dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.contributor.advisor | Sierra Ávila, César Augusto |
dc.contributor.advisor | Umaña Pérez, Yadi Adriana |
dc.contributor.author | Garzón Serrano, Andrea Yulieth |
dc.date.accessioned | 2025-04-22T16:51:56Z |
dc.date.available | 2025-04-22T16:51:56Z |
dc.date.issued | 2024 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88048 |
dc.description | ilustraciones, diagramas, fotografías |
dc.description.abstract | En esta tesis doctoral, inicialmente se describe la síntesis de un novedoso bioMOF y la optimización de la síntesis un bioMOF ya reportado. Síntesis que paralelamente llevaron a la obtención de un material adicional, una estructura de coordinación de zirconio, con características estructurales atractivas para el área de catálisis. En todos estos casos se buscaron condiciones de síntesis escalables y ambientalmente amigables usando ácidos fenólicos (reactivos comerciales) presentes en residuos agroindustriales de cacao. Teniendo en cuenta esto último, se optimizó el proceso de purificación de los ácidos fenólicos, especialmente ácido gálico y ácido protocatéquico, desde los extractos obtenidos de dichos residuos.
Adicionalmente, se estudió el potencial de los bioMOFs sintetizados como sistemas de liberación controlada de ligantes y moléculas con interés terapéutico como curcumina y rodamina, y frente a paneles celulares, una de ellas de alta resistencia, en donde se determinó la citotoxicidad frente a cada material sintetizado (Texto tomado de la fuente). |
dc.description.abstract | In this doctoral thesis, we initially describe the synthesis of a novel bioMOF and the optimization of the synthesis of an already reported bioMOF. Syntheses that in parallel led to the obtaining of an additional material, a zirconium coordination structure, with attractive structural features for the area of catalysis. In all these cases, scalable and environmentally friendly synthesis conditions were sought using phenolic acids (commercial reagents) present in agroindustrial cocoa residues. Considering the latter, the purification process of phenolic acids, especially gallic acid and protocatechuic acid, from the extracts obtained from these residues was optimized.
Additionally, the potential of the synthesized bioMOFs was studied as controlled release systems of binders and molecules with therapeutic interest such as curcumin and rhodamine, and against cellular panels, one of them of high resistance, where the cytotoxicity against each synthesized material was determined. |
dc.format.extent | 145 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de colombia |
dc.subject.ddc | 540 - Química y ciencias afines |
dc.subject.other | Compuestos Fenólicos |
dc.subject.other | Ácido Gálico |
dc.title | Síntesis de bioMOFs a partir de ácidos fenólicos presentes en residuos agroindustriales de cacao como agentes terapéuticos antioxidantes |
dc.type | Trabajo de grado - Doctorado |
dc.type.driver | info:eu-repo/semantics/doctoralThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Química |
dc.contributor.researchgroup | Grupo de Investigación en Hormonas |
dc.contributor.researchgroup | Grupo de Investigación en Macromoléculas |
dc.description.degreelevel | Doctorado |
dc.description.degreename | Doctora en Ciencias |
dc.description.researcharea | Síntesis de materiales |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ciencias |
dc.publisher.place | Bogotá, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Tulande, F. En Cumaribo, Vichada, se graduaron 250 familias en sustitución de cultivos ilícitos, y ahora le apuestan al cacao https://id.presidencia.gov.co/Paginas/prensa/2020/En-Cumaribo-Vichada-se-graduaron-250-familias-en-sustitucion-de-cultivos-ilicitos-y-ahora-le-apuestan-al-cacao-200304.aspx |
dc.relation.references | FEDECACAO. Produccion Nacional de Cacao https://www.fedecacao.com.co/economianacional. |
dc.relation.references | Jozinović, A.; Panak Balentić, J.; Ačkar, Đ.; Babić, J.; Pajin, B.; Miličević, B.; Guberac, S.; Vrdoljak, A.; Šubarić, D. Cocoa Husk Application in the Enrichment of Extruded Snack Products. J. Food Process. Preserv. 2019, 43 (2), 1–9. https://doi.org/10.1111/jfpp.13866. |
dc.relation.references | Agencia de Noticias UN. Jabones, mermeladas o mascarillas a partir de residuos del cacao https://agenciadenoticias.unal.edu.co/detalle/article/jabones-mermeladas-o-mascarillas-a-partir-de-residuos-del-cacao.html. |
dc.relation.references | Prada Salazar, J. L.; Manrique Acero, L. C.; Santos Cepeda, J. X. Análisis de Costos de Producción Agrícola de Cacao En Función de Los Precios de Mercado, La Productividad Del Cultivo, El Beneficio Económico y La Rentabilidad, Univeridad Cooperativa de Colombia, 2015. |
dc.relation.references | Vásquez, Z. S.; Carvalho, D. P. De; Pereira, G. V. M.; Vandenberghe, L. P. S.; Oliveira, P. Z. De; Tiburcio, P. B.; Rogez, H. L. G.; Góes, A.; Soccol, C. R. Biotechnological Approaches for Cocoa Waste Management : A Review. Waste Manag. 2019, 90, 72–83. https://doi.org/10.1016/j.wasman.2019.04.030. |
dc.relation.references | Franco, M.; Ramírez, M.; García, R.; Bernal, M.; Espinosa, B.; Solís, J.; Durán, C. Reaprovechamiento Integral de Residuos Agroindustriales: Cáscara y Pulpa de Cacao Para La Producción de Pectinas. Rev. Latinoam. el Ambient. y las Ciencias 2010, 1 (2), 45–66. |
dc.relation.references | Tapia Yánez, C. A. Aprovechamiento de Residuos Agroindustriales, Cascarilla de Cacao (Theobroma Cacao l.) Variedad Arriba y Ccn51 Para La Elaboración de Una Infusión, Universidad Técnica de Ambato, 2015. |
dc.relation.references | Rebollo-Hernanz, M.; Zhang, Q.; Aguilera, Y.; Martín-Cabrejas, M. A.; Gonzalez de Mejia, E. Relationship of the Phytochemicals from Coffee and Cocoa By-Products with Their Potential to Modulate Biomarkers of Metabolic Syndrome In Vitro. Antioxidants 2019, 8 (8), 279. https://doi.org/10.3390/antiox8080279. |
dc.relation.references | Porto de Souza Vandenberghe, L.; Kley Valladares-Diestra, K.; Amaro Bittencourt, G.; Fátima Murawski de Mello, A.; Sarmiento Vásquez, Z.; Zwiercheczewski de Oliveira, P.; Vinícius de Melo Pereira, G.; Ricardo Soccol, C. Added-Value Biomolecules’ Production from Cocoa Pod Husks: A Review. Bioresour. Technol. 2022, 344 (October 2021). https://doi.org/10.1016/j.biortech.2021.126252. |
dc.relation.references | McKinlay, A. C.; Morris, R. E.; Horcajada, P.; Férey, G.; Gref, R.; Couvreur, P.; Serre, C. BioMOFs: Metal-Organic Frameworks for Biological and Medical Applications. Angew. Chemie - Int. Ed. 2010, 49 (36), 6260–6266. https://doi.org/10.1002/anie.201000048. |
dc.relation.references | Rojas, S.; Arenas-vivo, A.; Horcajada, P. Metal-Organic Frameworks : A Novel Platform for Combined Advanced Therapies. Coord. Chem. Rev. 2019, 388, 202–226. https://doi.org/10.1016/j.ccr.2019.02.032. |
dc.relation.references | Rojas, S.; Devic, T.; Horcajada, P. Metal Organic Frameworks Based on Bioactive Components. J. Mater. Chem. B 2017, 5 (14), 2560–2573. https://doi.org/10.1039/C6TB03217F. |
dc.relation.references | Cai, H.; Huang, Y. L.; Li, D. Biological Metal–Organic Frameworks: Structures, Host–Guest Chemistry and Bio-Applications. Coord. Chem. Rev. 2019, 378, 207–221. https://doi.org/10.1016/j.ccr.2017.12.003. |
dc.relation.references | Ismail, M.; Bustam, M. A.; Yeong, Y. F. Gallate-Based Metal–Organic Frameworks, a New Family of Hybrid Materials and Their Applications: A Review. Crystals 2020, 10 (11), 1–16. https://doi.org/10.3390/cryst10111006. |
dc.relation.references | Angkawijaya, A. E.; Bundjaja, V.; Santoso, S. P.; Go, A. W.; Lin, S. P.; Cheng, K. C.; Soetaredjo, F. E.; Ismadji, S. Biocompatible and Biodegradable Copper-Protocatechuic Metal-Organic Frameworks as Rifampicin Carrier. Biomater. Adv. 2023, 146 (December 2022), 213269. https://doi.org/10.1016/j.bioadv.2022.213269. |
dc.relation.references | Zeraati, M.; Rahdar, A.; Medina, D. I.; Sargazi, G. Synthesis of Al-Based Metal-Organic Framework in Water With Caffeic Acid Ligand and NaOH as Linker Sources With Highly Efficient Anticancer Treatment. Front. Chem. 2021, 9 (November 2021), 1–9. https://doi.org/10.3389/fchem.2021.784461. |
dc.relation.references | Wang, H. S.; Wang, Y. H.; Ding, Y. Development of Biological Metal-Organic Frameworks Designed for Biomedical Applications: From Bio-Sensing/Bio-Imaging to Disease Treatment. Nanoscale Adv. 2020, 2 (9), 3788–3797. https://doi.org/10.1039/d0na00557f. |
dc.relation.references | Chattopadhyay, K. A Review on Zirconium-Based Metal–Organic Frameworks: Synthetic Approaches and Biomedical Applications. Mater. Adv. Adv. 2024, 5, 51–67. https://doi.org/10.1039/d3ma00735a. |
dc.relation.references | Capanoglu, E.; Nemli, E.; Tomas-Barberan, F. Novel Approaches in the Valorization of Agricultural Wastes and Their Applications. J. Agric. Food Chem. 2022, 70 (23), 6787–6804. https://doi.org/10.1021/acs.jafc.1c07104. |
dc.relation.references | Saravanan, A.; Karishma, S.; Senthil Kumar, P.; Rangasamy, G. A Review on Regeneration of Biowaste into Bio-Products and Bioenergy: Life Cycle Assessment and Circular Economy. Fuel 2023, 338 (November 2022), 127221. https://doi.org/10.1016/j.fuel.2022.127221. |
dc.relation.references | Rao, P.; Rathod, V. Valorization of Food and Agricultural Waste: A Step towards Greener Future. Chem. Rec. 2019, 19 (9), 1858–1871. https://doi.org/10.1002/tcr.201800094. |
dc.relation.references | International Cocoa Organization (ICCO). Statistics https://www.icco.org/statistics/#production. |
dc.relation.references | Gutiérrez-Macías, P.; Mirón-Mérida, V. A.; Rodríguez-Nava, C. O.; Barragán-Huerta, B. E. Cocoa: Beyond Chocolate, a Promising Material for Potential Value-Added Products. Valorization Agri-Food Wastes By-Products Recent Trends, Innov. Sustain. Challenges 2021, 267–288. https://doi.org/10.1016/B978-0-12-824044-1.00038-6. |
dc.relation.references | Guirlanda, C. P.; da Silva, G. G.; Takahashi, J. A. Cocoa Honey: Agro-Industrial Waste or Underutilized Cocoa by-Product? Futur. Foods 2021, 4 (July), 100061. https://doi.org/10.1016/j.fufo.2021.100061. |
dc.relation.references | Saavedra-Sanabria, O. L.; Durán, D.; Cabezas, J.; Hernández, I.; Blanco-Tirado, C.; Combariza, M. Y. Cellulose Biosynthesis Using Simple Sugars Available in Residual Cacao Mucilage Exudate. Carbohydr. Polym. 2021, 274 (April), 1–12. https://doi.org/10.1016/j.carbpol.2021.118645. |
dc.relation.references | Sánchez, M.; Laca, A.; Laca, A.; Díaz, M. Cocoa Bean Shell as Promising Feedstock for the Production of Poly(3-Hydroxybutyrate) (PHB). Appl. Sci. 2023, 13 (2). https://doi.org/10.3390/app13020975. |
dc.relation.references | Rojo-poveda, O.; Barbosa-pereira, L.; Zeppa, G.; St, C. Cocoa Bean Shell — A By-Product with Nutritional. Mdpi 2020, 1–29. |
dc.relation.references | Rojo-Poveda, O.; Barbosa-Pereira, L.; Mateus-Reguengo, L.; Bertolino, M.; Stévigny, C.; Zeppa, G. Effects of Particle Size and Extraction Methods on Cocoa Bean Shell Functional Beverage. Nutrients 2019, 11 (4), 1–19. https://doi.org/10.3390/nu11040867. |
dc.relation.references | Soares, T. F.; Oliveira, M. B. P. P. Cocoa By-Products: Characterization of Bioactive Compounds and Beneficial Health Effects. Molecules 2022, 27 (5). https://doi.org/10.3390/molecules27051625. |
dc.relation.references | Martínez, R.; Torres, P.; Meneses, M. A.; Figueroa, J. G.; Pérez-Álvarez, J. A.; Viuda-Martos, M. Chemical, Technological and in Vitro Antioxidant Properties of Cocoa (Theobroma Cacao L.) Co-Products. Food Res. Int. 2012, 49 (1), 39–45. https://doi.org/10.1016/j.foodres.2012.08.005. |
dc.relation.references | Valadez-Carmona, L.; Plazola-Jacinto, C. P.; Hernández-Ortega, M.; Hernández-Navarro, M. D.; Villarreal, F.; Necoechea-Mondragón, H.; Ortiz-Moreno, A.; Ceballos-Reyes, G. Effects of Microwaves, Hot Air and Freeze-Drying on the Phenolic Compounds, Antioxidant Capacity, Enzyme Activity and Microstructure of Cacao Pod Husks (Theobroma Cacao L.). Innov. Food Sci. Emerg. Technol. 2017, 41, 378–386. https://doi.org/10.1016/j.ifset.2017.04.012. |
dc.relation.references | Campos-Vega, R.; Nieto-Figueroa, K. H.; Oomah, B. D. Cocoa (Theobroma Cacao L.) Pod Husk: Renewable Source of Bioactive Compounds. Trends Food Sci. Technol. 2018, 81, 172–184. https://doi.org/10.1016/j.tifs.2018.09.022. |
dc.relation.references | Freund, R.; Zaremba, O.; Arnauts, G.; Ameloot, R.; Skorupskii, G.; Dincă, M.; Bavykina, A.; Gascon, J.; Ejsmont, A.; Goscianska, J.; Kalmutzki, M.; Lächelt, U.; Ploetz, E.; Diercks, C. S.; Wuttke, S. The Current Status of MOF and COF Applications. Angew. Chemie - Int. Ed. 2021, 60 (45), 23975–24001. https://doi.org/10.1002/anie.202106259. |
dc.relation.references | Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science (80-. ). 2013, 341 (6149). https://doi.org/10.1126/science.1230444. |
dc.relation.references | Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A. W.; Imaz, I.; Maspoch, D.; Hill, M. R. New Synthetic Routes towards MOF Production at Scale. Chem. Soc. Rev. 2017, 46 (11), 3453–3480. https://doi.org/10.1039/c7cs00109f. |
dc.relation.references | Hao, F.; Yan, Z.; Yan, X. Recent Advances in Research on the Effect of Physicochemical Properties on the Cytotoxicity of Metal – Organic Frameworks. Small Sci. 2022, 2200044. https://doi.org/10.1002/smsc.202200044. |
dc.relation.references | Sharmin, E.; Zafar, F. Introductory Chapter: Metal Organic Frameworks (MOFs). In Metal-Organic Frameworks; 2016. https://doi.org/10.5772/64797. |
dc.relation.references | Julien, P. A.; Mottillo, C.; Friščić, T. Metal-Organic Frameworks Meet Scalable and Sustainable Synthesis. Green Chem. 2017, 19 (12), 2729–2747. https://doi.org/10.1039/c7gc01078h. |
dc.relation.references | Liu, J.; Li, Y.; Lou, Z. Recent Advancements in MOF/Biomass and Bio-MOF Multifunctional Materials: A Review. Sustain. 2022, 14 (10), 1–17. https://doi.org/10.3390/su14105768. |
dc.relation.references | Zhao, X.; Bu, X.; Wu, T.; Zheng, S. T.; Wang, L.; Feng, P. Zeolitic Metal−Organic Frameworks Based on Amino Acid. Nat. Commun. 2013, 4, 10027–10029. https://doi.org/10.1038/ncomms3344. |
dc.relation.references | Carbonell, C.; Stylianou, K. C.; Hernando, J.; Evangelio, E.; Barnett, S. A.; Nettikadan, S.; Imaz, I.; Maspoch, D. Femtolitre Chemistry Assisted by Microfluidic Pen Lithography. Nat. Commun. 2013, 4, 1–7. https://doi.org/10.1038/ncomms3173. |
dc.relation.references | Burneo, I.; Stylianou, K. C.; Rodríguez-Hermida, S.; Juanhuix, J.; Fontrodona, X.; Imaz, I.; Maspoch, D. Two New Adenine-Based Co(II) Coordination Polymers: Synthesis, Crystal Structure, Coordination Modes, and Reversible Hydrochromic Behavior. Cryst. Growth Des. 2015, 15 (7), 3182–3189. https://doi.org/10.1021/acs.cgd.5b00218. |
dc.relation.references | Gassensmith, J. J.; Smaldone, R. A.; Forgan, R. S.; Wilmer, C. E.; Cordes, D. B.; Botros, Y. Y.; Slawin, A. M. Z.; Snurr, R. Q.; Stoddart, J. F. Polyporous Metal-Coordination Frameworks. 2012, No. 4, 6115–6118. |
dc.relation.references | Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Porous Metal-Organic-Framework Nanoscale Carriers as a Potential Platform for Drug Deliveryand Imaging. Nat. Mater. 2010, 9 (2), 172–178. https://doi.org/10.1038/nmat2608. |
dc.relation.references | Anderson, S. L.; Stylianou, K. C. Biologically Derived Metal Organic Frameworks. Coord. Chem. Rev. 2017, 349, 102–128. https://doi.org/10.1016/j.ccr.2017.07.012. |
dc.relation.references | Miller, S. R.; Heurtaux, D.; Baati, T.; Horcajada, P.; Grenèche, J. M.; Serre, C. Biodegradable Therapeutic MOFs for the Delivery of Bioactive Molecules. Chem. Commun. 2010, 46 (25), 4526–4528. https://doi.org/10.1039/c001181a. |
dc.relation.references | Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Reports 2019, 24, e00370. https://doi.org/10.1016/j.btre.2019.e00370. |
dc.relation.references | Khatri, S.; Paramanya, A.; Ali, A. Phenolic Acids and Their Health-Promoting Activity. Plant Hum. Heal. Vol. 2 2019, 2, 661–680. https://doi.org/10.1007/978-3-030-03344-6_27. |
dc.relation.references | Zhang, H.; Tsao, R. Dietary Polyphenols, Oxidative Stress and Antioxidant and Anti-Inflammatory Effects. Curr. Opin. Food Sci. 2016, 8, 33–42. https://doi.org/10.1016/j.cofs.2016.02.002. |
dc.relation.references | García Beltrán, J. M.; Esteban, M. Á. Nature-Identical Compounds as Feed Additives in Aquaculture. Fish Shellfish Immunol. 2022, 123 (March), 409–416. https://doi.org/10.1016/j.fsi.2022.03.010. |
dc.relation.references | Demir, S.; Merve Çepni, H.; Topcu, Y.; Hołyńska, M.; Keskin, S. A Phytochemical-Containing Metal–Organic Framework: Synthesis, Characterization and Molecular Simulations for Hydrogen Adsorption. Inorganica Chim. Acta 2015, 427, 138–143. https://doi.org/10.1016/j.ica.2014.12.010. |
dc.relation.references | Zeraati, M.; Alizadeh, V.; Chupradit, S.; Chauhan, N. P. S.; Sargazi, G. Green Synthesis and Mechanism Analysis of a New Metal-Organic Framework Constructed from Al (III) and 3,4-Dihydroxycinnamic Acid Extracted from Satureja Hortensis and Its Anticancerous Activities. J. Mol. Struct. 2022, 1250, 131712. https://doi.org/10.1016/j.molstruc.2021.131712. |
dc.relation.references | Cooper, L.; Hidalgo, T.; Gorman, M.; Lozano-Fernández, T.; Simón-Vázquez, R.; Olivier, C.; Guillou, N.; Serre, C.; Martineau, C.; Taulelle, F.; Damasceno-Borges, D.; Maurin, G.; González-Fernández, Á.; Horcajada, P.; Devic, T. A Biocompatible Porous Mg-Gallate Metal–Organic Framework as an Antioxidant Carrier. Chem. Commun. 2015, No. 27. https://doi.org/10.1039/C5CC00745C. |
dc.relation.references | Hidalgo, T.; Cooper, L.; Gorman, M.; Lozano-ferna, T.; Simo, R. Crystal Structure Dependent in Vitro Antioxidant Activity of Biocompatible Calcium Gallate MOFs †. J. Mater. Chem. B 2017, 5 (15), 2813–2822. https://doi.org/10.1039/c6tb03101c. |
dc.relation.references | Sharma, S.; Mittal, Di.; Verma, A. K.; Roy, I. Copper-Gallic Acid Nanoscale Metal-Organic Framework for Combined Drug Delivery and Photodynamic Therapy. ACS Appl. Bio Mater. 2019, 2 (5), 2092–2101. https://doi.org/10.1021/acsabm.9b00116. |
dc.relation.references | Cooper, L.; Guillou, N.; Martineau, C.; Elkaim, E.; Taulelle, F.; Serre, C.; Devic, T. Zr IV Coordination Polymers Based on a Naturally Occurring Phenolic Derivative. Eur. J. Inorg. Chem. 2014, No. 36, 1–10. https://doi.org/10.1002/ejic.201402891. |
dc.relation.references | Lin, X.; Ning, E.; Li, X.; Li, Q. Construction of Mixed Carboxylate and Pyrogallate Building Units for Luminescent Metal – Organic Frameworks. Chinese Chem. Lett. 2019. https://doi.org/10.1016/j.cclet.2019.05.055. |
dc.relation.references | Echenique-errandonea, E.; Rojas, S.; Abdelkader-fern, K.; Manuel, P.; Mendes, R. F.; Barbosa, P.; Figueiredo, F.; Paz, F. A. A.; Delgado-l, M.; Rodr, A.; Seco, M. Adsorptive Capacity, Inhibitory Activity and Processing Techniques for a Copper-MOF Based on the 3,4-Dihydroxybenzoate Ligand. Molecules 2022, 27. |
dc.relation.references | Sala, A.; Diouf, M. D. F.; Marchetti, D.; Pasquale, L.; Gemmi, M. Mechanochemical Synthesis and Three-Dimensional Electron Diffraction Structure Solution of a Novel Cu-Based Protocatechuate Metal − Organic Framework. Cryst. Growth Des. 2024, 24, 3246–3255. https://doi.org/10.1021/acs.cgd.3c01494. |
dc.relation.references | Rahim, M. A.; Kristufek, S. L.; Pan, S.; Richardson, J. J.; Caruso, F. Phenolic Building Blocks for the Assembly of Functional Materials. Angew. Chemie - Int. Ed. 2019, 58 (7), 1904–1927. https://doi.org/10.1002/anie.201807804. |
dc.relation.references | Kumar, S.; Jain, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Kim, K. H. Green Synthesis of Metal–Organic Frameworks: A State-of-the-Art Review of Potential Environmental and Medical Applications. Coord. Chem. Rev. 2020, 420, 213407. https://doi.org/10.1016/j.ccr.2020.213407. |
dc.relation.references | El-Sayed, E. S. M.; Yuan, D. Waste to MOFs: Sustainable Linker, Metal, and Solvent Sources for Value-Added MOF Synthesis and Applications. Green Chem. 2020, 22 (13), 4082–4104. https://doi.org/10.1039/d0gc00353k. |
dc.relation.references | Ren, J.; Dyosiba, X.; Musyoka, N. M.; Langmi, H. W.; North, B. C.; Mathe, M.; Onyango, M. S. Green Synthesis of Chromium-Based Metal-Organic Framework ( Cr-MOF ) from Waste Polyethylene Terephthalate ( PET ) Bottles for Hydrogen Storage Applications. Int. J. Hydrogen Energy 2016, 41 (40), 18141–18146. https://doi.org/10.1016/j.ijhydene.2016.08.040. |
dc.relation.references | Ko, Y.; Azbell, T. J.; Milner, P.; Hinestroza, J. P. Upcycling of Dyed Polyester Fabrics into Copper-1,4-Benzenedicarboxylate (CuBDC) Metal-Organic Frameworks. Ind. Eng. Chem. Res. 2023. https://doi.org/10.1021/acs.iecr.3c00226. |
dc.relation.references | Zhan, G.; Ng, W. C.; Lin, W. Y.; Koh, S. N.; Wang, C. Effective Recovery of Vanadium from Oil Refinery Waste into Vanadium-Based Metal−Organic Frameworks. Environ. Sci. Technol. 2018, 52, 3008–3015. https://doi.org/10.1021/acs.est.7b04989. |
dc.relation.references | Ky, T.; Kim, J.; Taek, H.; Kim, J. Journal of Industrial and Engineering Chemistry Cost-Effective and Eco-Friendly Synthesis of MIL-101 ( Cr ) from Waste Hexavalent Chromium and Its Application for Carbon Monoxide Separation. J. Ind. Eng. Chem. 2019, 80, 345–351. https://doi.org/10.1016/j.jiec.2019.08.013. |
dc.relation.references | Cognet, M.; Condomines, J.; Cambedouzou, J.; Madhavi, S.; Carboni, M.; Meyer, D. An Original Recycling Method for Li-Ion Batteries through Large Scale Production of Metal Organic Frameworks. J. Hazard. Mater. 2020, 385 (November 2019), 121603. https://doi.org/10.1016/j.jhazmat.2019.121603. |
dc.relation.references | Zhang, S.; Jian, M.; Zhang, Q.; Xu, R.; Qu, J.; Luo, X.; Li, X.; Hu, J.; Liu, R.; Zhang, X. Recyclable Printed Circuit Boards and Alkali Reduction Wastewater: Approach to a Sustainable Copper-Based Metal − Organic Framework. 2020. https://doi.org/10.1021/acssuschemeng.9b04754. |
dc.relation.references | Crickmore, T. S.; Begum Sana, H.; Mitchell, H.; Clark, M.; Bradshaw, D. Toward Sustainable Syntheses of Ca-Based MOFs. Chem. Commun. 2021, 57, 10592–10595. https://doi.org/10.1039/D1CC04032D. |
dc.relation.references | Farajmand, B.; Dalali, N.; Keshavarz, S.; Lakmehsari, M. S. Application of MIL-53 ( Al ) Prepared from Waste Materials for Solid-Phase Microextraction of Propranolol Followed by Corona Discharge-Ion Mobility Spectrometry ( CD-IMS ). J. Pharm. Biomed. Anal. 2020, 189, 113418. https://doi.org/10.1016/j.jpba.2020.113418. |
dc.relation.references | Boukayouht, K.; Bazzi, L.; El Hankari, S. Sustainable Synthesis of Metal-Organic Frameworks and Their Derived Materials from Organic and Inorganic Wastes. Coord. Chem. Rev. 2023, 478, 214986. https://doi.org/10.1016/j.ccr.2022.214986. |
dc.relation.references | Okumura, H. Application of Phenolic Compounds in Plants for Green Chemical Materials. Curr. Opin. Green Sustain. Chem. 2021, 27, 100418. https://doi.org/10.1016/j.cogsc.2020.100418. |
dc.relation.references | Feng, Y.; Li, P.; Wei, J. Engineering Functional Mesoporous Materials from Plant Polyphenol Based Coordination Polymers. Coord. Chem. Rev. 2022, 468, 214649. https://doi.org/10.1016/j.ccr.2022.214649. |
dc.relation.references | Ghosh, M. K.; Tamang, A. M.; Chandraker, S. K.; Sikdar, S.; Jana, B.; Ghorai, T. K. Zn(II)-Formate Framework of Mab Topology: Synthesis from Tea Extract, Electronic Structure, and DNA-Binding. J. Mol. Struct. 2022, 1270, 133913. https://doi.org/10.1016/j.molstruc.2022.133913. |
dc.relation.references | Sirajunnisa, P.; Sreelakshmi, S.; Prathapan, S.; Sailaja, G. S. Room Temperature Synthesized Metal Organic Frameworks of Lawsonia Inermis: Potential Candidates for Sensing and Cellular Imaging. J. Lumin. 2023, 261 (February). https://doi.org/10.1016/j.jlumin.2023.119899. |
dc.relation.references | Beg, S.; Rahman, M.; Jain, A.; Saini, S.; Midoux, P.; Pichon, C.; Ahmad, F. J.; Akhter, S. Nanoporous Metal Organic Frameworks as Hybrid Polymer–Metal Composites for Drug Delivery and Biomedical Applications. Drug Discov. Today 2017, 22 (4), 625–637. https://doi.org/10.1016/j.drudis.2016.10.001. |
dc.relation.references | Chen, W.; Wu, C. Synthesis, Functionalization, and Applications of Metal-Organic Frameworks in Biomedicine. Dalt. Trans. 2018, 47 (7), 2114–2133. https://doi.org/10.1039/c7dt04116k. |
dc.relation.references | Sun, B.; Bilal, M.; Jia, S.; Jiang, Y.; Cui, J. Design and Bio-Applications of Biological Metal-Organic Frameworks. Korean J. Chem. Eng. 2019, 36 (12), 1949–1964. https://doi.org/10.1007/s11814-019-0394-8. |
dc.relation.references | Quaresma, S.; André, V.; Antunes, A. M. M.; Vilela, S. M. F.; Amariei, G.; Arenas-Vivo, A.; Rosal, R.; Horcajada, P.; Duarte, M. T. Novel Antibacterial Azelaic Acid BioMOFs. Cryst. Growth Des. 2020, 20 (1), 370–382. https://doi.org/10.1021/acs.cgd.9b01302. |
dc.relation.references | André, V.; Da Silva, A. R. F.; Fernandes, A.; Frade, R.; Garcia, C.; Rijo, P.; Antunes, A. M. M.; Rocha, J.; Duarte, M. T. Mg- A Nd Mn-MOFs Boost the Antibiotic Activity of Nalidixic Acid. ACS Appl. Bio Mater. 2019, 2 (6), 2347–2354. https://doi.org/10.1021/acsabm.9b00046. |
dc.relation.references | Maranescu, B.; Visa, A. Applications of Metal-Organic Frameworks as Drug Delivery Systems. Int. J. Mol. Sci. 2022, 23 (8). https://doi.org/10.3390/ijms23084458. |
dc.relation.references | Tajnšek, T. K.; Svensson Grape, E.; Willhammar, T.; Antonić Jelić, T.; Javornik, U.; Dražić, G.; Zabukovec Logar, N.; Mazaj, M. Design and Degradation of Permanently Porous Vitamin C and Zinc-Based Metal-Organic Framework. Commun. Chem. 2022, 5 (1). https://doi.org/10.1038/s42004-022-00639-x. |
dc.relation.references | Su, H.; Sun, F.; Jia, J.; He, H.; Wang, A. A Highly Porous Medical Metal – Organic Framework Constructed from Bioactive Curcumin †. Chem. Commun. 2015, 51, 5774–5777. https://doi.org/10.1039/C4CC10159F. |
dc.relation.references | Sharma, A.; Kumar, A.; Changning, L.; Panwar Hazari, P.; Mahajan, S. D.; Aalinkeel, R.; Kumar Sharma, R.; Swihart, M. T. A Cannabidiol-Loaded Mg-Gallate Metal–Organic Framework-Based Potential Therapeutic for Glioblastomas. J. Mater. Chem. B 2021, 9, 2505–2514. https://doi.org/10.1039/D0TB02780D. |
dc.relation.references | Rabiee, N.; Ahmadi, S.; Iravani, S.; Varma, R. S. Natural Resources for Sustainable Synthesis of Nanomaterials with Anticancer Applications: A Move toward Green Nanomedicine. Environ. Res. 2023, 216 (P4), 114803. https://doi.org/10.1016/j.envres.2022.114803. |
dc.relation.references | Chakraborty, D.; Yurdusen, A.; Mouchaham, G.; Nouar, F.; Serre, C. Large-Scale Production of Metal – Organic Frameworks. 2023, 2309089, 1–23. https://doi.org/10.1002/adfm.202309089. |
dc.relation.references | Zahn, G.; Schulze, H. A.; Lippke, J.; König, S.; Sazama, U.; Fröba, M.; Behrens, P. A Water-Born Zr-Based Porous Coordination Polymer: Modulated Synthesis of Zr-Fumarate MOF. Microporous Mesoporous Mater. 2015, 203 (C), 186–194. https://doi.org/10.1016/j.micromeso.2014.10.034. |
dc.relation.references | Ardila-Suárez, C.; Díaz-Lasprilla, A. M.; Díaz-Vaca, L. A.; Balbuena, P. B.; Baldovino-Medrano, V. G.; Ramírez-Caballero, G. E. Synthesis, Characterization, and Post-Synthetic Modification of a Micro/Mesoporous Zirconium-Tricarboxylate Metal-Organic Framework: Towards the Addition of Acid Active Sites. CrystEngComm 2019, 21 (19), 3014–3030. https://doi.org/10.1039/c9ce00218a. |
dc.relation.references | Papageorgiou, S. K.; Kouvelos, E. P.; Favvas, E. P.; Sapalidis, A. A.; Romanos, G. E.; Katsaros, F. K. Metal-Carboxylate Interactions in Metal-Alginate Complexes Studied with FTIR Spectroscopy. Carbohydr. Res. 2010, 345 (4), 469–473. https://doi.org/10.1016/j.carres.2009.12.010. |
dc.relation.references | Sutton, C. C. R.; Silva, G.; Franks, G. V. Modeling the IR Spectra of Aqueous Metal Carboxylate Complexes : Correlation between Bonding Geometry and Stretching Mode Wavenumber Shifts. 2015, 6801–6805. https://doi.org/10.1002/chem.201406516. |
dc.relation.references | Brubach, J. B.; Mermet, A.; Filabozzi, A.; Gerschel, A.; Roy, P. Signatures of the Hydrogen Bonding in the Infrared Bands of Water. J. Chem. Phys. 2005, 122 (18). https://doi.org/10.1063/1.1894929. |
dc.relation.references | Ovalles, F.; Gallignani, M.; Rondón, R.; Brunetto, M. R.; Luna, R. Determination of Sulphate for Measuring Magnesium Sulphate in Pharmaceuticals by Flow Analysis-Fourier Transforms Infrared Spectroscopy. Lat. Am. J. Pharm. 2009, 28 (2), 173–182. |
dc.relation.references | Henry, B.; Samokhvalov, A. Hygroscopic Metal-Organic Framework MIL-160 ( Al ): In-Situ Time- Dependent ATR-FTIR and Gravimetric Study of Mechanism and Kinetics of Water Vapor Sorption. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 267, 120550. https://doi.org/10.1016/j.saa.2021.120550. |
dc.relation.references | Ismail, M.; Bustam, M. A.; Kari, N. E. F.; Yeong, Y. F. Ideal Adsorbed Solution Theory (IAST) of Carbon Dioxide and Methane Adsorption Using Magnesium Gallate Metal-Organic Framework (Mg-Gallate). Molecules 2023, 28 (7). https://doi.org/10.3390/molecules28073016. |
dc.relation.references | Vaitsis, C.; Sourkouni, G.; Argirusis, C. Metal Organic Frameworks (MOFs) and Ultrasound: A Review. Ultrason. Sonochem. 2019, 52 (July 2018), 106–119. https://doi.org/10.1016/j.ultsonch.2018.11.004. |
dc.relation.references | Barahuie, F.; Hussein, M. Z.; Hussein-Al-Ali, S. H.; Arulselvan, P.; Fakurazi, S.; Zainal, Z. Preparation and Controlled-Release Studies of a Protocatechuic Acid-Magnesium/Aluminumlayered Double Hydroxide Nanocomposite. Int. J. Nanomedicine 2013, 8 (May), 1975–1987. https://doi.org/10.2147/IJN.S42718. |
dc.relation.references | Barahuie, F.; Hussein, M. Z.; Abd Gani, S.; Fakurazi, S.; Zainal, Z. Anticancer Nanodelivery System with Controlled Release Property Based on Protocatechuate-Zinc Layered Hydroxide Nanohybrid. Int. J. Nanomedicine 2014, 9 (1), 3137–3149. https://doi.org/10.2147/IJN.S59541. |
dc.relation.references | Sigma Aldrich. Mesoporous Materials: Properties and Applications https://www.sigmaaldrich.com/CO/es/technical-documents/technical-article/materials-science-and-engineering/nanoparticle-and-microparticle-synthesis/mesoporous-materials. |
dc.relation.references | Scherrer, P. Bestimmung Der Größe Und Der Inneren Struktur von Kolloidteilchen Mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Math. Klasse 1918 1918, 98–100. |
dc.relation.references | D, B. A. . & L. Powder Pattern Indexing with the Dichotomy Method. J. Appl. Crystallogr. 2004, 37 (5), 724–731. |
dc.relation.references | D., B. J. R. . P. R. J. . & L. PreDICT: A Graphical User Interface to the DICVOL14 Indexing Software Program for Powder Diffraction Data. Powder Diffraction. 2019, 34 (3), 233–241. |
dc.relation.references | Altomare, A., Corriero, N., Cuocci, C., Falcicchio, A., Moliterni, A., & Rizzi, R. EXPO Software for Solving Crystal Structures by Powder Diffraction Data: Methods and Application. Cryst. Res. Technol. 2015, 50 (9–10), 737–742. |
dc.relation.references | B., T. B. H. . & V. D. R. GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package. J. Appl. Crystallogr. 2013, 46 (2), 544–549. |
dc.relation.references | Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T., McCabe, P., Pidcock, E., ... & Wood, P. A. Mercury 4.0: From Visualization to Analysis, Design and Prediction. J. Appl. Crystallogr. 2020, 53 (1), 226–235. |
dc.relation.references | The Cambridge Structural Database (CCDC) https://www.ccdc.cam.ac.uk/solutions/software/csd/. |
dc.relation.references | Marcus D Hanwell, Donald E Curtis, David C Lonie, Tim Vandermeersch, E. Z. and G. R. H. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4 (17). |
dc.relation.references | Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., ... & Streek, J. V. D. Mercury: Visualization and Analysis of Crystal Structures. J. Appl. Crystallogr. 2006, 39 (3), 453–457. |
dc.relation.references | Martí-Rujas, J. Structural Elucidation of Microcrystalline MOFs from Powder X-Ray Diffraction. Dalt. Trans. 2020, 49, 13897–13916. https://doi.org/10.1039/D0DT02802A. |
dc.relation.references | Galano, A.; Pérez-González, A. On the Free Radical Scavenging Mechanism of Protocatechuic Acid, Regeneration of the Catechol Group in Aqueous Solution. Theor. Chem. Acc. 2012, 131 (9), 1–13. https://doi.org/10.1007/s00214-012-1265-0. |
dc.relation.references | Sani, M.; Mohd, U.; Hussein, Z.; Umar, A.; Sharida, K.; Mas, F.; Masarudin, J. Synthesis and Characterization of Protocatechuic Acid ‑ Loaded Gadolinium ‑ Layered Double Hydroxide and Gold Nanocomposite for Theranostic Application. Appl. Nanosci. 2018, 8 (5), 973–986. https://doi.org/10.1007/s13204-018-0752-6. |
dc.relation.references | Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87 (9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117. |
dc.relation.references | Alothman, Z. A. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials (Basel). 2012, 5 (January). https://doi.org/10.3390/ma5122874. |
dc.relation.references | Tao, L.; Chen, D.-L.; Sullivan, J. E.; Kozlowski, M. T.; Johnson, J. K.; Rosi, N. L. Systematic Modulation and Enhancement of CO2:N2 Selectivity and Water Stability in an Isoreticular Series of Bio-MOF-11 Analogues. Chem. Sci. 2013, 4 (March). https://doi.org/10.1039/C3SC22207A. |
dc.relation.references | Zahn, G.; Zerner, P.; Lippke, J.; Kempf, F. L.; Lilienthal, S.; Schröder, C. A.; Schneider, A. M.; Behrens, P. Insight into the Mechanism of Modulated Syntheses: In Situ Synchrotron Diffraction Studies on the Formation of Zr-Fumarate MOF. CrystEngComm 2014, 16 (39), 9198–9207. https://doi.org/10.1039/c4ce01095g. |
dc.relation.references | Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C. Stable Metal – Organic Frameworks : Design , Synthesis , and Applications. Adv. Mater. 2018, No. February. https://doi.org/10.1002/adma.201704303. |
dc.relation.references | Sun, Q.; Liu, C.; Zhang, G.; Zhang, J.; Tung, C.-H.; Wang, Y. Aqueous Isolation of 17-Nuclear Zr-/Hf- Oxide Clusters during the Hydrothermal Synthesis of ZrO2/HfO2. Chem. - A Eur. J. 2018, 24, 14701–14706. https://doi.org/10.1002/chem.201801267. |
dc.relation.references | Garzón-Serrano, A. Y.; Lozano, J. D.; Perez, L. D.; Sierra, C. A.; Macías, M. A. RSC Advances Zr 6 O 8 Core Cluster with Formula Unit. RSC Adv. 2024, 4, 29910–29918. https://doi.org/10.1039/D4RA03940H. |
dc.relation.references | Xu, D.; Ma, H.; Cheng, F. Preparation and Application of Zirconium Sulfate Supported on SAPO-34 Molecular Sieve as Solid Acid Catalyst for Esterification. Mater. Res. Bull. 2014, 53, 15–20. https://doi.org/10.1016/j.materresbull.2014.01.029. |
dc.relation.references | Testa, M. L.; Parola, V. La; Mesrar, F.; Ouanji, F.; Kacimi, M.; Ziyad, M.; Liotta, L. F. Use of Zirconium Phosphate-Sulphate as Acid Catalyst for Synthesis of Glycerol-Based Fuel Additives. Catalysts 2019, 9 (2). https://doi.org/10.3390/catal9020148. |
dc.relation.references | Agbor, G.; Vinson, J. A.; Donnelly, P. E. Folin-Ciocalteau Reagent for Polyphenolic Assay. Int. J. Food Sci. Nutr. Diet. 2014, No. December, 147–156. https://doi.org/10.19070/2326-3350-1400028. |
dc.relation.references | Valadez-Carmona, L.; Plazola-Jacinto, C. P.; Hernández-Ortega, M.; Hernández-Navarro, M. D.; Villarreal, F.; Necoechea-Mondragón, H.; Ortiz-Moreno, A.; Ceballos-Reyes, G. Effects of Microwaves, Hot Air and Freeze-Drying on the Phenolic Compounds, Antioxidant Capacity, Enzyme Activity and Microstructure of Cacao Pod Husks (Theobroma Cacao L.). Innov. Food Sci. Emerg. Technol. 2017, 41 (February), 378–386. https://doi.org/10.1016/j.ifset.2017.04.012. |
dc.relation.references | Zadernowski, R.; Naczk, M.; Nowak-Polakowska, H. Phenolic Acids of Borage (Borago Officinalis L.) and Evening Primrose (Oenothera Biennis L.). JAOCS, J. Am. Oil Chem. Soc. 2002, 79 (4), 335–338. https://doi.org/10.1007/s11746-002-0484-8. |
dc.relation.references | Kusrini, D.; Fachriyah, E.; Prinanda, G. R. Isolation of Phenolic Acid in Acalypha Indica l Plants and Test Total Phenol Also Antioxidant Test Using DPPH Method. IOP Conf. Ser. Mater. Sci. Eng. 2019, 509 (1). https://doi.org/10.1088/1757-899X/509/1/012033. |
dc.relation.references | Li, J.; Huang, G. Extraction, Purification, Separation, Structure, Derivatization and Activities of Polysaccharide from Chinese Date. Process Biochem. 2021, 110 (August), 231–242. https://doi.org/10.1016/j.procbio.2021.08.018. |
dc.relation.references | Fajardo Daza, J. A.; Ibarra, C. A.; Arturo Perdomo, D.; Herrera Ruales, F. C. Optimization of Ultrasound Assisted Extraction of Polyphenols in Cocoa Beans. Vitae 2020, 27 (1), 1–8. https://doi.org/10.17533/udea.vitae.v27n1a01. |
dc.relation.references | Jia, J.; Wei, L.; Li, F.; Yu, C.; Yang, K.; Liang, T. In Situ Growth of NiFe MOF / NF by Controlling Solvent Mixtures as Efficient Electrocatalyst in Oxygen Evolution. Inorg. Chem. Commun. 2021, 128 (April), 108605. https://doi.org/10.1016/j.inoche.2021.108605. |
dc.relation.references | Pinelo, M.; Sineiro, J.; Núñez, M. J. Mass Transfer during Continuous Solid-Liquid Extraction of Antioxidants from Grape Byproducts. J. Food Eng. 2006, 77 (1), 57–63. https://doi.org/10.1016/j.jfoodeng.2005.06.021. |
dc.relation.references | Akinoso, R.; Osunrinade, O. A. Mass Transfer during Oil Extraction from Palm Kernel, Cocoa and Groundnut. J. Eng. Appl. Sci. 2012, 7 (4), 326–330. https://doi.org/10.3923/jeasci.2012.326.330. |
dc.relation.references | Putra, N. R.; Rizkiyah, D. N.; Zaini, A. S.; Yunus, M. A. C.; Machmudah, S.; Idham, Z. binti; Hazwan Ruslan, M. S. Effect of Particle Size on Yield Extract and Antioxidant Activity of Peanut Skin Using Modified Supercritical Carbon Dioxide and Soxhlet Extraction. J. Food Process. Preserv. 2018, 42 (8), 1–9. https://doi.org/10.1111/jfpp.13689. |
dc.relation.references | Pinelo, M.; Zornoza, B.; Meyer, A. S. Selective Release of Phenols from Apple Skin: Mass Transfer Kinetics during Solvent and Enzyme-Assisted Extraction. Sep. Purif. Technol. 2008, 63 (3), 620–627. https://doi.org/10.1016/j.seppur.2008.07.007. |
dc.relation.references | Aguilera, Y.; Rebollo-Hernanz, M.; Cañas, S.; Taladrid, D.; Martín-Cabrejas, M. A. Response Surface Methodology to Optimise the Heat-Assisted Aqueous Extraction of Phenolic Compounds from Coffee Parchment and Their Comprehensive Analysis. Food Funct. 2019, 10 (8), 4739–4750. https://doi.org/10.1039/c9fo00544g. |
dc.relation.references | Liyana-Pathirana, C.; Shahidi, F. Optimization of Extraction of Phenolic Compounds from Wheat Using Response Surface Methodology. Food Chem. 2005, 93 (1), 47–56. https://doi.org/10.1016/j.foodchem.2004.08.050. |
dc.relation.references | Takó, M.; Beáta, E.; Zambrano, C.; Kotogán, A.; Papp, T.; Krisch, J.; Vágvölgyi, C. Plant Phenolics and Phenolic-Enriched Extracts as Antimicrobial Agents Against. Antioxidants (Basel) 2020, 9 (2). https://doi.org/10.3390/antiox9020165. |
dc.relation.references | Oracz, J.; Zyzelewicz, D.; Nebesny, E. The Content of Polyphenolic Compounds in Cocoa Beans (Theobroma Cacao L.), Depending on Variety, Growing Region and Processing Operations: A Review. Food Sci. Nutr. 2013, 55 (9), 1176–1192. https://doi.org/10.1080/10408398.2012.686934. |
dc.relation.references | Cañas, S.; Rebollo-Hernanz, M.; Aguilera, Y.; Benítez, V.; Braojos, C.; Arribas, S.; Martín-Cabrejas, M. Bioaccessibility of Phenolic Compounds from Cocoa Shell Subjected to In Vitro Digestion and Its Antioxidant Activity in Intestinal and Hepatic Cells. Med. Sci. Forum 2020, 2 (1), 5. https://doi.org/10.3390/cahd2020-08612. |
dc.relation.references | Ordoñez, E. S.; Leon-Arevalo, A.; Rivera-Rojas, H.; Vargas, E. Quantification of Total Polyphenols and Antioxidant Capacity in Skins and Seeds from Cacao (Theobroma Cacao L.), Tuna (Opuntia Ficus Indica Mill), Grape (Vitis Vinífera) and Uvilla (Pourouma Cecropiifolia). Sci. Agropecu. 2019, 10 (2), 175–183. https://doi.org/10.17268/sci.agropecu.2019.02.02. |
dc.relation.references | Ardila-Suárez, C.; Molina V., D. R.; Alemd, H.; Baldovino-Medrano, V. G.; Ramírez-Caballero, G. E. Synthesis of Ordered Microporous/Macroporous MOF-808 through Modulator-Induced Defect-Formation, and Surfactant Self-Assembly Strategies. Phys. Chem. Chem. Phys. 2020, 22, 12591–12604. https://doi.org/10.1039/D0CP00287A. |
dc.relation.references | Akimbekov, Z.; Wu, D.; Brozek, C.; Dinca, M.; Navrotsky, A. Thermodynamics of Solvent Interaction with the Metal – Organic Framework MOF-5. Phys. Chem. Chem. Phys. 2016, 18, 1158–1162. https://doi.org/10.1039/C5CP05370F. |
dc.relation.references | Karagiaridi, O.; Bury, W.; Mondloch, J. E.; Hupp, J. T.; Farha, O. K. Solvent-Assisted Linker Exchange : An Alternative to the De Novo Synthesis of Unattainable Metal – Organic Frameworks Angewandte. Angew. Rev. 2014, 53, 2–13. https://doi.org/10.1002/anie.201306923. |
dc.relation.references | Xiang, W.; Zhang, Y.; Chen, Y.; Liu, C.; Tu, X. Synthesis, Characterization and Application of Defective Metal–Organic Frameworks: Current Status and Perspectives. J. Mater. Chem. A 2020, 8, 21526–21546. https://doi.org/10.1039/d0ta08009h. |
dc.relation.references | Soni, S.; Bajpai, P. K.; Arora, C. A Review on Metal-Organic Framework : Synthesis , Properties and Application. Charact. Appl. Nanomater. 2020, 3 (2), 87–106. https://doi.org/10.24294/can.v3i2.551. |
dc.relation.references | Bagheri, M.; Masoomi, M. Y. Quasi-Metal Organic Frameworks : Preparation , Applications and Future Perspectives. Coord. Chem. Rev. 2022, 468, 214643. https://doi.org/10.1016/j.ccr.2022.214643. |
dc.relation.references | Miranda M, C. D.; Ramírez S, A. E.; Jurado, S. G.; Vera, C. R. Superficial Effects and Catalytic Activity of ZrO2-SO42- as a Function of the Crystal Structure. J. Mol. Catal. A Chem. 2015, 398 (July 2019), 325–335. https://doi.org/10.1016/j.molcata.2014.12.015. |
dc.relation.references | Motakef-Kazemi, N.; Shojaosadati, S. A.; Morsali, A. In Situ Synthesis of a Drug-Loaded MOF at Room Temperature. Microporous Mesoporous Mater. 2014, 186, 73–79. https://doi.org/10.1016/j.micromeso.2013.11.036. |
dc.relation.references | Benny, A.; Devi, S.; Rajendra, K.; Pinheiro, D.; Chundattu, S. J. Metal Organic Frameworks in Biomedicine : Innovations in Drug Delivery. Results Chem. 2024, 7 (January), 101414. https://doi.org/10.1016/j.rechem.2024.101414. |
dc.relation.references | Patel, S. S.; Acharya, A.; Ray, R. S.; Agrawal, R. Cellular and Molecular Mechanisms of Curcumin in Prevention and Treatment of Disease. Crit. Rev. Food Sci. Nutr. 2019, 0 (0), 1–53. https://doi.org/10.1080/10408398.2018.1552244. |
dc.relation.references | Shuang, Z.; Xiaosheng, L.; Yves, S. K.; Heejeong, K.; Jingyun, W.; Xiaojun, P.; Haidong, L.; Juyoung, Y. Fluorescent Dyes Based on Rhodamine Derivatives for Bioimaging and Therapeutics: Recent Progress, Challenges, and Prospects. Chem. Soc. Rev. 2023, 52, 5607–5651. https://doi.org/10.1039/D2CS00799A. |
dc.relation.references | Xiao, F.; Zhang, J.; Gan, J. Controlled Dye Release from a Metalorganic Framework : A New Luminescent Sensor for Water. RSC Adv. 2020, 10, 2722–2726. https://doi.org/10.1039/c9ra08753b. |
dc.relation.references | Wang, K. IRMOF-8-Encapsulated Curcumin as a Biocompatible , Sustained-Release Nano-Preparation. Appl. Organomet. Chem. 2022, 36 (March), 1–14. https://doi.org/10.1002/aoc.6680. |
dc.relation.references | Zhang, Q.; Cui, H.; Myint, A.; Lian, M.; Liu, L. Sensitive Determination of Phenolic Compounds Using High-Performance Liquid Chromatography with Cerium ( IV ) -Rhodamine 6G-Phenolic Compound Chemiluminescence Detection. J. Chromatogr. A 2005, 1095, 94–101. https://doi.org/10.1016/j.chroma.2005.08.001. |
dc.relation.references | Posada, N. C.; Sierra, C. A.; Perez, L. D. Synthesis of Lipid-Modified Copolymers Based on Caprolactone via Enzymatic Ring-Opening Polymerization and Click Chemistry and Evaluation of Their Potential as Vehicles in Drug Delivery. 2024, No. September, 1–14. https://doi.org/10.1002/app.56325. |
dc.relation.references | Mejia-ariza, R.; Huskens, J. The Effect of PEG Length on the Size and Guest Uptake of PEG-Capped MIL-88A Particles †. J. Mater. Chem. B 2016, 4, 1108–1115. https://doi.org/10.1039/C5TB01949D. |
dc.relation.references | Yang, Y.; Hu, Q.; Zhang, Q.; Jiang, K.; Lin, W.; Yang, Y.; Cui, Y.; Qian, G. A Large Capacity Cationic Metal − Organic Framework Nanocarrier for Physiological PH Responsive Drug Delivery. Mol. Pharm. 2016, 13, 2782–2786. https://doi.org/10.1021/acs.molpharmaceut.6b00374. |
dc.relation.references | Riedl, S.; Leber, R.; Rinner, B.; Schaider, H.; Lohner, K.; Zweytick, D. Human Lactoferricin Derived Di-Peptides Deploying Loop Structures Induce Apoptosis Specifically in Cancer Cells through Targeting Membranous Phosphatidylserine. BBA - Biomembr. 2015, 1848 (11), 2918–2931. https://doi.org/10.1016/j.bbamem.2015.07.018. |
dc.relation.references | Bondar, O. V; Saifullina, D. V; Shakhmaeva, I. I.; Mavlyutova, I. I.; Abdullin, T. I. Monitoring of the Zeta Potential of Human Cells upon Reduction in Their Viability and Interaction with Polymers. Acta Naturae 2012, 4 (12), 78–81. |
dc.relation.references | Kumar, A.; Alami-mejjati, N.; Bouvet, M.; Meunier-prest, R. Electrochemical Oxidation of Gallic Acid : A Reexamination of the Reaction Mechanism in Aqueous Medium. Electrochim. Acta 2023, 460 (May), 142622. https://doi.org/10.1016/j.electacta.2023.142622. |
dc.relation.references | Friedman, M.; Ju, H. S. Effect of PH on the Stability of Plant Phenolic Compounds. J. Agric. Food Chem 2000, 48, 2101–2110. |
dc.relation.references | Bolton, J. L.; Dunlap, T. L.; Dietz, B. M. Formation and Biological Targets of Botanical o -Quinones. Food Chem. Toxicol. 2018, 120 (July), 700–707. https://doi.org/10.1016/j.fct.2018.07.050. |
dc.relation.references | Faizan, S.; Mohammed, M.; Mohsen, A.; Amarakanth, C.; Justin, A.; Ravishankar, R.; Chandrashekar, H. R.; Kumar, B. R. P. Quinone Scaffolds as Potential Therapeutic Anticancer Agents : Chemistry , Mechanism of Actions , Structure-Activity Relationships and Future Perspectives. Results Chem. 2024, 7 (February), 101432. https://doi.org/10.1016/j.rechem.2024.101432. |
dc.relation.references | Cretu, C.; Nicola, R.; Marinescu, S.; Piciorus, E.; Suba, M. Performance of Zr-Based Metal – Organic Framework Materials as In Vitro Systems for the Oral Delivery of Captopril and Ibuprofen. Int. J. Mol. Sci. 2023, 24, 13887. |
dc.relation.references | Gautam, S.; Lakhanpal, I.; Sonowal, L.; Goyal, N. Recent Advances in Targeted Drug Delivery Using Metal-Organic Frameworks : Toxicity and Release Kinetics. Next Nanotechnol. 2023, 3–4 (December), 100027. https://doi.org/10.1016/j.nxnano.2023.100027. |
dc.relation.references | Bruschi, M. 5 - Mathematical Models of Drug Release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Bruschi, M. L. B. T.-S. to M. the D. R. from P. S., Ed.; Woodhead Publishing, 2015; pp 63–86. https://doi.org/https://doi.org/10.1016/B978-0-08-100092-2.00005-9. |
dc.relation.references | Aguila-Rosas, J.; Quirino-Barreda, T.; Leyva-Gómez, G.; González-Zamora, E.; Ibarra, I. A.; Lima, E. Sulfadiazine Hosted in MIL-53(Al) as a Biocide Topical Delivery System. RSC Adv. 2020, 10, 25645–25651. https://doi.org/10.1039/d0ra03636f. |
dc.relation.references | Wang, H.; Li, S.; Yang, Y.; Zhang, L.; Zhang, Y.; Wei, T. Perspectives of Metal-Organic Framework Nanosystem to Overcome Tumor Drug Resistance. Cancer Drug Resist 2022, 5, 954–970. https://doi.org/10.20517/cdr.2022.76. |
dc.relation.references | Loera-serna, S.; Medina, D.; Ortiz, E. Encapsulation of Urea and Caffeine in Cu 3 ( BTC ) 2 Metal – Organic Framework. 2015, 3 (May 2018). https://doi.org/10.1680/jsuin.15.00017. |
dc.relation.references | Tiwari, A.; Singh, A.; Garg, N.; Randhawa, J. K. Curcumin Encapsulated Zeolitic Imidazolate Frameworks as Stimuli Responsive Drug Delivery System and Their Interaction with Biomimetic Environment. Sci. Rep. 2017, No. September, 1–12. https://doi.org/10.1038/s41598-017-12786-6. |
dc.relation.references | Mihoub, A. Ben; Acherar, S.; Frochot, C.; Yen, F.; Arab-tehrany, E.; Mihoub, A. Ben; Acherar, S.; Frochot, C.; Malaplate-armand, C.; Yen, F.; Mihoub, A. Ben; Acherar, S.; Frochot, C.; Malaplate, C.; Yen, F. T. Synthesis of New Water Soluble β -Cyclodextrin @ Curcumin Conjugates and in Vitro Safety Evaluation in Primary Cultures of Rat Cortical Neurons. Int. J. Mol. Sci. 2023, 22, 0–13. |
dc.relation.references | Qiu, S.; Chu, H.; Zou, Y.; Xiang, C. Thermochemical Studies of Rhodamine B and Rhodamine 6G by Modulated Differential Scanning Calorimetry and Thermogravimetric Analysis. J. Therm. Anal. Calorim. 2016, 123 (2), 1611–1618. https://doi.org/10.1007/s10973-015-5055-5. |
dc.relation.references | Chen, W.; Zhuang, Y.; Wang, L.; Lv, Y.; Liu, J.; Zhou, T.-L.; Xie, R.-J. Color-Tunable and High-Efficiency Dye-Encapsulated Metal-Organic Framework ( MOF ) Composites Used for Smart White LEDs. Appl. Mater. Interfaces 2018, 10 (22), 18910–18917. https://doi.org/10.1021/acsami.8b04937. |
dc.relation.references | Blasio, C. De. Chapter 7: Thermogravimetric Analysis (TGA). In Fundamentals of Biofuels Engineering and Technology.; 2019; pp 91–102. |
dc.relation.references | Wang, C.; Liu, X.; Yang, T.; Sridhar, D.; Algadi, H.; Bin, B.; El-bahy, Z. M.; Li, H.; Ma, Y.; Li, T.; Guo, Z. An Overview of Metal-Organic Frameworks and Their Magnetic Composites for the Removal of Pollutants. Sep. Purif. Technol. 2023, 320 (March), 124144. https://doi.org/10.1016/j.seppur.2023.124144. |
dc.relation.references | Almoslem, M.; Sonego, E.; Cristofoletti, R. Kinetics of Drug Action :A PKPD Approach. In The ADME Encyclopedia; 2022. |
dc.relation.references | Paarakh, M. P.; Jose, P. A. N. I.; Setty, C. M.; Peter, G. V. RELEASE KINETICS – CONCEPTS AND APPLICATIONS. 2018, 12–20. |
dc.relation.references | Li, C.; Feng, X.; Yang, S.; Xu, H.; Yin, X.; Yu, Y. Capture, Detection, and Simultaneous Identi Fi Cation of Rare Circulating Tumor Cells Based on a Rhodamine 6G-Loaded Metal − Organic Framework. Appl. Mater. Interfaces 2021, 13, 52406–52416. https://doi.org/10.1021/acsami.1c15838. |
dc.relation.references | Raven, P.; Johnson, G.; Mason, K.; Losos, J.; Singer, S. How Cells Divide. In Biology; McGraw Hill: New York, 2013; p 192. |
dc.relation.references | Abotaleb, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Therapeutic Potential of Plant Phenolic Acids in the Treatment of Cancer. Biomolecules 2020, 10 (2), 1–23. https://doi.org/10.3390/biom10020221. |
dc.relation.references | Dando, I.; Pozza, E. D.; Ambrosini, G.; Torrens-mas, M.; Butera, G.; Mullappilly, N.; Pacchiana, R.; Palmieri, M.; Donadelli, M. Oncometabolites in Cancer Aggressiveness and Tumour Repopulation. Biol. Rev. 2019, 1539, 1530–1546. https://doi.org/10.1111/brv.12513. |
dc.relation.references | Chen, Y.; Li, X.; Yang, M. Research Progress on Morphology and Mechanism of Programmed Cell Death. Cell Death Dis. 2024, 15 (December 2023), 327. https://doi.org/10.1038/s41419-024-06712-8. |
dc.relation.references | Rich, A. L.; Lin, P.; Gamazon, E. R.; Zinkel, S. S. The Broad Impact of Cell Death Genes on the Human Disease Phenome. Cell Death Dis. 2024, 15 (September 2023), 251. https://doi.org/10.1038/s41419-024-06632-7. |
dc.relation.references | Ashrafizadeh, M.; Zarrabi, A.; Mirzaei, S.; Hashemi, F.; Samarghandian, S.; Zabolian, A.; Hushmandi, K.; Ang, H. L.; Sethi, G.; Kumar, A. P.; Ahn, K. S.; Nabavi, N.; Khan, H.; Makvandi, P.; Varma, R. S. Gallic Acid for Cancer Therapy: Molecular Mechanisms and Boosting Efficacy by Nanoscopical Delivery. Food Chem. Toxicol. 2021, 157 (November 2020), 112576. https://doi.org/10.1016/j.fct.2021.112576. |
dc.relation.references | Cadena-Iñiguez, J.; Santiago-Osorio, E.; Sánchez-Flores, N.; Salazar-Aguilar, S.; Soto-Hernández, R. M.; Riviello-Flores, M. de la L.; Macías-Zaragoza, V. M.; Aguiñiga-Sánchez, I. The Cancer-Protective Potential of Protocatechuic Acid: A Narrative Review. Molecules 2024, 29 (7). https://doi.org/10.3390/molecules29071439. |
dc.relation.references | Terry Riss; Andrew Niles; Rich Moravec; Natashia Karassina; Jolanta Vidugiriene. Cytotoxicity Assays: In Vitro Methods to Measure Dead Cells. Assay Guid. Man. [Internet] 2019, No. Md, 1–15. |
dc.relation.references | Martínez-torres, A. C.; Reyes-ruiz, A.; Calvillo-rodriguez, K. M.; Alvarez-valadez, K. M.; Uscanga-palomeque, A. C.; Tamez-guerra, R. S.; Rodríguez-padilla, C. IMMUNEPOTENT CRP Induces DAMPS Release and ROS-Dependent Autophagosome Formation in HeLa And. BMC Cancer 2020, 20, 1–11. |
dc.relation.references | Fawzy, R. M.; Abdel-aziz, A. A.; Bassiouny, K.; Fayed, A. M. Phytocompounds-Based Therapeutic Approach : Investigating Curcumin and Green Tea Extracts on MCF-7 Breast Cancer Cell Line. J. Genet. Eng. Biotechnol. 2024, 22 (1), 100339. https://doi.org/10.1016/j.jgeb.2023.100339. |
dc.relation.references | Jaworska, A.; Wojcik, T.; Malek, K.; Kwolek, U.; Kepczynski, M.; Ansary, A. A.; Chlopicki, S.; Baranska, M. Rhodamine 6G Conjugated to Gold Nanoparticles as Labels for Both SERS and Fluorescence Studies on Live Endothelial Cells. Microchim Acta 2015, 182, 119–127. https://doi.org/10.1007/s00604-014-1307-5. |
dc.relation.references | Linnane, E.; Haddad, S.; Melle, F.; Mei, Z.; Fairen-jimenez, D. Chem Soc Rev The Uptake of Metal – Organic Frameworks : A Journey into the Cell. Chem Soc Rev 2022, 51, 6065–6086. https://doi.org/10.1039/d0cs01414a. |
dc.relation.references | Rajasekar, M. Recent Trends in Rhodamine Derivatives as Fluorescent Probes for Biomaterial Applications. J. Mol. Struct. 2021, 1235, 130232. https://doi.org/10.1016/j.molstruc.2021.130232. |
dc.relation.references | Magut, P. K. S.; Das, S.; Fernand, V. E.; Losso, J.; Mcdonough, K.; Naylor, B. M.; Aggarwal, S.; Warner, I. M. Tunable Cytotoxicity of Rhodamine 6G via Anion Variations. J. Am. Chem. Soc. 2013, 135, 15873–15879. |
dc.relation.references | Massum, A. Al; Chakraborty, M.; Ghosh, S.; Laha, D.; Karmakar, P.; Islam, M.; Mukhopadhyay, S. Biochemical Activity of a Fluorescent Dye Rhodamine 6G : Molecular Modeling , Electrochemical , Spectroscopic and Thermodynamic Studies. J. Photochem. Photobiol. B Biol. 2016, 164, 369–379. https://doi.org/10.1016/j.jphotobiol.2016.10.002. |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.proposal | bioMOF |
dc.subject.proposal | ácidos fenólicos |
dc.subject.proposal | ácido gálico |
dc.subject.proposal | ácido protocatéquico |
dc.subject.proposal | curcumina |
dc.subject.proposal | rodamina |
dc.title.translated | Synthesis of bioMOFs from phenolic acids present in agroindustrial cocoa wastes as antioxidant therapeutic agents |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TD |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Bibliotecarios |
dcterms.audience.professionaldevelopment | Estudiantes |
dcterms.audience.professionaldevelopment | Investigadores |
dcterms.audience.professionaldevelopment | Padres y familias |
dcterms.audience.professionaldevelopment | Público general |
dc.contributor.orcid | 0000-0002-0750-0601 |
dc.contributor.cvlac | Garzón-Serrano, Andrea Yulieth |
dc.subject.wikidata | Curcumina |
dc.subject.wikidata | Rodamina |