23, 2441–2449. https://doi.org/10.1111/gcb.13533
dc.relation.referencesLiu, J., Zhou, M., Li, X., Li, T., Jiang, H., Zhao, L., Chen, S., Tian, J., Han, W., 2023. Phosphorus Addition Reduces Seedling Growth and Survival for the Arbuscular Mycorrhizal Tree Cinnamomum camphora (Lauraceae) and Ectomycorrhizal Tree Castanopsis sclerophylla (Fagaceae) in Fragmented Forests in Eastern China. Plants 12, 2946. https://doi.org/10.3390/plants12162946
dc.relation.referencesMalagon, D., Pulido, C., Llinas, R.D., Chamorro, C., Fernández, J., 1995. Suelos de Colombia. Origen, Evolución, Clasificación, Distribución y uso. Instituto Geográfico Agustín Codazzi. Subdirección de Agrología, Santa fe de Bogotá, Colombia. 632 p.
dc.relation.referencesManu, R., Corre, M.D., Aleeje, A., Mwanjalolo, M.J.G., Babweteera, F., Veldkamp, E., van Straaten, O., 2022. Responses of tree growth and biomass production to nutrient addition in a semi-deciduous tropical forest in Africa. Ecology 103(6), e3659. https://doi.org/10.1002/ecy.3659
dc.relation.referencesMarro, N., Grilli, G., Soteras, F., Caccia, M., Longo, S., Cofré, N., Borda, V., Burni, M., Janoušková, M., Urcelay, C., 2022. The effects of arbuscular mycorrhizal fungal species and taxonomic groups on stressed and unstressed plants: a global meta-analysis. New Phytol. 235(1), 320-332. https://doi.org/10.1111/nph.18102
dc.relation.referencesMarrs, R.H., Roberts, R.D., Skeffington, R.A., Bradshaw, A.D., 1983. Nitrogen and the development of ecosystems. In: Lee, JA, McNeil1, S., Rorison, IH, (Eds.), Nitrogen as an Ecological Factor. Blackwell Scientific Publications, Oxford, pags. 113-136.
dc.relation.referencesMartins, W. B. R., Rodrigues, J. L. M., de Oliveira, V. P., Ribeiro, S. S., Barros, W. S., Schwartz, G., 2022. Mining in the Amazon: importance, impacts, and challenges to restore degraded ecosystems. Are we on the right way? Ecological Engineering 174, 106468. https://doi.org/10.1016/j.ecoleng.2021.106468
dc.relation.referencesMilford, G.F.J., Johnston, A.E., 2007. Potassium and Nitrogen Interactions in Crop Production. Proceedings 615 International Fertilizers Society, York, UK.
dc.relation.referencesMirmanto, E., Proctor, J., Green, J., Nagy, L., Suriantata, 1999. Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest. Phil. Trans. of the Roy. Soc. B. 354, 1825-1829. https://doi.org/10.1098/rstb.1999.0524
dc.relation.referencesMosquera-Mosquera, R.S., Valois-Cuesta, H., Vasco-Palacios, AM, 2023. Rol de los hongos micorrízicos arbusculares durante la sucesión natural de áreas impactadas por minería en un bosque pluvial tropical del Chocó, Colombia. Bosque 44(3), 617-627. https://doi.org/10.4067/S0717-92002023000300617
dc.relation.referencesOsorio, N.W., 2018. Manejo de nutrientes en suelos del trópico. Tercera ed. LEO digital Ediciones & Publicaciones. Medellín.
dc.relation.referencesPeña-Venegas, C.P., (ed.), 2021. Biología de los suelos amazónicos: vida que sostiene el bosque. Instituto Amazónico de Investigaciones Científicas SINCHI, Bogotá.
dc.relation.referencesPérez-Abadía, D. F., Quinto-Mosquera, H., Arco, J. M. D., 2025. Influence of Environmental Factors on the Aboveground Biomass of Mature and Postmining Forests in Chocó. Life, 15, 98. https://doi.org/10.3390/life15010098
dc.relation.referencesPoveda, I.C., Rojas, C., Rudas, A., Rangel, O., 2004. El Chocó biogeográfico: Ambiente Físico. En: Rangel O, (eds.), Colombia Diversidad Biótica IV. El Chocó biogeográfico/ Costa Pacífica. Universidad Nacional de Colombia, Bogotá, págs. 1-21.
dc.relation.referencesPrach, K., Walker, L.R., 2019. Differences between primary and secondary plant succession among biomes of the world. Jour. of Ecol. 107(2), 510–516. https://doi.org/10.1111/1365-2745.13078
dc.relation.referencesQuinto-Mosquera, H., Ayala-Vivas, G., Gutiérrez, H., 2022. Contenido de nutrientes, acidez y textura del suelo en áreas degradadas por la minería en el Chocó Biogeográfico Rev. Acad. Col. Cien. Exact., Fís. y Nat. 46, 514-528. https://doi.org/10.18257/raccefyn.1615
dc.relation.referencesQuinto-Mosquera, H., Ibargüen-Mosquera, S., Cárdenas-Victoria, M.F., 2024. Efectos de la fertilización sobre la producción de hojarasca de bosques post-minería del Chocó Biogeográfico. Col. For. 27, e20809. https://doi.org/10.14483/2256201X.20809
dc.relation.referencesQuinto-Mosquera, H., Moreno, F.H., 2016. Precipitation effects on soil characteristics in tropical rain forests of the Chocó biogeographical region. Rev. Fac. Nal. Agr. 69, 7813-7823. http://dx.doi.org/10.15446/rfna.v69n1.54749
dc.relation.referencesQuinto-Mosquera, H., Rivas-Urrutia, Y., Moreno, F., 2017. Efectos de la fertilización del suelo sobre el crecimiento arbóreo en bosques pluviales tropicales del Chocó, Colombia. In Rev. Biol. Trop. 65(3), 1161-1173. https://doi.org/https://doi.org/10.15517/rbt.v65i3.29442
dc.relation.referencesQuinto-Mosquera, H., Torres-Torres, J.J., Pérez-Abadía, D. F., 2024. Influence of Mining on Nutrient Cycling in the Tropical Rain Forests of the Colombian Pacific. Forests, 15, 1222. https://doi.org/10.3390/f15071222
dc.relation.referencesQuinto-Mosquera, H., Valois-Cuesta, H., Pérez, D.F., 2024. Influence of soil nutrients on net primary productivity in post-mining forests in the Colombian Pacific. Rev. Bras. Cienc. Solo. 48, e0230053. https://doi.org/10.36783/18069657rbcs20230053
dc.relation.referencesR Development Core Team, 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.r-project.org
dc.relation.referencesRamírez-Moreno, G., Ledezma-Rentería, E., 2007. Efecto de las actividades socioeconómicas (minería y explotación maderera) sobre los bosques del departamento del Chocó. Rev. Inv. Biod. y Des. 26, 58-65.
dc.relation.referencesRamírez-Moreno, G., Quinto-Mosquera, H., Vargas, L., Rangel, OJ, 2019. Temporary effect of mining on breathing and on the physicochemical conditions of soil. Mod. Env. Sci, and Eng. 5(9), 837–848. https://doi.org/10.15341/mese(2333-2581)/09.05.2019/007
dc.relation.referencesRamírez-Moreno, G., Rangel, J.O., 2019. Sucesión vegetal en áreas de minería a cielo abierto en el bosque pluvial tropical del departamento del Chocó, Colombia. Rev. Acad. Col. Cien. Exact., Fís. y Nat. 43(169), 673-688. https://doi.org/10.18257/raccefyn.896
dc.relation.referencesRomán-Dañobeytia, F., Cabanillas, F., Lefebvre, D., Farfan, J., Alferez, J., Polo-Villanueva F., et al., 2021. Survival and early growth of 51 tropical tree species in areas degraded by artisanal gold mining in the Peruvian Amazon. Ecological Engineering, 159,106097. https://doi.org/10.1016/j.ecoleng.2020.106097
dc.relation.referencesRomán-Dañobeytia, F., Huayllani, M., Michi, A., Ibarra, F., Loayza-Muro, R., Vázquez, T., Rodríguez, L., García, M., 2015. Reforestation with four native tree species after abandoned gold mining in the Peruvian Amazon. Ecol. Eng. 85, 39–46. https://doi.org/10.1016/j.ecoleng.2015.09.075
dc.relation.referencesSanchez, P., Logan, T., 1992. Myths and Science about the chemistry and fertility of soils in the tropics, in: Lal, R., Sanchez P., (Eds) Myths and Science of soils of the tropics. Soil Science Society of America, Madison, WI, pp. 35-42. https://doi.org/10.2136/sssaspecpub29.c3
dc.relation.referencesSansupa, C., Purahong, W., Wubet, T., Tiansawat, P., Pathom-Aree, W., Teaumroong, N., 2021. Soil bacterial communities and their associated functions for forest restoration on a limestone mine in northern Thailand. PLoS ONE 16(4), e0248806. https://doi.org/10.1371/journal.pone.0248806
dc.relation.referencesShetty, R., Vidya, CSN, Prakash, NB, Lux, A, Vaculik, M., 2021. Aluminum toxicity in plants and its possible mitigation in acid soils by biochar: A review. Sci. Tot. Env., 765(15), 14274. https://doi.org/10.1016/j.scitotenv.2020.142744
dc.relation.referencesStehouwer, R.C., Johnson, J.W., 1991. Soil Adsorption Interactions of Band-Injected Anhydrous Ammonia and Potassium Chloride Fertilizers. Soil Sci. Soc. Ame. Jour. 55, 1374-1381. https://doi.org/10.2136/sssaj1991.03615995005500050029x
dc.relation.referencesTorres-Torres, JJ., Quinto-Mosquera, H., Guerrero, M. 2024. Aboveground biomass in a post-mining forest succession in the Colombian Pacific. Revista de Biología Tropical, 72(1), e55276. https://doi.org/10.15517/rev.biol.trop.v72i1.55276
dc.relation.referencesTorres-Torres, JJ, Quinto-Mosquera, H., Medina-Arroyo, HH., 2023. Diversidad de especies leñosas y su relación con variables ambientales en bosques post-minería del Chocó Biogeográfico. Bol. Cient. Mus. Hist. Nat. Univ. Caldas, 27(2), 13-29. https://doi.org/10.17151/bccm.2023.27.2.1
dc.relation.referencesTurner, BL, Brenes-Arguedas, T., Condit, R., 2018. Pervasive Phosphorus Limitation of Tree Species but Not Communitiesin Tropical Forests. Nature 555, 367–70. https://doi.org/10.1038/nature25789
dc.relation.referencesVadeboncoeur, M.A., 2010. Meta-analysis of fertilization experiments indicates multiple limiting nutrients in northeastern deciduous forests. Can. J. For. Res. 40, 1766–1780. https://doi.org/10.1139/X10-127
dc.relation.referencesValois-Cuesta, H., Jiménez-Ortega, AM, Ramírez-Moreno, G., Martínez-Ruiz, C., Cuesta-Borja, T., 2019. Vegetación pionera en suelos impactados por minería aurífera en el departamento del Chocó, Colombia. Editorial Universidad Tecnológica del Chocó, Quibdó.
dc.relation.referencesValois-Cuesta, H., Martínez-Ruiz, C., 2016. Vulnerabilidad de los bosques naturales en el Chocó biogeográfico colombiano: actividad minera y conservación de la biodiversidad. Bosque, 37(2), 295–305. http://dx.doi.org/10.4067/S0717-92002016000200008
dc.relation.referencesValois-Cuesta, H., Martínez-Ruiz, C., Quinto-Mosquera, H., 2022. Revegetación natural de áreas afectadas por minería de oro en la selva pluvial tropical del Chocó, Colombia. Rev. Biol. Trop. 70(1). https://doi.org/10.15517/rev.biol.trop..v70i1.50653
dc.relation.referencesValois-Cuesta, H.; Martínez-Ruiz, C., Valoyes, Z.Q., 2024. Linking topography, soil variability, and early successional vegetation in abandoned gold mines in the tropical rainforest of Colombia’s Choc o Biogeographic region. Restoration Ecology. https://doi.org/10.1111/rec.14202
dc.relation.referencesVitousek, P.M., Walker, L.R., Whiteaker, L.D., Matson, P.A., 1993. Nutrient limitations to plant growth during primary succession in Hawaii Volcanoes National Park. Biogeo. 23, 197-215. https://doi.org/10.1007/BF00023752
dc.relation.referencesWalker, L.R., 1993. Nitrogen fixers and species replacements in primary succession. En J. Miles & D. W. H. Walton (Eds.), Primary Succession on Land (pp. 249-272). Blackwell.
dc.relation.referencesWalker, T.W., Syers, J.K., 1976. The fate of phosphorus during pedogenesis. Geoderma 15, l-19. https://doi.org/10.1016/0016-7061(76)90066-5
dc.relation.referencesWaring, B.G., Pérez-Aviles, D., Murray, J.G., Powers, J.S., 2019. Plant Community Responses to Stand-Level Nutrient Fertilization in a Secondary Tropical Dry Forest. Ecology 100: 1–12. https://doi.org/10.1002/ecy.2691
dc.relation.referencesWeand, M.P., Arthur, M.A., Lovett, G.M., McCulley, R.L., Weathers, K.C., 2010. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities. Soil Biol. Biochem. 42, 2161–2173. https://doi.org/10.1016/j.soilbio.2010.08.012
dc.relation.referencesWright, S.J., 2019. Plant Responses to Nutrient Addition Experiments Conducted in Tropical Forests. Ecol. Monogr. 89(4), e01382. https://doi.org/10.1002/ecm.1382
dc.relation.referencesWright, S.J., Turner, B.L., Yavitt, J.B., Harms, K.E., Kaspari, M., Tanner, E.V.J., et al., 2018. Plant responses to fertilization experiments in lowland, species-rich, tropical forests. Ecology 99(5), 1129-1138. https://doi.org/10.1002/ecy.2193
dc.relation.referencesWright, S.J., Yavitt, J.B., Wurzburger, N., Turner, B.L., Tanner, E.V.J., Sayer, E.J., Santiago, L.S., Kaspari, M., Hedin, L.O., et al., 2011. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92(8), 1616-1625. https://doi.org/10.1890/10-1558.1
dc.relation.referencesYan, Z., Eziz, A., Tian, D., Li, X., Hou, X., Peng, H., et al., 2019. Biomass allocation in response to nitrogen and phosphorus availability: insight from experimental manipulations of Arabidopsis thaliana. Front. Plant Sci. 10, 598. https://doi.org/10.3389/fpls.2019.00598
dc.relation.referencesYe, X., Bu, W., Huc, X., Wang, F., Sun, R., He, P., Liang, X., Chen, F., 2023. Are small trees more responsive to nutrient addition than large trees in an evergreen broadleaved forest? For. Ecol. Manage. 543, 121129. https://doi.org/10.1016/j.foreco.2023.121129
dc.relation.referencesZhang, F., Niu, J., Zhang, W., Chen, X., Li, C., Yuan, L., Xie. J., 2010. Potassium Nutrition of Crops under Varied Regimes of Nitrogen Supply. Plant and Soil. 335, 21-34. https://doi.org/10.1007/s11104-010-0323-4
dc.relation.referencesZhao, Q., Zeng, D., 2019. Nitrogen addition effects on tree growth and soil properties mediated by soil phosphorus availability and tree species identity. For. Ecol. Manage. 449, 117478. https://doi.org/10.1016/j.foreco.2019.117478
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembEcosistemas - Chocó, Colombia
dc.subject.lembMinas de oro - Aspectos ambientales - Chocó, Colombia
dc.subject.lembDescontaminación de suelos - Chocó, Colombia
dc.subject.lembConservación de bosques - Chocó, Colombia
dc.subject.lembCrecimiento (Plantas) - Chocó, Colombia
dc.subject.lembRegeneración (Botánica) - Chocó, Colombia
dc.subject.proposalBiogeographic Chocó
dc.subject.proposalGold mining
dc.subject.proposalNitrogen limitation
dc.subject.proposalPlant recovery
dc.subject.proposalRelative Growth Rate
dc.subject.proposalTree sizes
dc.subject.proposalChocó Biogeográfico
dc.subject.proposalMinería de oro
dc.subject.proposalLimitación de nitrógeno
dc.subject.proposalRecuperación de plantas
dc.subject.proposalTasa de crecimiento relativo
dc.subject.proposalTamaños de árboles
dc.title.translatedLa respuesta del crecimiento arbóreo a la adición de nutrientes en bosques post-minería de oro y platino depende del tamaño y de la identidad de las especies
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentResponsables políticos
dc.description.curricularareaBosques Y Conservación Ambiental.Sede Medellín
dc.contributor.orcidTorres Torres, Jhon Jerley [0000-0002-0503-837X]
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000011957
dc.contributor.scopus57203835350
dc.contributor.researchgatehttps://www.researchgate.net/profile/Jhon-Torres-Torres
dc.contributor.googlescholarhttps://scholar.google.com.co/citations?user=NU1aWaoAAAAJ&hl=es


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit