Show simple item record

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorRamirez Pisco, Ramiro
dc.contributor.authorOrtiz Benavides, Orieta
dc.date.accessioned2025-04-22T19:59:41Z
dc.date.available2025-04-22T19:59:41Z
dc.date.issued2024-10-24
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88063
dc.descriptionIlustraciones, fotografías, mapas
dc.description.abstractEl uso de carbón de bajo rango (CBR) en suelos salino sódicos mejoró significativamente sus propiedades físicas y químicas. En esta investigación, se aplicó CBR en macetas en dosis equivalentes a 0, 2 y 4 toneladas por hectárea; en campo en dosis equivalentes a 0, 2 y 4 toneladas por hectárea y en macetas con 0, 12.5, 25 y 50% p/p. Los resultados evidenciaron que el CBR redujo la conductividad térmica (CT), el pH y la conductividad eléctrica (CE), mientras aumentó el contenido de materia orgánica y la capacidad de intercambio catiónico (CIC), mejorando las condiciones para el crecimiento vegetal. El CBR también redujo la densidad aparente y aumentó la porosidad del suelo. La CT se relacionó logarítmicamente con el contenido de agua y linealmente con la densidad aparente, siendo ambos factores cruciales en la transferencia de calor. El incremento en CBR aumentó la retención de humedad, presentándose una relación directa entre humedad y conductividad térmica. El CBR favoreció el crecimiento vegetal, mejorando la supervivencia y desarrollo foliar. Los algoritmos de aprendizaje automático implementados, como Redes Neuronales Artificiales (ANN), evidenciaron una alta correlación entre los valores medidos y predichos (R2 = 0.995), optimizando la estimación de la conductividad térmica del suelo. La combinación de CBR y modelos predictivos de inteligencia artificial ofrece una herramienta innovadora para la gestión sostenible de suelos salinos y degradados, que puede ser relacionado con la acumulación de biomasa. (Tomado de la fuente)
dc.description.abstractThe use of low rank carbon (CBR) in sodic saline soils significantly improved their physical and chemical properties. In this research, CBR was applied in pots at doses equivalent to 0, 2 and 4 tons per hectare; in the field at doses equivalent to 0, 2 and 4 tons per hectare and in pots with 0, 12.5, 25 and 50% w/w. The results showed that CBR reduced thermal conductivity (TC), pH and electrical conductivity (EC), while increasing organic matter content and cation exchange capacity (CEC), improving conditions for plant growth. CBR also reduced bulk density and increased soil porosity. TC was logarithmically related to water content and linearly related to bulk density, both being crucial factors in heat transfer. The increase in CBR increased moisture retention, presenting a direct relationship between moisture and thermal conductivity. The CBR favored plant growth, improving leaf survival and development. The machine learning algorithms implemented, such as Artificial Neural Networks (ANN), showed a high correlation between measured and predicted values (R² = 0.995), optimizing the estimation of soil thermal conductivity. The combination of CBR and artificial intelligence predictive models offers an innovative tool for the sustainable management of saline and degraded soils, which can be related to biomass accumulation.
dc.description.sponsorshipUniversidad Nacional de Colombia
dc.format.extent160 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
dc.titleDinámica de la conductividad térmica y las propiedades físicas y químicas de un suelo salino sódico con la aplicación de carbón de bajo rango y su relación con la producción vegetal
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Doctorado en Ciencias Agrarias
dc.contributor.researchgroupAgroxue
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias Agrarias
dc.description.researchareaCiencias del suelo
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesAbad, M.; Formes, F.; Garcia, D.; Cegarra,J. y Roig,A. 1991. Effects of humic substances from different sources on growth and nutrient content of cucumber plants. Lecture notes «Humic substances in acquatic and terrestrial Enviroments». Earth Sciencies. Vol. 33; p. 391-396.
dc.relation.referencesAbu-Hamdeh, N. H., & Reeder, R. C. (2000). Soil Thermal Conductivity Effects of Density, Moisture, Salt Concentration, and Organic Matter. Soil Science Society Of America Journal, 64(4), 1285-1290. https://doi.org/10.2136/sssaj2000.6441285x
dc.relation.referencesAbu-Hamdeh, N. H. (2000). Effect of tillage treatments on soil thermal conductivity for some Jordanian clay loam and loam soils. Soil and Tillage Research, 56(3-4), 145-151.
dc.relation.referencesAbu-Hamdeh, N. H. (2003). Thermal properties of soils as affected by density and water content. Biosystems engineering, 86(1), 97-102.
dc.relation.referencesAbu-Hamdeh, N. H., Reeder, R. C., Khdair, A. I., & Al-Jalil, H. F. (2000). Thermal conductivity of disturbed soils under laboratory conditions. Transactions of the ASAE, 43(4), 855-860.
dc.relation.referencesAhmad, M. W., Mourshed, M., & Rezgui, Y. (2017). Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption. Energy And Buildings, 147, 77-89. https://doi.org/10.1016/j.enbuild.2017.04.038
dc.relation.referencesAkimbekov, N., Qiao, X., Digel, I., Abdieva, G., Ualieva, P., & Zhubanova, A. (2020). The Effect of Leonardite-Derived Amendments on Soil Microbiome Structure and Potato Yield. Agriculture, 10(5), 147. https://doi.org/10.3390/agriculture10050147
dc.relation.referencesAkimbekov, N., Digel, I., Abdieva, G., Ualieva, P., & Tastambek, K. (2021). Lignite biosolubilization and bioconversion by Bacillus sp.: the collation of analytical data. Biofuels, 12(3), 247-258.
dc.relation.referencesAl-Shammary, A. A. G., Kouzani, A. Z., Kaynak, A., Khoo, S. Y., Norton, M., & Gates, W. (2018). Soil bulk Density Estimation Methods: A review. Pedosphere, 28(4), 581-596. https://doi.org/10.1016/s1002-0160(18)60034-7
dc.relation.referencesAli, H., Al-Qahtani, H., Yilbas, B. S., & Mansoor, S. B. (2021). Thermal conductivity assessment in a low dimension structure. International Communications in Heat and Mass Transfer, 127, 105581.
dc.relation.referencesAljundi, K., Pereira, C., Vieira, A., Maranha, J. R., Lapa, J., & Cardoso, R. (2024). Test conditions influence on thermal conductivity and contact conductance of sand at transient state. Soils and Foundations, 64(1), 101405.
dc.relation.referencesAmeijeiras Sánchez, David, González Diez, Héctor R., & Hernández Heredia, Yanio. (2020). Revisión de algoritmos de detección y seguimiento de objetos con redes profundas para videovigilancia inteligente. Revista Cubana de Ciencias Informáticas, 14(3), 165-195. Epub 01 de septiembre de 2020. Recuperado en 26 de septiembre de 2024, de http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2227- 18992020000300165&lng=es&tlng=es.
dc.relation.referencesAmoah-Antwi, C., Kwiatkowska-Malina, J., Thornton, S. F., Fenton, O., Malina, G., & Szara, E. (2020). Restoration of soil quality using biochar and brown coal waste: A review. The Science Of The Total Environment, 722, 137852. https://doi.org/10.1016/j.scitotenv.2020.137852
dc.relation.referencesAmoah-Antwi, C., Kwiatkowska-Malina, J., Fenton, O., Szara, E., Thornton, S. F., & Malina, G. (2021). Holistic Assessment of Biochar and Brown Coal Waste as Organic Amendments in Sustainable Environmental and Agricultural Applications. Water Air & Soil Pollution, 232(3). https://doi.org/10.1007/s11270-021-05044-z
dc.relation.referencesAndry, H., Yamamoto, T., Irie, T., Moritani, S., Inoue, M., & Fujiyama, H. (2009). Water retention, hydraulic conductivity of hydrophilic polymers in sandy soil as affected by temperature and water quality. Journal Of Hydrology, 373(1-2), 177-183. https://doi.org/10.1016/j.jhydrol.2009.04.020.
dc.relation.referencesAndriesse J.P. 1988. Nature and management of tropical peat soils. FAO Soils Bulletin No. 59, United Nations, Rome, 165.
dc.relation.referencesAnemana, T., Óvári, M., Szegedi, Á., Uzinger, N., Rékási, M., Tatár, E., ... & Mihucz, V. G. (2020). Optimization of lignite particle size for stabilization of trivalent chromium in soils. Soil and Sediment Contamination: An International Journal, 29(3), 272-291.
dc.relation.referencesArjumend, T., Abbasi, M. K., & Rafique, E. (2015). Effects of lignite-derived humic acid on some selected soil properties, growth and nutrient uptake of wheat (Triticum aestivum L.) grown under greenhouse conditions. Pakistan Journal of Botany, 47(6), 2231-2238.
dc.relation.referencesArshad, M. A., & Azooz, R. H. (1996). Tillage Effects on Soil Thermal Properties in a Semiarid Cold Region. Soil Science Society Of America Journal, 60(2), 561-567. https://doi.org/10.2136/sssaj1996.03615995006000020032
dc.relation.referencesAsai, H., Samson, B.K., Stephan, H.M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T., & Horie, T. (2009). Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research, 111, 81-84.
dc.relation.referencesASTM D5334-08, Standard test method for determination of thermal conductivity of soil and soft rock by thermal needle probe procedure, ASTM International, West Conshohocken, PA, www.astm.org (2008)
dc.relation.referencesBai, W., Kong, L., & Guo, A. (2013). Effects of physical properties on electrical conductivity of compacted lateritic soil. Journal of rock mechanics and geotechnical engineering, 5, 406-411.
dc.relation.referencesBalland, V., & Arp, P. A. (2005). Modeling soil thermal conductivities over a wide range of conditions. Journal Of Environmental Engineering And Science, 4(6), 549-558. https://doi.org/10.1139/s05-007
dc.relation.referencesBandeira, M., Mosca, G. y Vamerali, T., (2009). Humic acids affect root characteristics of fodder radish (Raphanus sativus L. var. oleiformis Pers.) in metal-polluted wastes, doi:10.1016/j.desal.200 .0 08 3. 44, Desalination, 246(1-3), 78-91
dc.relation.referencesBayat, M., Burkhart, H., Namiranian, M., Hamidi, S. K., Heidari, S., & Hassani, M. (2021). Assessing biotic and abiotic effects on biodiversity index using machine learning. Forests, 12(4), 461.
dc.relation.referencesBekele, A., Roy, J. L., & Young, M. A. (2015). Use of biochar and oxidized lignite for reconstructing functioning agronomic topsoil: Effects on soil properties in a greenhouse study. Canadian Journal of Soil Science, 95(3), 269-285.
dc.relation.referencesBlanco-Canqui, H. (2017). Biochar and Soil Physical Properties. Soil Science Society Of America Journal, 81(4), 687-711. https://doi.org/10.2136/sssaj2017.01.0017
dc.relation.referencesBourel, M., Segura, A. M., Crisci, C., López, G., Sampognaro, L., Vidal, V., Kruk, C., Piccini, C., & Perera, G. (2021). Machine learning methods for imbalanced data set for prediction of faecal contamination in beach waters. Water Research, 202, 117450. https://doi.org/10.1016/j.watres.2021.117450
dc.relation.referencesBoyle M., Frakenburger W.T., Stolyz L.H. 1989. The influence of organic matter on soil aggregation and water infiltration. Journal of Production Agriculture, 2: 290–299.
dc.relation.referencesBovesecchi, G., & Coppa, P. (2013). Basic problems in thermal-conductivity measurements of soils. International Journal of Thermophysics, 34, 1962-1974.
dc.relation.referencesBovesecchi, G., Coppa, P., & Potenza, M. (2017). A numerical model to explain experimental results of effective thermal conductivity measurements on unsaturated soils. International Journal of Thermophysics, 38(5), 68.
dc.relation.referencesBreiman, L. (2001). Random forests. Machine learning, 45, 5-32.
dc.relation.referencesBrevik, E.C., Fenton, T.E. & Lazari, A. Soil electrical conductivity as a function of soil water content and implications for soil mapping. Precision Agric 7, 393–404 (2006). https://doi.org/10.1007/s11119-006-9021-x
dc.relation.referencesBronick, C. J., & Lal, R. (2005). Soil structure and management: a review. Geoderma, 124(1-2), 3-22.
dc.relation.referencesButler, K. T., Davies, D. W., Cartwright, H., Isayev, O., & Walsh, A. (2018). Machine learning for molecular and materials science. Nature, 559(7715), 547-555. https://doi.org/10.1038/s41586-018-0337-2
dc.relation.referencesCampbell, G. S.; Jungbauer, J. D. Jr; Bidlake, W. R; Hungerford, R. D. (1994). Predicting The Effect Of Temperature On Soil Thermal Conductivity. Soil Science 158(5):p 307-313, November.
dc.relation.referencesCanellas, L. P., Olivares, F. L., Okorokova-Façanha, A. L., & Façanha, A. R. (2002). Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant physiology, 130(4), 1951-1957.
dc.relation.referencesChaganti, V. N., & Crohn, D. M. (2015). Evaluating the relative contribution of physiochemical and biological factors in ameliorating a saline–sodic soil amended with composts and biochar and leached with reclaimed water. Geoderma, 259, 45-55.
dc.relation.referencesChassapis, K., Roulia, M. 2008. Evaluation of low-rank coals as raw material for Fe and Ca organomineral fertilizer using a new EDXRF method. Int. J. Coal Geol. 75: 185–188.
dc.relation.referencesChawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling technique. Journal Of Artificial Intelligence Research, 16, 321- 357. https://doi.org/10.1613/jair.953.
dc.relation.referencesChen, S. X. (2008). Thermal conductivity of sands. Heat And Mass Transfer, 44(10), 1241-1246. https://doi.org/10.1007/s00231-007-0357-1.
dc.relation.referencesChen, Y. and Aviad, T. 1990. Effect of humic substances on plant growth. In MacCarthy, P. (ed.) Humic Substances in Soil and Crop Sciences: Selected Readings. ASA-SSSA, Madison. pp. 161–186.
dc.relation.referencesChen, Y., Shinogi, Y y Ttaira, M. (2010). Influence of biochar use on sugarcane growth, soil parameters, and groundwater quality, doi:10.1071/SR1001, Aust. J. Soil Res., 48, 526– 530.
dc.relation.referencesChen, Y. O. N. A., Clapp, C. E., & Magen, H. (2004). Mechanisms of plant growth stimulation by humic substances: The role of organo-iron complexes. Soil Science and Plant Nutrition, 50(7), 1089-1095.
dc.relation.referencesChen, Z., Li, Y., Hu, M., Xiong, Y., Huang, Q., Jin, S., & Huang, G. (2023). Lignite bioorganic fertilizer enhanced microbial co-occurrence network stability and plant– microbe interactions in saline-sodic soil. Science of The Total Environment, 879, 163113.
dc.relation.referencesChristanis, K., Giannouli, A., Kalaitzidis, S., Katzur, J., Böcker,L., Petrakis, G. 2006. Application of soil-improving media produced on lignite-basis on the rehabilitation of post- mining sites. Mineral Wealth 140: 43–55.
dc.relation.referencesChung, S., & Horton, R. (1987). Soil heat and water flow with a partial surface mulch. Water Resources Research, 23(12), 2175-2186. https://doi.org/10.1029/wr023i012p02175
dc.relation.referencesCiarkowska, K., Sołek-Podwika, K., Filipek-Mazur, B., & Tabak, M. (2017). Comparative effects of lignite-derived humic acids and FYM on soil properties and vegetable yield. Geoderma, 303, 85-92.
dc.relation.referencesÇimrin, K. M., Türkmen, Ö., Turan, M., & Tuncer, B. (2010). Phosphorus and humic acid application alleviate salinity stress of pepper seedling. African Journal of Biotechnology, 9(36).
dc.relation.referencesClapp, C. E., Hayes, M. H. B., Simpson, A. J., & Kingery, W. L. (2005). Chemistry of soil organic matter. Chemical processes in soils, 8, 1-150.
dc.relation.referencesColeman, N. T., & Mehlich, A. (1957). The chemistry of soil pH. Soil: The, 72-79.
dc.relation.referencesCôté, J., & Konrad, J. M. (2005). A generalized thermal conductivity model for soils and construction materials. Canadian Geotechnical Journal, 42(2), 443-458.
dc.relation.referencesCriquet, S., Clouard, M., Borschneck, D., Ziarelli, F., & Keller, C. (2023). Pedobiological properties of a lignite spoil heap in the Provence coal mine basin (south-east of France). Geoderma Regional, 35, e00711.
dc.relation.referencesCubillos, J. 2014. Efecto de la aplicación de bacterias productoras de sustancias húmicas mediante la biosolubilización de carbón de bajo rango en un suelo salino-sódico en el valle del Cesar. Universidad Nacional de Colombia.
dc.relation.referencesCubillos-Hinojosa, J. G., Valero, N. O., & Melgarejo, L. M. (2015). Assessment of a low rank coal inoculated with coal solubilizing bacteria as an organic amendment for a saline- sodic soil. Chemical and biological technologies in agriculture, 2, 1-10.
dc.relation.referencesCubillos-Hinojosa, J. G., Valero, N., & Peralta Castilla, A. D. J. (2017). Effect of a low rank coal inoculated with coal solubilizing bacteria for the rehabilitation of a saline-sodic soil in field conditions. Revista Facultad Nacional de Agronomía Medellín, 70(3), 8271-8283.
dc.relation.referencesCui, F., Zhang, W., Liu, Z., Wang, W., Chen, J., Jin, L., & Peng, H. (2020). Assessment for Thermal Conductivity of Frozen Soil Based on Nonlinear Regression and Support Vector Regression Methods. Advances In Civil Engineering, 2020, 1-12. https://doi.org/10.1155/2020/8898126.
dc.relation.referencesDai, Y., Wei, N., Yuan, H., Zhang, S., Shangguan, W., Liu, S., ... & Xin, Y. (2019). Evaluation of soil thermal conductivity schemes for use in land surface modeling. Journal of Advances in Modeling Earth Systems, 11(11), 3454-3473.
dc.relation.referencesDas, S.K. Biochar Application Method and Amount Both Changed the Dynamics of Soil Temperature-Moisture-Metals in an Acidic Inceptisols. Water Air Soil Pollut 235, 303 (2024). https://doi-org.ezproxy.unal.edu.co/10.1007/s11270-024-07108-2
dc.relation.referencesDe Vries, D. A. (1963). Thermal properties of soils. Physics of plant environment., In W.R. van Wijk, Physics of Plant Environment, North-Holland Publishing Company, Amsterdam. 210-235.
dc.relation.referencesDe'ath, G. and Fabricius, K.E. (2000), Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology, 81: 3178-3192. https://doi.org/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
dc.relation.referencesDębska, B., Maciejewska, A., & Kwiatkowska, J. (2002). The effect of fertilization with brown coal on Haplic Luvisol humic acids.
dc.relation.referencesDec, D., Dörner, J., Horn, R., 2009. Effect of soil management on their thermal properties. J. Soil Sci. Plant Nutr. 9, 26–39.
dc.relation.referencesDecagon Devices Inc., (2008). KD2 Pro Thermal Properties Analyzer Operator’s Manual Version 12(pp. 72): Decagon Devices, Inc.,
dc.relation.referencesDe Kreij C., Basar H. 1995. Effect of humic substances in nutrient film technique on nutrient uptake. Journal of Plant Nutrition, 18: 793–802.
dc.relation.referencesDemisie, W., Liu, Z., & Zhang, M. (2014). Effect of biochar on carbon fractions and enzyme activity of red soil. CATENA, 121, 214-221. https://doi.org/10.1016/j.catena.2014.05.020.
dc.relation.referencesDeng, Z. (2004). Modeling of standing column wells in ground source heat pump systems. Oklahoma State University.
dc.relation.referencesDobbss, L. B., Canellas, L. P., Olivares, F. L., Aguiar, N. O., Peres, L. E. P., Azevedo, M., Spaccini, R., Piccolo, A., & Façanha, A. R. (2010). Bioactivity of Chemically Transformed Humic Matter from Vermicompost on Plant Root Growth. Journal Of Agricultural And Food Chemistry, 58(6), 3681-3688. https://doi.org/10.1021/jf904385c
dc.relation.referencesDobrokhotov, A. V., & Kozyreva, L. V. (2023). Influence of the biochar application on the thermal properties of soddy-podzolic soil and on the energy balance fluxes of spring wheat in the Leningrad region under various soil moisture conditions. Бюллетень Почвенного института им. ВВ Докучаева, (116), 43-75.
dc.relation.referencesDomazetis, G., & James, B. D. (2006). Molecular models of brown coal containing inorganic species. Organic geochemistry, 37(2), 244-259.
dc.relation.referencesDong, L., Zhang, W., Xiong, Y., Zou, J., Huang, Q., Xu, X., ... & Huang, G. (2022). Impact of short-term organic amendments incorporation on soil structure and hydrology in semiarid agricultural lands. International Soil and Water Conservation Research, 10(3), 457-469.
dc.relation.referencesDunlap, J. (1986). Influence of soil temperature on the early growth of three muskmelon cultivars. Scientia Horticulturae, 29(3), 221-228. https://doi.org/10.1016/0304- 4238(86)90065-8
dc.relation.referencesEyheraguibel, B., Silvestre, J., & Morard, P. (2008). Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresource technology, 99(10), 4206-4212.
dc.relation.referencesFarouki, O. T. (1981). The thermal properties of soils in cold regions. Cold Regions Science and Technology, 5(1), 67-75.
dc.relation.referencesFei, Z., Yang, F., Tsui, K. L., Li, L., & Zhang, Z. (2021). Early prediction of battery lifetime via a machine learning based framework. Energy, 225, 120205.
dc.relation.referencesFicke, L. E., Novak, R. R., & Brennecke, J. F. (2010). Thermodynamic and thermophysical properties of ionic liquid+ water systems. Journal of Chemical & Engineering Data, 55(11), 4946-4950.
dc.relation.referencesFischer, B. M., Manzoni, S., Morillas, L., Garcia, M., Johnson, M. S., & Lyon, S. W. (2019). Improving agricultural water use efficiency with biochar–A synthesis of biochar effects on water storage and fluxes across scales. Science of the Total Environment, 657, 853-862.
dc.relation.referencesFu, Y., Lu, S., Ren, T., Horton, R., & Heitman, J. L. (2021). Estimating soil water retention curves from soil thermal conductivity measurements. Journal of Hydrology, 603, 127171.
dc.relation.referencesGamage, D. N. V., Biswas, A., & Strachan, I. B. (2019). Spatial variability of soil thermal properties and their relationships with physical properties at field scale. Soil And Tillage Research, 193, 50-58. https://doi.org/10.1016/j.still.2019.05.012
dc.relation.referencesGanjegunte, G. K., King, L. A., & Vance, G. F. (2008). Cumulative soil chemistry changes from land application of saline–sodic waters. Journal of Environmental Quality, 37(S5), S- 128.
dc.relation.referencesGasca, C. A., Menjivar, J. C., & Torrente Trujillo, A. (2011). Changes specific absortion rate (SAR) and exchange sodium percentaje (ESP) of a soil and its influence on microbial activity and biomass. Acta Agronómica, 60(1), 27-38.
dc.relation.referencesGayathri, R., Rani, S. U., Čepová, L., Rajesh, M., & Kalita, K. (2022). A Comparative Analysis of Machine Learning Models in Prediction of Mortar Compressive Strength. Processes, 10(7), 1387. https://doi.org/10.3390/pr10071387
dc.relation.referencesGharaibeh, M. A., Eltaif, N. I., & Shra’Ah, S. H. (2010). Reclamation of a calcareous saline-sodic soil using phosphoric acid and by-product gypsum. Soil Use and Management, 26(2), 141-148.
dc.relation.referencesGhuman, B. y Lal, R., (1985). Thermal conductivity, thermal diffusivity, and thermal capacity of some nigerian soils, https://doi.org/10.1097/00010694-198501000-00011, Soil Science, 139, 74–80
dc.relation.referencesGiannouli, A., Kalaitzidis, S., Siavalas, G., Chatziapostolou, A., Christanis, K., Papazisimou, S., Papanicolaou, C., & Foscolos, A. (2008). Evaluation of Greek low-rank coals as potential raw material for the production of soil amendments and organic fertilizers. International Journal Of Coal Geology, 77(3-4), 383-393. https://doi.org/10.1016/j.coal.2008.07.008
dc.relation.referencesGithinji, L. (2014). Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Archives of Agronomy and Soil Science, 60(4), 457-470.
dc.relation.referencesGithinji, L. (2014). Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Archives of Agronomy and Soil Science, 60(4), 457-470.
dc.relation.referencesGrattan S.R., Grieve C.M.,1999. Salinity mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78: 127–157.
dc.relation.referencesGuntiñas, M., Leirós, M., Trasar-Cepeda, C., & Gil-Sotres, F. (2012). Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study. European Journal Of Soil Biology, 48, 73-80. https://doi.org/10.1016/j.ejsobi.2011.07.015
dc.relation.referencesGuo, G., Zhang, H., Araya, K., Jia, H., Ohomiya, K., & Matsuda, J. (2007). Improvement of salt-affected soils, Part 4: Heat transfer coefficient and thermal conductivity of salt-affected soils. Biosystems engineering, 96(4), 593-603.
dc.relation.referencesGuo, L., Nie, Z., Zhou, J., Zhang, S., An, F., Zhang, L., Tóth, T., Yang, F., & Wang, Z. (2022). Effects of Different Organic Amendments on Soil Improvement, Bacterial Composition, and Functional Diversity in Saline–Sodic Soil. Agronomy, 12(10), 2294. https://doi.org/10.3390/agronomy12102294
dc.relation.referencesGuo, L., Nie, Z., Zhou, J., An, F., Zhang, L., Zhang, S., Tóth, T., Yang, F., & Wang, Z. (2023). Effects of organic amendments on soil bacterial community structure and yield in a saline-sodic soil cropped with rice. Land Degradation And Development, 34(17), 5514- 5527. https://doi.org/10.1002/ldr.4861.
dc.relation.referencesGuyader, E. L., Morvan, X., Miconnet, V., Marin, B., Moussa, M., Intrigliolo, D. S., Delgado-Iniesta, M. J., Girods, P., Fontana, S., Sbih, M., Boumaraf, B., Tirichine, A., Kavvadias, V., & Gommeaux, M. (2024b). Influence of Date Palm-Based Biochar and Compost on Water Retention Properties of Soils with Different Sand Contents. Forests, 15(2), 304. https://doi.org/10.3390/f15020304
dc.relation.referencesHadas, A. (1977). Heat Transfer in Dry Aggregated Soil: I. Heat Conduction. Soil Science Society Of America Journal, 41(6), 1055-1059. https://doi.org/10.2136/sssaj1977.03615995004100060007x.
dc.relation.referencesHaigh, S. K. (2012). Thermal conductivity of sands. Geotechnique, 62(7), 617-625.
dc.relation.referencesHanson, B.R., & Kaita, K. (1997). Response of Electromagnetic Conductivity Meter to Soil Salinity and Soil-Water Content. Journal of Irrigation and Drainage Engineering-asce, 123, 141-143.
dc.relation.referencesHayes, M. H., & Clapp, C. E. (2001). Humic substances: considerations of compositions, aspects of structure, and environmental influences. Soil Science, 166(11), 723-737. https://doi.org/10.1097/00010694-200111000-00002
dc.relation.referencesHe, H., Zhao, Y., Dyck, M. F., Si, B., Jin, H., Lv, J., & Wang, J. (2017). A modified normalized model for predicting effective soil thermal conductivity. Acta Geotechnica, 12(6), 1281-1300. https://doi.org/10.1007/s11440-017-0563-z
dc.relation.referencesHeitman, JL , R. Horton , TJ Sauer y TM DeSutter ( 2008 ), Sensible Heat Observations Reveal Soil-Water Evaporation Dynamics, J. Hydrometeorol. , 9 , 165 – 171 , doi: 10.1175/2007JHM963.1 .
dc.relation.referencesHinojosa, J. G. C., Valero, N. o. V., & De Jesús Peralta, A. (2017). Effect of a low rank coal inoculated with coal solubilizing bacteria for the rehabilitation of a saline-sodic soil in field conditions. Revista Facultad Nacional de Agronomía Medellín, 70(3), 8271-8283. https://doi.org/10.15446/rfna.v70n3.62478.
dc.relation.referencesHonorato, R. 2000. Manual de Edafología. 4a ed. Santiago: Universidad Católica de Chile Alfaomega 267 p.
dc.relation.referencesHopmans, J. W., & Overmars, B. (1986). Presentation and application of an analytical model to describe soil hydraulic properties. Journal of hydrology, 87(1-2), 135-143.
dc.relation.referencesHorn, R. (1994). The Effect of Aggregation of Soils on Water, Gas, and Heat Transport. En Elsevier eBooks (pp. 335-361). https://doi.org/10.1016/b978-0-12-633070-0.50015-3
dc.relation.referencesHu, W., & Si, B. C. (2013). Soil water prediction based on its scale-specific control using multivariate empirical mode decomposition. Geoderma, 193-194, 180-188. https://doi.org/10.1016/j.geoderma.2012.10.021
dc.relation.referencesIGAC., Guzmán, I. D. G., & Morales, E. R. (2006). Métodos analíticos del laboratorio de suelos.
dc.relation.referencesImbufe, A. U., Patti, A., Surapaneni, A., & Webb, J. A. (2004). Effects of brown coal derived materials on pH and electrical conductivity of an acidic vineyard soil. ResearchGate. https://www.researchgate.net/publication/253988717_Effects_of_brown_coal_derived_ma terials_on_pH_and_electrical_conductivity_of_an_acidic_vineyard_soil
dc.relation.referencesInstituto de Hidrología, Meteorología y Estudios Ambientales. Mapa nacional de degradación de suelos por salinización IDEAM, 2019
dc.relation.referencesJackson, R D., and S. A. Taylor. 1965. Heat transfer. In Methods of soil analysis, pt 1. C. A. Black (ed.). Agron
dc.relation.referencesJahan, S., Islam, M. S., Islam, L., Rashme, T. Y., Prova, A. A., Paul, B. K., ... & Mosharof, M. K. (2021). Automated invasive cervical cancer disease detection at early stage through suitable machine learning model. SN Applied Sciences, 3, 1-17.
dc.relation.referencesJanos, P., Závodská, L., Lesný, J., Kříženecká, S., Synek, V., Hejda, S., Kub, M. 2011. Young Brown Coals for Environmental Applications: Composition, Acid-Base, IonExchange, and Sorption Properties of Selected Central European Coals. In: Coal Extraction. James J. Stewart Ed. Nova Science Publishers; Hauppauge N.Y. p. 71-90.
dc.relation.referencesJien, S., & Wang, C. (2013). Effects of biochar on soil properties and erosion potential in a highly weathered soil. CATENA, 110, 225-233. https://doi.org/10.1016/j.catena.2013.06.021
dc.relation.referencesJohansen, O. 1975. Thermal conductivity of soils. Ph.D. thesis. Trondheim, Norway (CRREL Draft Translation 637, 1977) ADA 044002.
dc.relation.referencesJones, C. A., Jacobsen, J. S., & Mugaas, A. (2007). Effect of low-rate commercial humic acid on phosphorus availability, micronutrient uptake, and spring wheat yield. Communications in Soil Science and Plant Analysis, 38(7-8), 921-933.
dc.relation.referencesJordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260. https://doi.org/10.1126/science.aaa8415.
dc.relation.referencesJu, Z., Guo, K., & Liu, X. (2023). Modelling thermal conductivity on salt-affected soils and its modification. International Journal of Thermal Sciences, 185, 108071.
dc.relation.referencesJu, Z., Ren, T., & Hu, C. (2011). Soil Thermal Conductivity as Influenced by Aggregation at Intermediate Water Contents. Soil Science Society Of America Journal, 75(1), 26-29. https://doi.org/10.2136/sssaj2010.0050n
dc.relation.referencesKardani, N., Bardhan, A., Gupta, S., Samui, P., Nazem, M., Zhang, Y., & Zhou, A. (2021). Predicting permeability of tight carbonates using a hybrid machine learning approach of modified equilibrium optimizer and extreme learning machine. Acta Geotechnica, 1-17.
dc.relation.referencesKardani, N., Aminpour, M., Raja, M. N. A., Kumar, G., Bardhan, A., & Nazem, M. (2022). Prediction of the resilient modulus of compacted subgrade soils using ensemble machine learning methods. Transportation Geotechnics, 36, 100827.
dc.relation.referencesKarhu, K., Fritze, H., Tuomi, M., Vanhala, P., Spetz, P., Kitunen, V., & Liski, J. (2009). Temperature sensitivity of organic matter decomposition in two boreal forest soil profiles. Soil Biology And Biochemistry, 42(1), 72-82. https://doi.org/10.1016/j.soilbio.2009.10.002
dc.relation.referencesKarhu, K., Mattila, T., Bergström, I., & Regina, K. (2011). Biochar addition to agricultural soil increased CH4 uptake and water holding capacity–Results from a short-term pilot field study. Agriculture, ecosystems & environment, 140(1-2), 309-313.
dc.relation.referencesKaune, A., Turk, T., & Horn, R. (1993). Alteration of soil thermal properties by structure formation. Journal Of Soil Science, 44(2), 231-248. https://doi.org/10.1111/j.1365- 2389.1993.tb00448.x
dc.relation.referencesKauser A. Malik, Azam F. 1985. Effect of humic acid on corn seedling growth. Environmental and Experimental Botany, 25: 245–252.
dc.relation.referencesKaya, C., Akram, N. A., Ashraf, M., & Sonmez, O. (2018). Exogenous application of humic acid mitigates salinity stress in maize (Zea mays L.) plants by improving some key physico-biochemical attributes. Cereal Research Communications, 46, 67-78.
dc.relation.referencesKersten, M. S. (1949, Wiener, O. (1912). Der abhandlungen der mathematisch-physischen klasse der Konigl. Sachsischen Gesellshaft der Wissenschaften, 32, 509-604.). Thermal Properties of Soils. https://conservancy.umn.edu/items/52fe807f-42d8-4d55-b644-0e3de3f54377
dc.relation.referencesKhaledi, S., Delbari, M., Galavi, H., Bagheri, H., & Chari, M. M. (2022b). Effects of biochar particle size, biochar application rate, and moisture content on thermal properties of an unsaturated sandy loam soil. Soil And Tillage Research, 226, 105579. https://doi.org/10.1016/j.still.2022.105579
dc.relation.referencesKhaled, H., & Fawy, H. A. (2011). Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil and Water Research, 6(1), 21.
dc.relation.referencesKhan, M., Akhtar, M., Ahmad, S., Khan, A., Khan, R. 2014. Chemical Composition of Lignitic Humic Acid and Evaluating its Positive impacts on Nutrient Uptake, Growth and Yield of Maize. Pak. J. Chem. 4(1): 19-25, 2014 Full Paper ISSN (Print): 2220-2625 ISSN (Online): 2222-307X DOI: 10.15228/2014.v04.i01.p04
dc.relation.referencesKhan, K. Y., Ali, B., Cui, X., Feng, Y., Stoffella, P. J., Tang, L., & Yang, X. (2017). Effect of humic acid amendment on cadmium bioavailability and accumulation by pak choi (Brassica rapa ssp. chinensis L.) to alleviate dietary toxicity risk. Archives of Agronomy and Soil Science, 63(10), 1431-1442.
dc.relation.referencesKim, H., & Park, J.H. (2024). Monitoring of soil EC for the prediction of soil nutrient regime under different soil water and organic matter contents. Applied Biological Chemistry, 67, 1-9.
dc.relation.referencesKim, H., Cosh, MH., Bindlish, R. y Lakshmi, V., (2020). Field evaluation of portable soil water content sensors in a sandy loam, https://doi.org/10.1002/vzj2.20033, Vadose Zone Journal, 19, (1)
dc.relation.referencesKong, X., Doré, G., & Calmels, F. (2019). Thermal modeling of heat balance through embankments in permafrost regions. Cold Regions Science and Technology, 158, 117- 127.
dc.relation.referencesKononova, M. 1982. Bioquímica del proceso de formación del humus. En: La materiaorgánica del suelo. Su naturaleza, propiedades y métodos de investigación. Editorial, Oikos-Tau. Barcelona (España). p. 63-109.
dc.relation.referencesKoorevaar, P., Menelik, G., & Dirksen, C. (1983). Elements of soil physics. Elsevier.
dc.relation.referencesKumar, A., & Bhattacharya, T. (2023). Biochar for improvement of soil properties. In Bio- Inspired Land Remediation (pp. 403-444). Cham: Springer International Publishing.
dc.relation.referencesLal, R. (2004). Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science, 304(5677), 1623-1627. https://doi.org/10.1126/science.1097396
dc.relation.referencesLan, T., Hu, H., Jiang, C., Yang, G., & Zhao, Z. (2020). A comparative study of decision tree, random forest, and convolutional neural network for spread-F identification. Advances in Space Research, 65(8), 2052-2061.
dc.relation.referencesŁaźny, R., Mirgos, M., Przybył, J. L., Nowak, J. S., Kunka, M., Gajc-Wolska, J., & Kowalczyk, K. (2021). Effect of Re-Used Lignite and Mineral Wool Growing Mats on Plant Growth, Yield and Fruit Quality of Cucumber and Physical Parameters of Substrates in Hydroponic Cultivation. Agronomy, 11(5), 998. https://doi.org/10.3390/agronomy11050998.
dc.relation.referencesLee Y.S., Barlett J.R. (1976): Stimulation of plant growth by humic substances. Soil Science Society of America Journal, 40: 876–879
dc.relation.referencesLeszczyńska, D., & Kwiatkowska-Malina, J. (2011). Effect of organic matter from various sources on yield and quality of plant on soils contaminated with heavy metals. Ecological Chemistry and Engineering S, 18(4), 501-507.
dc.relation.referencesLi, K. Q., Kang, Q., Nie, J. Y., & Huang, X. W. (2022). Artificial neural network for predicting the thermal conductivity of soils based on a systematic database. Geothermics, 103, 102416.
dc.relation.referencesLi, K., Horton, R., & He, H. (2023a). Application of machine learning algorithms to model soil thermal diffusivity. International Communications In Heat And Mass Transfer, 149, 107092. https://doi.org/10.1016/j.icheatmasstransfer.2023.107092
dc.relation.referencesLi, Y. Q., Li, L. J., Zhao, B. W., Zhao, Y., Zhang, X., & Dong, X. (2023b). Effects of Corn Straw Biochar, Soil Bulk Density and Soil Water Content on Thermal Properties of a Light Sierozem Soil. Nature Environment And Pollution Technology, 22(2), 895-903. https://doi.org/10.46488/nept.2023.v22i02.032
dc.relation.referencesLi, Z., Wang, S., Chin, W. S., Achenie, L. E., & Xin, H. (2017). High-throughput screening of bimetallic catalysts enabled by machine learning. Journal of Materials Chemistry A, 5(46), 24131-24138.
dc.relation.referencesLiakos, K., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine Learning in Agriculture: A Review. Sensors, 18(8), 2674. https://doi.org/10.3390/s18082674
dc.relation.referencesLiu, C., Hu, X., Yao, R., Han, Y., Wang, Y., He, W., Fan, H., & Du, L. (2020). Assessment of Soil Thermal Conductivity Based on BPNN Optimized by Genetic Algorithm. Advances In Civil Engineering, 2020, 1-10. https://doi.org/10.1155/2020/6631666
dc.relation.referencesLiu, J., & Lu, S. (2023). Amendment of different biochars changed pore characteristics and permeability of Ultisol macroaggregates identified by X-ray computed tomography (CT). Geoderma, 434, 116470. https://doi.org/10.1016/j.geoderma.2023.116470
dc.relation.referencesLiu, W., Li, R., Wu, T., Shi, X., Zhao, L., Wu, X., Hu, G., Yao, J., Xiao, Y., Ma, J., Jiao, Y., & Wang, S. (2023). Simulation of soil thermal conductivity based on different schemes: An empirical comparison of 13 models. International Journal Of Thermal Sciences, 190, 108301. https://doi.org/10.1016/j.ijthermalsci.2023.108301
dc.relation.referencesLiu, Y., Wang, Q., Zhang, X., Song, S., Niu, C., & Shangguan, Y. (2018). Using ANFIS and BPNN methods to predict the unfrozen water content of saline soil in Western Jilin, China. Symmetry, 11(1), 16.
dc.relation.referencesLiu, Z., Xu, J., Li, X., & Wang, J. (2018). Mechanisms of biochar effects on thermal properties of red soil in south China. Geoderma, 323, 41-51. https://doi.org/10.1016/j.geoderma.2018.02.045
dc.relation.referencesLiu, X., Zhao, X., & Lv, J. (2023). Molecular Characterization of Size-Fractionated Humic Acids Derived from Lignite and Its Activation of Soil Legacy Phosphorus and Lactuca sativa Growth-Promoting Performances. ACS omega, 8(7), 6838-6846.
dc.relation.referencesLohar, S., Kumari, P., Sharma, A., & Sankhla, M. S. (2024). Biochar Enhancing Soil Resilience: A Dual Strategy for Mitigating Heavy Metal Contamination and Drought Stress. ResearchGate. https://doi.org/10.33263/LIANBS132.070
dc.relation.referencesLu, H., & Mazumder, R. (2020). Randomized gradient boosting machine. SIAM Journal On Optimization, 30(4), 2780-2808. https://doi.org/10.1137/18m1223277
dc.relation.referencesLu, S., Lu, Y., Peng, W., Ju, Z., & Ren, T. (2019). A generalized relationship between thermal conductivity and matric suction of soils. Geoderma, 337, 491-497.
dc.relation.referencesLu, S., Ren, T., Gong, Y., & Horton, R. (2007). An Improved Model for Predicting Soil Thermal Conductivity from Water Content at Room Temperature. Soil Science Society Of America Journal, 71(1), 8-14. https://doi.org/10.2136/sssaj2006.0041
dc.relation.referencesLv, Z., Lou, R., Feng, H., Chen, D., & Lv, H. (2021). Novel machine learning for big data analytics in intelligent support information management systems. ACM Transactions on Management Information System (TMIS), 13(1), 1-21.
dc.relation.referencesLyu, X., & Hu, J. (2022). Assessment of lignite upgrade and hydrogen evolution via electrolysis. Energy Conversion and Management, 253, 115181.
dc.relation.referencesMa, B., Ma, B., McLaughlin, N. B., Li, M., & Liu, J. (2022). Improvement in dryland crop performance and soil properties with multiple annual applications of lignite-derived humic amendment. Soil And Tillage Research, 218, 105306. https://doi.org/10.1016/j.still.2021.105306.
dc.relation.referencesMackowiak, C. L., Grossl, P. R., & Bugbee, B. G. (2001). Beneficial effects of humic acid on micronutrient availability to wheat. Soil Science Society of America Journal, 65(6), 1744-1750.
dc.relation.referencesMaggioni A., Varanini Z., Nardi S., Pinton R. (1987): Action of soil humic matter on plant roots: Stimulation of ion uptake and effects on (Mg2+, K+) ATPase activity. Science of the Total Environment, 62: 355–363.
dc.relation.referencesMajor, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2010). Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and soil, 333, 117-128.
dc.relation.referencesMalek, K., Malek, K., & Khanmohammadi, F. (2021). Response of soil thermal conductivity to various soil properties. International Communications In Heat And Mass Transfer, 127, 105516. https://doi.org/10.1016/j.icheatmasstransfer.2021.105516
dc.relation.referencesManasa, M.R., Katukuri, N.R., Darveekaran Nair, S.S., Haojie, Y., Yang, Z., & Guo, R. (2020). Role of biochar and organic substrates in enhancing the functional characteristics and microbial community in a saline soil. Journal of environmental management, 269, 110737 .
dc.relation.referencesMellander P-E, Bishop K, Lundmark T (2004) The influence of soil temperature on transpiration: a plot scale manipulation in a young Scots pine stand. For Ecol Manag 195:15–28.
dc.relation.referencesMendis, S. S., Udawatta, R. P., Anderson, S. H., Nelson, K. A., & Cordsiemon II, R. L. (2022). Effects of cover crops on soil moisture dynamics of a corn cropping system. Soil Security, 8, 100072.
dc.relation.referencesMendis, S. S., Udawatta, R. P., Anderson, S. H., Nelson, K. A., & Cordsiemon II, R. L. (2022). Effects of cover crops on soil moisture dynamics of a corn cropping system. Soil Security, 8, 100072.
dc.relation.referencesMochizuki, H., T. Miyazaki, and M. Nakano. (1998). The effect of salts on thermal conductivity of Toyoura sand. Transactions of the Japanese Society of Irrigation, Drainage and Reclamation Engineering (Japan) 198 .
dc.relation.referencesMochizuki, H., Mizoguchi, M., & Miyazaki, T. (2003). Effects of water content and NaCl concentration on thermal conductivity of swelling and nonswelling clays. Transactions of the Japanese Society of Irrigation, Drainage and Reclamation Engineering (Japan), (225).
dc.relation.referencesMontenegro H. y Malagón, D., (1990). Propiedades físicas de los suelos. Instituto Geográfico Agustín Codazzi (IGAC), Subdirección Agrológica, Colombia
dc.relation.referencesNaciones Unidas (2018), La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe (LC/G. 2681-P/Rev. 3)
dc.relation.referencesNan, J., Chen, X., Wang, X., Lashari, M. S., Wang, Y., Guo, Z., & Du, Z. (2016). Effects of applying flue gas desulfurization gypsum and humic acid on soil physicochemical properties and rapeseed yield of a saline-sodic cropland in the eastern coastal area of China. Journal of soils and sediments, 16, 38-50.
dc.relation.referencesNardi, S. Pizzeghello, D. Muscolo, A. Vianello, A. 2002. Physiological effects of humic substances on higher plants. Soil Biol Biochem. 34:1527-1536
dc.relation.referencesNatekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers In Neurorobotics, 7. https://doi.org/10.3389/fnbot.2013.00021
dc.relation.referencesNoborio, K., & McInnes, K. J. (1993). Thermal Conductivity of Salt-Affected Soils. Soil Science Society Of America Journal, 57(2), 329-334. https://doi.org/10.2136/sssaj1993.03615995005700020007x
dc.relation.referencesNovak, J., Sigua, G., Watts, D., Cantrell, K., Shumaker, P., Szogi, A., Johnson, M. G., & Spokas, K. (2016). Biochars impact on water infiltration and water quality through a compacted subsoil layer. Chemosphere, 142, 160-167. https://doi.org/10.1016/j.chemosphere.2015.06.038
dc.relation.referencesNikoosokhan, S., Nowamooz, H., & Chazallon, C. (2015). Effect of dry density, soil texture and time-spatial variable water content on the soil thermal conductivity. Geomechanics And Geoengineering, 11(2), 149-158. https://doi.org/10.1080/17486025.2015.1048313
dc.relation.referencesOchsner, T. E., Horton, R., & Ren, T. (2001). A New Perspective on Soil Thermal Properties. Soil Science Society Of America Journal, 65(6), 1641-1647. https://doi.org/10.2136/sssaj2001.1641
dc.relation.referencesO’Keefe, J. M., Bechtel, A., Christanis, K., Dai, S., DiMichele, W. A., Eble, C. F., Esterle, J. S., Mastalerz, M., Raymond, A. L., Valentim, B. V., Wagner, N. J., Ward, C. R., & Hower, J. C. (2013). On the fundamental difference between coal rank and coal type. International Journal Of Coal Geology, 118, 58-87. https://doi.org/10.1016/j.coal.2013.08.007
dc.relation.referencesOrtiz, O., & Ramirez, R. (2022). Impacto de la adición de carbón de bajo rango en la conductividad térmica del suelo salino sódico. Información tecnológica, 33(4), 53-62.
dc.relation.referencesOuyang, L., Wang, F., Tang, J., Yu, L., & Zhang, R. (2013). Effects of biochar amendment on soil aggregates and hydraulic properties. Journal of soil science and plant nutrition, 13(4), 991-1002.
dc.relation.referencesPadarian, J., Minasny, B., & McBratney, A. B. (2020). Machine learning and soil sciences: a review aided by machine learning tools. SOIL, 6(1), 35-52. https://doi.org/10.5194/soil- 6-35-2020
dc.relation.referencesPadarian, J., Minasny, B., & McBratney, A. B. (2020b). Machine learning and soil sciences: a review aided by machine learning tools. SOIL, 6(1), 35-52. https://doi.org/10.5194/soil-6-35-2020
dc.relation.referencesPagliai, M., Vignozzi, N., & Pellegrini, S. (2004). Soil structure and the effect of management practices. Soil And Tillage Research, 79(2), 131-143. https://doi.org/10.1016/j.still.2004.07.002
dc.relation.referencesPantoja-Guerra, M., Ramirez-Pisco, R. y Valero-Valero, N., (2019). Improvement of mining soil properties through the use of a new bio-conditioner prototype: a greenhouse trial, https://doi.org/10.1007/s11368-018-2206-x, J Soils Sediments 19, 1850–1865
dc.relation.referencesPatwa, D., Chandra, A., Ravi, K., & Sreedeep, S. (2021). Influence of Biochar Particle Size Fractions on Thermal and Mechanical Properties of Biochar-Amended Soil. Journal Of Materials In Civil Engineering, 33(9). https://doi.org/10.1061/(asce)mt.1943- 5533.0003915
dc.relation.referencesParamashivam, D., Clough, T.J., Carlton, A., Gough, K., Dickinson, N., Horswell, J., Sherlock, R.R., Clucas, L. and Robinson, B.H. (2016). The effect of lignite on nitrogen mobility in a low-fertility soil amended with biosolids and urea. Science of the Total Environment, 543, 601-608.
dc.relation.referencesPavlovich, L. B., & Strakhov, V. M. (2018). Effect of humic fertilizers from brown coal on the mineral composition of vegetable crops. Solid Fuel Chemistry, 52, 206-210.
dc.relation.referencesPeng, X., Ye, L., Wang, C., Zhou, H., & Sun, B. (2011). Temperature- and duration- dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil And Tillage Research, 112(2), 159-166. https://doi.org/10.1016/j.still.2011.01.002
dc.relation.referencesPeng, X., Zhu, Q. H., Xie, Z., Darboux, F., & Holden, N. M. (2015). The impact of manure, straw and biochar amendments on aggregation and erosion in a hillslope Ultisol. CATENA, 138, 30-37. https://doi.org/10.1016/j.catena.2015.11.008
dc.relation.referencesPeña-Mendez EM, Havel J y Patocka J., (2005). Humic substances compounds of still unknown structure applications in agriculture, industry, environment and biomedicine, doi: 10.32725/jab.2005.002, J Appl Biomed, 3,13–24
dc.relation.referencesPetersen, C. T., Hansen, E., Larsen, H. H., Hansen, L. V., Ahrenfeldt, J., & Hauggaard- Nielsen, H. (2016). Pore-size distribution and compressibility of coarse sandy subsoil with added biochar. European Journal of Soil Science, 67(6), 726-736.
dc.relation.referencesPiccolo A. y Mbagwu JS., (1999). Role of hydrophobic components of soil organic matter on soil aggregate stability, https://doi.org/10.2136/sssaj1999.6361801x, Soil Sci Soc Am J,63, 1801–10
dc.relation.referencesPiccolo, A., Nardi, S., & Concheri, G. (1996). Macromolecular changes of humic substances induced by interaction with organic acids. European Journal of Soil Science, 47(3), 319-328.
dc.relation.referencesPiccolo, A., Pietramellara, G. y Mbagwu, J., (1995). Use of humic substances as soil conditioners to increase aggregate stability, Geoderma, https://doi.org/10.1016/S0016- 7061(96)00092-4, Volume 75, Issues 3–4, Pages 267-277
dc.relation.referencesPiccolo A, Spaccini R, Nieder R (2004) Sequestration of a biologically labile organic carbon in soils by humified organic matter. Climatic Change 67(2-3):329-343.
dc.relation.referencesPorta C., J., M. López-Acevedo y C. Roquero. (1994). Edafología para la agricultura y el medio ambiente. Mundi-Prensa. Madrid, España.
dc.relation.referencesPotter, K. N., Cruse, R. M., & Horton, R. (1985). Tillage Effects on Soil Thermal Properties. Soil Science Society Of America Journal, 49(4), 968-973. https://doi.org/10.2136/sssaj1985.03615995004900040035x
dc.relation.referencesPranagal, J., & Kraska, P. (2020). 10-Years Studies of the Soil Physical Condition after One-Time Biochar Application. Agronomy, 10(10), 1589. https://doi.org/10.3390/agronomy10101589
dc.relation.referencesQi, Y., Szendrak, D., Yuen, R. T. W., Hoadley, A. F., & Mudd, G. (2011). Application of sludge dewatered products to soil and its effects on the leaching behaviour of heavy metals. Chemical Engineering Journal, 166(2), 586-595.
dc.relation.referencesQi, Y., Szendrak, D., Yuen, R. T. W., Hoadley, A. F., & Mudd, G. (2011). Application of sludge dewatered products to soil and its effects on the leaching behaviour of heavy metals. Chemical Engineering Journal, 166(2), 586-595.
dc.relation.referencesR Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
dc.relation.referencesRamezanzadeh, H., Zarehaghi, D., Baybordi, A., Bouket, A. C., Oszako, T., Alenezi, F. N., & Belbahri, L. (2023). The impacts of biochar-assisted factors on the hydrophysical characteristics of amended soils: a review. Sustainability, 15(11), 8700.
dc.relation.referencesRichards, L.A., 1954. Diagnosis and improvement of saline and alkali soils. Soil Sci. 78 (2),154.
dc.relation.referencesRietz, D.N., Haynes, R.J., 2003. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol. Biochem. 35 (6), 845–854.
dc.relation.referencesRizvi, Z. H., Husain, S. M. B., Haider, H., & Wuttke, F. (2020). Effective thermal conductivity of sands estimated by Group Method of Data Handling (GMDH). Materials Today Proceedings, 26, 2103-2107. https://doi.org/10.1016/j.matpr.2020.02.454.
dc.relation.referencesRojas, A., Zúñiga, O., De Prager, M. S., Pérez, J., & Gascó, J. M. (2007). Conductividad térmica del suelo, materia orgánica, actividad y biomasa microbianas en sistemas de cultivo de maracuyá en Toro, Valle del Cauca. Revista Colombiana de Ciencias Químico- Farmacéuticas, 56(1), 17-22.
dc.relation.referencesRose, M. T., Perkins, E. L., Saha, B. K., Tang, E. C. W., Cavagnaro, T. R., Jackson, W. R., Hapgood, K. P., Hoadley, A. F. A., & Patti, A. F. (2016). A slow release nitrogen fertiliser produced by simultaneous granulation and superheated steam drying of urea with brown coal. Chemical And Biological Technologies In Agriculture, 3(1). https://doi.org/10.1186/s40538-016-0062-8
dc.relation.referencesRovdan E.N. y Usowicz B., (2002). Investigation of thermal conductivity of some Polesye soils (in Polish), In: Proceedings of the Polish–Ukrainian–Byelorussian Conference on Natural Environment of Polesye-Current State and Changes, Lublin-Shatsk-Briest, June 17-21
dc.relation.referencesSahin, E. K., Colkesen, I., & Kavzoglu, T. (2020). A comparative assessment of canonical correlation forest, random forest, rotation forest and logistic regression methods for landslide susceptibility mapping. Geocarto International, 35(4), 341-363.
dc.relation.referencesSangeetha, M., & Singaram, P. (2007). Effect of lignite humic acid and inorganic fertilizers on growth and yield of onion. AN ASIAN JOURNAL OF SOIL SCIENCE, 2(1), 108-110. http://www.connectjournals.com/file_html_pdf/588401H_108-110a.pdf
dc.relation.referencesSanuade, O. A., Adetokunbo, P., Oladunjoye, M. A., & Olaojo, A. A. (2018). Predicting moisture content of soil from thermal properties using artificial neural network. Arabian Journal of Geosciences, 11, 1-10.
dc.relation.referencesSarlaki, E., Kianmehr, M. H., Ghorbani, M., Kermani, A. M., Vakilian, K. A., Angelidaki, I., Wang, Y., Gupta, V. K., Pan, J., Tabatabaei, M., & Aghbashlo, M. (2023). Highly humified nitrogen-functionalized lignite activated by urea pretreatment and ozone plasma oxidation. Chemical Engineering Journal, 456, 140978. https://doi.org/10.1016/j.cej.2022.140978
dc.relation.referencesSarlaki, E., Kianmehr, M. H., Kermani, A., Ghorbani, M., Javid, M. G., Rezaei, M., Peng, W., Lam, S. S., Tabatabaei, M., Aghbashlo, M., & Chen, X. (2023b). Valorizing lignite waste into engineered nitro-humic fertilizer: Advancing resource efficiency in the era of a circular economy. Sustainable Chemistry And Pharmacy, 36, 101283. https://doi.org/10.1016/j.scp.2023.101283
dc.relation.referencesSaruhan, V., Kusvuran, A., & Kokten, K. (2011). The effect of different replications of humic acid fertilization on yield performances of common vetch (Vicia sativa L.). African Journal of Biotechnology, 10(29), 5587-5592.
dc.relation.referencesSchnitzer M. (1982): Organic matter characterization. In: Page A.L., Miller R.H., Keeney D.R. (eds): Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. 2nd Ed. Soil Science Society of America, Madison, 581–594.
dc.relation.referencesSchnitzer M. (1982): Organic matter characterization. In: Page A.L., Miller R.H., Keeney D.R. (eds): Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. 2nd Ed. Soil Science Society of America, Madison, 581–594.
dc.relation.referencesSchönenberger, J., Momose, T., Wagner, B., Leong, W. H., & Tarnawski, V. R. (2012). Canadian field soils I. Mineral composition by XRD/XRF measurements. International Journal of Thermophysics, 33, 342-362.
dc.relation.referencesSenanayake, I., Yeo, I., Walker, J., & Willgoose, G. (2021). Estimating catchment scale soil moisture at a high spatial resolution: Integrating remote sensing and machine learning. The Science Of The Total Environment, 776, 145924. https://doi.org/10.1016/j.scitotenv.2021.145924
dc.relation.referencesSenesi, N., Plaza, C., Brunetti, G y Polo, A. A., (2007). Comparative Survey of Recent Results on Humic-Like Fractions in Organic Amendments and Effects on Native Soil Humic Substances, Soil Biology and Biochemistry, 39, 1244–1262, DOI: 10.1016/j.soilbio.2006.12.002
dc.relation.referencesSharif, M., Khattak, R. A. and Sarir, M. S. 2002. Effect of different levels of lignitic coal derived humic acid on growth of maize plants. Commun. Soil Sci. Plant Anal. 33: 3567– 3580.
dc.relation.referencesSingh, D. N., & Devid, K. (2000). Generalized relationships for estimating soil thermal resistivity. Experimental Thermal and Fluid Science, 22(3-4), 133-143.
dc.relation.referencesSkodras, G., Kokorotsikos, P., & Serafidou, M. (2014). Cation exchange capability and reactivity of low-rank coal and chars. Open Chemistry, 12(1), 33-43. https://doi.org/10.2478/s11532-013-0346-9
dc.relation.referencesSolek-Podwika, K., Ciarkowska, K., & Filipek-Mazur, B. (2023). Soil Amendment with a Lignite-Derived Humic Substance Affects Soil Properties and Biomass Maize Yield. Sustainability, 15(3), 2304. https://doi.org/10.3390/su15032304
dc.relation.referencesStevenson, F. G. (1994). Humus chemistry: Genesis, composition, reactions. John Wiley & Sons.
dc.relation.referencesTahir, M., Khurshid, M., Khan, M., Abbasi, M., & Kazmi, M. (2010). Lignite-Derived Humic Acid Effect on Growth of Wheat Plants in Different Soils. Pedosphere, 21(1), 124-131. https://doi.org/10.1016/s1002-0160(10)60087-2
dc.relation.referencesTang, Y., Yang, Y., Cheng, D., Gao, B., Wan, Y., Li, Y. C., Yao, Y., Xie, J., & Liu, L. (2019). Multifunctional Slow-Release Fertilizer Prepared from Lignite Activated by a 3D-Molybdate-Sulfur Hierarchical Hollow Nanosphere Catalyst. ACS Sustainable Chemistry& Engineering, 7(12), 10533-10543. https://doi.org/10.1021/acssuschemeng.9b01092
dc.relation.referencesTanure, M., Costa, L., y otros cinco autores., Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil, DOI: 173. 10.1016/j.still.2019.05.007, Soil and Tillage Research, 192, 164 (2019)
dc.relation.referencesTarnawski, V. R., Coppa, P., Leong, W. H., McCombie, M., & Bovesecchi, G. (2020). On modelling the thermal conductivity of soils using normalized-multi-variable pedotransfer functions. International Journal of Thermal Sciences, 156, 106493.
dc.relation.referencesTarnawski, V. R., Leong, W. H., McCombie, M., & Bovesecchi, G. (2022). Estimating soil thermal conductivity by weighted average models with soil solids as a continuous medium. International Journal of Thermophysics, 43(12), 182.
dc.relation.referencesTarnawski, V. R., McCombie, M. L., Leong, W. H., Coppa, P., Corasaniti, S., & Bovesecchi, G. (2018). Canadian field soils IV: modeling thermal conductivity at dryness and saturation. International Journal of Thermophysics, 39, 1-29.
dc.relation.referencesTarnawski, V. R., Wagner, B., Leong, W. H., McCombie, M., Coppa, P., & Bovesecchi, G. (2021). Soil thermal conductivity model by de Vries: Re-examination and validation analysis. European Journal of Soil Science, 72(5), 1940-1953.
dc.relation.referencesTikhonravova, P. I. (2007). Effect of the water content on the thermal diffusivity of clay loams with different degrees of salinization in the Transvolga region. Eurasian Soil Science, 40, 47-50.
dc.relation.referencesToková, L., Igaz, D., Horák, J., & Aydın, E. (2023). Can application of biochar improve the soil water characteristics of silty loam soil? Journal Of Soils And Sediments, 23(7), 2832- 2847. https://doi.org/10.1007/s11368-023-03505-y
dc.relation.referencesTran, C. K. T., Rose, M. T., Cavagnaro, T. R., & Patti, A. F. (2015). Lignite amendment has limited impacts on soil microbial communities and mineral nitrogen availability. Applied Soil Ecology, 95, 140-150.
dc.relation.referencesTrevisan S, Francioso O, Quaggiottil S, Nardi S. 2010. Humic substances biological activity at the plant-soil interface From environmental aspects to molecular factors. Plant Sig Beh 5(6):635-643.
dc.relation.referencesTsetsegmaa, G., Akhmadi, K., Cho, W., Lee, S., Chandra, R., Jeong, C. E., ... & Kang, H. (2018). Effects of oxidized brown coal humic acid fertilizer on the relative height growth rate of three tree species. Forests, 9(6), 360.
dc.relation.referencesTurgay, O. C., Karaca, A., Unver, S., & Tamer, N. (2011). Effects of Coal- Derived Humic Substance on Some Soil Properties and Bread Wheat Yield. Communications in Soil Science and Plant Analysis, 42(9), 1050–1070. https://doi.org/10.1080/00103624.2011.562586
dc.relation.referencesUlukan, H., Effect of soil applied humic acid at different sowing times on some yield components in wheat (Triticum spp.) hybrids, DOI: 10.3923/ijb.2008.164.175, Int. J. Bot., 4: 164-175 (2008)
dc.relation.referencesUsowicz, B., Kossowski, J., & Baranowski, P. (1996). Spatial variability of soil thermal properties in cultivated fields. Soil And Tillage Research, 39(1-2), 85-100. https://doi.org/10.1016/s0167-1987(96)01038-0
dc.relation.referencesUsowicz, B., Lipiec, J., Usowicz, J., & Marczewski, W. (2012). Effects of aggregate size on soil thermal conductivity: Comparison of measured and model-predicted data. International Journal Of Heat And Mass Transfer, 57(2), 536-541. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.067
dc.relation.referencesUsowicz, B., Lipiec, J., Łukowski, M., Bis, Z., Usowicz, J., & Latawiec, A. E. (2020). Impact of biochar addition on soil thermal properties: Modelling approach. Geoderma, 376, 114574. https://doi.org/10.1016/j.geoderma.2020.114574
dc.relation.referencesValero, N., Gómez, L., Pantoja, M., & Ramírez, R. (2014). Production of humic substances through coal-solubilizing bacteria. Brazilian Journal Of Microbiology, 45(3), 911-918. https://doi.org/10.1590/s1517-83822014000300021.
dc.relation.referencesValero, N., Melgarejo, L. M., & Ramírez, R. (2016). Effect of low-rank coal inoculated with coal solubilizing bacteria on edaphic materials used in post-coal-mining land reclamation: a greenhouse trial. Chemical and Biological Technologies in Agriculture, 3, 1-10.
dc.relation.referencesValero, N. O., Gómez, L. C., & Melgarejo, L. M. (2018). Supramolecular characterization of humic acids obtained through the bacterial transformation of a low rank coal. Journal of the Brazilian Chemical Society, 29(9), 1842-1853.
dc.relation.referencesValero Valero, N. (2013). Transformación microbiana de carbón de bajo rango para inducir cambios en las propiedades del suelo. Universidad Nacional de Colombia.
dc.relation.referencesVaughan, D., & Linehan, D. J. (1976). The growth of wheat plants in humic acid solutions under axenic conditions. Plant and Soil, 44, 445-449.
dc.relation.referencesVaughan D., Malcolm R.E. 1979. Effect of humic acid on invertase synthesis in roots of plants. Soil Biology and Biochemistry, 11: 247–252.
dc.relation.referencesVillagra-Mendoza, K., & Horn, R. (2018). Effect of biochar addition on hydraulic functions of two textural soils. Geoderma, 326, 88-95.
dc.relation.referencesWang, C., Yang, Y., Cai, G., & Zhang, T. (2024). Improvement of normalized prediction model of soil thermal conductivity. International Communications In Heat And Mass Transfer, 157, 107792. https://doi.org/10.1016/j.icheatmasstransfer.2024.107792
dc.relation.referencesWang, C., Wan, S., Xing, X., Zhang, L., & Han, X. (2006). Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biology And Biochemistry, 38(5), 1101-1110. https://doi.org/10.1016/j.soilbio.2005.09.009
dc.relation.referencesWiener, O. (1912). Der abhandlungen der mathematisch-physischen klasse der Konigl. Sachsischen Gesellshaft der Wissenschaften, 32, 509-604.
dc.relation.referencesWong, V. N., Dalal, R. C., & Greene, R. S. (2008). Salinity and sodicity effects on respiration and microbial biomass of soil. Biology and fertility of soils, 44, 943-953.
dc.relation.referencesWoodside, W. M. J. H., & Messmer, J. H. (1961). Thermal conductivity of porous media. I. Unconsolidated sands. Journal of applied physics, 32(9), 1688-1699.
dc.relation.referencesWu, S. H., Jansson, P., & Kolari, P. (2012). The role of air and soil temperature in the seasonality of photosynthesis and transpiration in a boreal Scots pine ecosystem. Agricultural And Forest Meteorology, 156, 85-103. https://doi.org/10.1016/j.agrformet.2012.01.006
dc.relation.referencesXiao, X., Horton, R., Sauer, T. J., Heitman, J. L., & Ren, T. (2011). Cumulative Soil Water Evaporation as a Function of Depth and Time. Vadose Zone Journal, 10(3), 1016-1022. https://doi.org/10.2136/vzj2010.0070
dc.relation.referencesXu, X., Luo, Y., & Zhou, J. (2012). Carbon quality and the temperature sensitivity of soil organic carbon decomposition in a tallgrass prairie. Soil Biology And Biochemistry, 50, 142-148. https://doi.org/10.1016/j.soilbio.2012.03.007
dc.relation.referencesYang, S., Li, R., Wu, T., Wu, X., Zhao, L., Hu, G., Zhu, X., Du, Y., Xiao, Y., Zhang, Y., Ma, J., Du, E., Shi, J., & Qiao, Y. (2021). Evaluation of soil thermal conductivity schemes incorporated into CLM5.0 in permafrost regions on the Tibetan Plateau. Geoderma, 401, 115330. https://doi.org/10.1016/j.geoderma.2021.115330.
dc.relation.referencesYeboah, S., Amankwaa-Yeboah, P., Asibuo, J. Y., Adomako, J., Maxwell, L., Darko, C., Agyeman, K. Pinamang, P & Butare, L. (2023). Response of common bean (Phaseolus vulgaris L.) to nutrient amendments across variable agro-climatic conditions in Ghana.
dc.relation.referencesYolcu, H., Seker, H., Gullap, M. K., Lithourgidis, A., & Gunes, A. (2011). Application of cattle manure, zeolite and leonardite improves hay yield and quality of annual ryegrass ('Lolium multiflorum'Lam.) under semiarid conditions. Australian Journal of Crop Science, 5(8), 926- 931.
dc.relation.referencesYu, J., Wang, Z., Meixner, F.X., Yang, F., Wu, H., Chen, X., 2010. Biogeochemical char- acterizations and reclamation strategies of saline–sodic soil in Northeastern China. CLEAN− Soil, Air, Water 38 (11), 1010–1016.
dc.relation.referencesYuan, J. H., Xu, R. K., Qian, W., & Wang, R. H. (2011). Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. Journal of soils and sediments, 11, 741-750.
dc.relation.referencesYurttakal, A. (2021). Extreme gradient boosting regression model for soil thermal conductivity. Thermal Science, 25(Spec. issue 1), 1-7. https://doi.org/10.2298/tsci200612001y
dc.relation.referencesZhang, K., Li, S., Peng, W., & Yu, B. (2004). Erodibility of agricultural soils on the Loess Plateau of China. Soil And Tillage Research, 76(2), 157-165. https://doi.org/10.1016/j.still.2003.09.007
dc.relation.referencesZhang, N., & Wang, Z. (2017). Review of soil thermal conductivity and predictive models. International Journal Of Thermal Sciences, 117, 172-183. https://doi.org/10.1016/j.ijthermalsci.2017.03.013
dc.relation.referencesZhang, N., Zou, H., Zhang, L., Puppala, A. J., Liu, S., & Cai, G. (2020). A unified soil thermal conductivity model based on artificial neural network. International Journal Of Thermal Sciences, 155, 106414. https://doi.org/10.1016/j.ijthermalsci.2020.106414
dc.relation.referencesZhang, Q., Wang, Y., Wu, Y., Wang, X., Du, Z., Liu, X., & Song, J. (2013). Effects of Biochar Amendment on Soil Thermal Conductivity, Reflectance, and Temperature. Soil Science Society Of America Journal, 77(5), 1478-1487. https://doi.org/10.2136/sssaj2012.0180
dc.relation.referencesZhang, T., Wang, C., Liu, S., Zhang, N., & Zhang, T. (2020). Assessment of soil thermal conduction using artificial neural network models. Cold Regions Science And Technology, 169, 102907. https://doi.org/10.1016/j.coldregions.2019.102907
dc.relation.referencesZhang, X., Zhang, X., Wang, W. (2023). Red neuronal artificial. En: Procesamiento inteligente de información con Matlab. Springer, Singapur. https://doi- org.ezproxy.unal.edu.co/10.1007/978-981-99-6449-9_1
dc.relation.referencesZhao, J., Ren, T., Zhang, Q., Du, Z., & Wang, Y. (2016). Effects of Biochar Amendment on Soil Thermal Properties in the North China Plain. Soil Science Society Of America Journal, 80(5), 1157-1166. https://doi.org/10.2136/sssaj2016.01.0020
dc.relation.referencesZhao, T., Liu, S., Xu, J., He, H., Wang, D., Horton, R., & Liu, G. (2022). Comparative analysis of seven machine learning algorithms and five empirical models to estimate soil thermal conductivity. Agricultural And Forest Meteorology, 323, 109080. https://doi.org/10.1016/j.agrformet.2022.109080
dc.relation.referencesZhao, Y., & Naeth, M. A. (2022). Application timing optimization of lignite-derived humic substances for three agricultural plant species and soil fertility (Vol. 51, No. 5, pp. 1035- 1043).
dc.relation.referencesZhao, Y., & Naeth, M. A. (2024). Synergistic effects of coal waste derived humic substances and inorganic fertilizer as soil amendments for barley in sandy soil. Heliyon, 10(8).
dc.relation.referencesZhao, Y., & Si, B. (2019). Thermal properties of sandy and peat soils under unfrozen and frozen conditions. Soil And Tillage Research, 189, 64-72. https://doi.org/10.1016/j.still.2018.12.026
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembConductividad térmica
dc.subject.lembCarbón
dc.subject.lembPropiedades fisicoquímicas del suelo
dc.subject.lembProducción vegetal
dc.subject.lembSuelos salinos
dc.subject.proposalConductividad térmica
dc.subject.proposalCarbón de bajo rango
dc.subject.proposalMateria orgánica humificada
dc.subject.proposalThermal conductivity
dc.subject.proposalLow rank coal
dc.subject.proposalHumified organic matter
dc.title.translatedDynamics of thermal conductivity and physical and chemical properties of a sodic saline soil with the application of low-rank coal and its relation to plant production.
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameGobernación del Cesar
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaProducción Agraria Sostenible.Sede Medellín
dc.contributor.orcidOrtiz Benavides, Orieta [0000-0003-3952-2888]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit