dc.rights.license | Reconocimiento 4.0 Internacional |
dc.contributor.advisor | Ramirez Pisco, Ramiro |
dc.contributor.author | Ortiz Benavides, Orieta |
dc.date.accessioned | 2025-04-22T19:59:41Z |
dc.date.available | 2025-04-22T19:59:41Z |
dc.date.issued | 2024-10-24 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88063 |
dc.description | Ilustraciones, fotografías, mapas |
dc.description.abstract | El uso de carbón de bajo rango (CBR) en suelos salino sódicos mejoró significativamente sus propiedades físicas y químicas. En esta investigación, se aplicó CBR en macetas en dosis equivalentes a 0, 2 y 4 toneladas por hectárea; en campo en dosis equivalentes a 0, 2 y 4 toneladas por hectárea y en macetas con 0, 12.5, 25 y 50% p/p. Los resultados evidenciaron que el CBR redujo la conductividad térmica (CT), el pH y la conductividad eléctrica (CE), mientras aumentó el contenido de materia orgánica y la capacidad de intercambio catiónico (CIC), mejorando las condiciones para el crecimiento vegetal. El CBR también redujo la densidad aparente y aumentó la porosidad del suelo. La CT se relacionó logarítmicamente con el contenido de agua y linealmente con la densidad aparente, siendo ambos factores cruciales en la transferencia de calor. El incremento en CBR aumentó la retención de humedad, presentándose una relación directa entre humedad y conductividad térmica. El CBR favoreció el crecimiento vegetal, mejorando la supervivencia y desarrollo foliar. Los algoritmos de aprendizaje automático implementados, como Redes Neuronales Artificiales (ANN), evidenciaron una alta correlación entre los valores medidos y predichos (R2 = 0.995), optimizando la estimación de la conductividad térmica del suelo. La combinación de CBR y modelos predictivos de inteligencia artificial ofrece una herramienta innovadora para la gestión sostenible de suelos salinos y degradados, que puede ser relacionado con la acumulación de biomasa. (Tomado de la fuente) |
dc.description.abstract | The use of low rank carbon (CBR) in sodic saline soils significantly improved their physical and chemical properties. In this research, CBR was applied in pots at doses equivalent to 0, 2 and 4 tons per hectare; in the field at doses equivalent to 0, 2 and 4 tons per hectare and in pots with 0, 12.5, 25 and 50% w/w. The results showed that CBR reduced thermal conductivity (TC), pH and electrical conductivity (EC), while increasing organic matter content and cation exchange capacity (CEC), improving conditions for plant growth. CBR also reduced bulk density and increased soil porosity. TC was logarithmically related to water content and linearly related to bulk density, both being crucial factors in heat transfer. The increase in CBR increased moisture retention, presenting a direct relationship between moisture and thermal conductivity. The CBR favored plant growth, improving leaf survival and development. The machine learning algorithms implemented, such as Artificial Neural Networks (ANN), showed a high correlation between measured and predicted values (R² = 0.995), optimizing the estimation of soil thermal conductivity. The combination of CBR and artificial intelligence predictive models offers an innovative tool for the sustainable management of saline and degraded soils, which can be related to biomass accumulation. |
dc.description.sponsorship | Universidad Nacional de Colombia |
dc.format.extent | 160 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales |
dc.title | Dinámica de la conductividad térmica y las propiedades físicas y químicas de un suelo salino sódico con la aplicación de carbón de bajo rango y su relación con la producción vegetal |
dc.type | Trabajo de grado - Doctorado |
dc.type.driver | info:eu-repo/semantics/doctoralThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Medellín - Ciencias Agrarias - Doctorado en Ciencias Agrarias |
dc.contributor.researchgroup | Agroxue |
dc.description.degreelevel | Doctorado |
dc.description.degreename | Doctor en Ciencias Agrarias |
dc.description.researcharea | Ciencias del suelo |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ciencias Agrarias |
dc.publisher.place | Medellín, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín |
dc.relation.indexed | LaReferencia |
dc.relation.references | Abad, M.; Formes, F.; Garcia, D.; Cegarra,J. y Roig,A. 1991. Effects of humic substances
from different sources on growth and nutrient content of cucumber plants. Lecture notes
«Humic substances in acquatic and terrestrial Enviroments». Earth Sciencies. Vol. 33; p.
391-396. |
dc.relation.references | Abu-Hamdeh, N. H., & Reeder, R. C. (2000). Soil Thermal Conductivity Effects of Density,
Moisture, Salt Concentration, and Organic Matter. Soil Science Society Of America
Journal, 64(4), 1285-1290. https://doi.org/10.2136/sssaj2000.6441285x |
dc.relation.references | Abu-Hamdeh, N. H. (2000). Effect of tillage treatments on soil thermal conductivity for
some Jordanian clay loam and loam soils. Soil and Tillage Research, 56(3-4), 145-151. |
dc.relation.references | Abu-Hamdeh, N. H. (2003). Thermal properties of soils as affected by density and water
content. Biosystems engineering, 86(1), 97-102. |
dc.relation.references | Abu-Hamdeh, N. H., Reeder, R. C., Khdair, A. I., & Al-Jalil, H. F. (2000). Thermal
conductivity of disturbed soils under laboratory conditions. Transactions of the ASAE,
43(4), 855-860. |
dc.relation.references | Ahmad, M. W., Mourshed, M., & Rezgui, Y. (2017). Trees vs Neurons: Comparison
between random forest and ANN for high-resolution prediction of building energy
consumption. Energy And Buildings, 147, 77-89.
https://doi.org/10.1016/j.enbuild.2017.04.038 |
dc.relation.references | Akimbekov, N., Qiao, X., Digel, I., Abdieva, G., Ualieva, P., & Zhubanova, A. (2020). The
Effect of Leonardite-Derived Amendments on Soil Microbiome Structure and Potato Yield.
Agriculture, 10(5), 147. https://doi.org/10.3390/agriculture10050147 |
dc.relation.references | Akimbekov, N., Digel, I., Abdieva, G., Ualieva, P., & Tastambek, K. (2021). Lignite
biosolubilization and bioconversion by Bacillus sp.: the collation of analytical data.
Biofuels, 12(3), 247-258. |
dc.relation.references | Al-Shammary, A. A. G., Kouzani, A. Z., Kaynak, A., Khoo, S. Y., Norton, M., & Gates, W.
(2018). Soil bulk Density Estimation Methods: A review. Pedosphere, 28(4), 581-596.
https://doi.org/10.1016/s1002-0160(18)60034-7 |
dc.relation.references | Ali, H., Al-Qahtani, H., Yilbas, B. S., & Mansoor, S. B. (2021). Thermal conductivity
assessment in a low dimension structure. International Communications in Heat and
Mass Transfer, 127, 105581. |
dc.relation.references | Aljundi, K., Pereira, C., Vieira, A., Maranha, J. R., Lapa, J., & Cardoso, R. (2024). Test
conditions influence on thermal conductivity and contact conductance of sand at transient
state. Soils and Foundations, 64(1), 101405. |
dc.relation.references | Ameijeiras Sánchez, David, González Diez, Héctor R., & Hernández Heredia, Yanio.
(2020). Revisión de algoritmos de detección y seguimiento de objetos con redes
profundas para videovigilancia inteligente. Revista Cubana de Ciencias Informáticas,
14(3), 165-195. Epub 01 de septiembre de 2020. Recuperado en 26 de septiembre de
2024, de http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2227-
18992020000300165&lng=es&tlng=es. |
dc.relation.references | Amoah-Antwi, C., Kwiatkowska-Malina, J., Thornton, S. F., Fenton, O., Malina, G., &
Szara, E. (2020). Restoration of soil quality using biochar and brown coal waste: A
review. The Science Of The Total Environment, 722, 137852.
https://doi.org/10.1016/j.scitotenv.2020.137852 |
dc.relation.references | Amoah-Antwi, C., Kwiatkowska-Malina, J., Fenton, O., Szara, E., Thornton, S. F., &
Malina, G. (2021). Holistic Assessment of Biochar and Brown Coal Waste as Organic
Amendments in Sustainable Environmental and Agricultural Applications. Water Air & Soil
Pollution, 232(3). https://doi.org/10.1007/s11270-021-05044-z |
dc.relation.references | Andry, H., Yamamoto, T., Irie, T., Moritani, S., Inoue, M., & Fujiyama, H. (2009). Water
retention, hydraulic conductivity of hydrophilic polymers in sandy soil as affected by
temperature and water quality. Journal Of Hydrology, 373(1-2), 177-183.
https://doi.org/10.1016/j.jhydrol.2009.04.020. |
dc.relation.references | Andriesse J.P. 1988. Nature and management of tropical peat soils. FAO Soils Bulletin
No. 59, United Nations, Rome, 165. |
dc.relation.references | Anemana, T., Óvári, M., Szegedi, Á., Uzinger, N., Rékási, M., Tatár, E., ... & Mihucz, V. G.
(2020). Optimization of lignite particle size for stabilization of trivalent chromium in soils.
Soil and Sediment Contamination: An International Journal, 29(3), 272-291. |
dc.relation.references | Arjumend, T., Abbasi, M. K., & Rafique, E. (2015). Effects of lignite-derived humic acid on
some selected soil properties, growth and nutrient uptake of wheat (Triticum aestivum L.)
grown under greenhouse conditions. Pakistan Journal of Botany, 47(6), 2231-2238. |
dc.relation.references | Arshad, M. A., & Azooz, R. H. (1996). Tillage Effects on Soil Thermal Properties in a
Semiarid Cold Region. Soil Science Society Of America Journal, 60(2), 561-567.
https://doi.org/10.2136/sssaj1996.03615995006000020032 |
dc.relation.references | Asai, H., Samson, B.K., Stephan, H.M., Songyikhangsuthor, K., Homma, K., Kiyono, Y.,
Inoue, Y., Shiraiwa, T., & Horie, T. (2009). Biochar amendment techniques for upland rice
production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field
Crops Research, 111, 81-84. |
dc.relation.references | ASTM D5334-08, Standard test method for determination of thermal conductivity of soil and
soft rock by thermal needle probe procedure, ASTM International, West Conshohocken,
PA, www.astm.org (2008) |
dc.relation.references | Bai, W., Kong, L., & Guo, A. (2013). Effects of physical properties on electrical
conductivity of compacted lateritic soil. Journal of rock mechanics and geotechnical
engineering, 5, 406-411. |
dc.relation.references | Balland, V., & Arp, P. A. (2005). Modeling soil thermal conductivities over a wide range of
conditions. Journal Of Environmental Engineering And Science, 4(6), 549-558.
https://doi.org/10.1139/s05-007 |
dc.relation.references | Bandeira, M., Mosca, G. y Vamerali, T., (2009). Humic acids affect root characteristics of
fodder radish (Raphanus sativus L. var. oleiformis Pers.) in metal-polluted wastes,
doi:10.1016/j.desal.200 .0 08 3. 44, Desalination, 246(1-3), 78-91 |
dc.relation.references | Bayat, M., Burkhart, H., Namiranian, M., Hamidi, S. K., Heidari, S., & Hassani, M. (2021).
Assessing biotic and abiotic effects on biodiversity index using machine learning. Forests,
12(4), 461. |
dc.relation.references | Bekele, A., Roy, J. L., & Young, M. A. (2015). Use of biochar and oxidized lignite for
reconstructing functioning agronomic topsoil: Effects on soil properties in a greenhouse
study. Canadian Journal of Soil Science, 95(3), 269-285. |
dc.relation.references | Blanco-Canqui, H. (2017). Biochar and Soil Physical Properties. Soil Science Society Of
America Journal, 81(4), 687-711. https://doi.org/10.2136/sssaj2017.01.0017 |
dc.relation.references | Bourel, M., Segura, A. M., Crisci, C., López, G., Sampognaro, L., Vidal, V., Kruk, C.,
Piccini, C., & Perera, G. (2021). Machine learning methods for imbalanced data set for
prediction of faecal contamination in beach waters. Water Research, 202, 117450.
https://doi.org/10.1016/j.watres.2021.117450 |
dc.relation.references | Boyle M., Frakenburger W.T., Stolyz L.H. 1989. The influence of organic matter on soil
aggregation and water infiltration. Journal of Production Agriculture, 2: 290–299. |
dc.relation.references | Bovesecchi, G., & Coppa, P. (2013). Basic problems in thermal-conductivity
measurements of soils. International Journal of Thermophysics, 34, 1962-1974. |
dc.relation.references | Bovesecchi, G., Coppa, P., & Potenza, M. (2017). A numerical model to explain
experimental results of effective thermal conductivity measurements on unsaturated soils.
International Journal of Thermophysics, 38(5), 68. |
dc.relation.references | Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. |
dc.relation.references | Brevik, E.C., Fenton, T.E. & Lazari, A. Soil electrical conductivity as a function of soil
water content and implications for soil mapping. Precision Agric 7, 393–404 (2006).
https://doi.org/10.1007/s11119-006-9021-x |
dc.relation.references | Bronick, C. J., & Lal, R. (2005). Soil structure and management: a review. Geoderma,
124(1-2), 3-22. |
dc.relation.references | Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O., & Walsh, A. (2018). Machine
learning for molecular and materials science. Nature, 559(7715), 547-555.
https://doi.org/10.1038/s41586-018-0337-2 |
dc.relation.references | Campbell, G. S.; Jungbauer, J. D. Jr; Bidlake, W. R; Hungerford, R. D. (1994). Predicting
The Effect Of Temperature On Soil Thermal Conductivity. Soil Science 158(5):p 307-313,
November. |
dc.relation.references | Canellas, L. P., Olivares, F. L., Okorokova-Façanha, A. L., & Façanha, A. R. (2002).
Humic acids isolated from earthworm compost enhance root elongation, lateral root
emergence, and plasma membrane H+-ATPase activity in maize roots. Plant physiology,
130(4), 1951-1957. |
dc.relation.references | Chaganti, V. N., & Crohn, D. M. (2015). Evaluating the relative contribution of
physiochemical and biological factors in ameliorating a saline–sodic soil amended with
composts and biochar and leached with reclaimed water. Geoderma, 259, 45-55. |
dc.relation.references | Chassapis, K., Roulia, M. 2008. Evaluation of low-rank coals as raw material for Fe and
Ca organomineral fertilizer using a new EDXRF method. Int. J. Coal Geol. 75: 185–188. |
dc.relation.references | Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic
Minority Over-sampling technique. Journal Of Artificial Intelligence Research, 16, 321-
357. https://doi.org/10.1613/jair.953. |
dc.relation.references | Chen, S. X. (2008). Thermal conductivity of sands. Heat And Mass Transfer, 44(10),
1241-1246. https://doi.org/10.1007/s00231-007-0357-1. |
dc.relation.references | Chen, Y. and Aviad, T. 1990. Effect of humic substances on plant growth. In MacCarthy,
P. (ed.) Humic Substances in Soil and Crop Sciences: Selected Readings. ASA-SSSA,
Madison. pp. 161–186. |
dc.relation.references | Chen, Y., Shinogi, Y y Ttaira, M. (2010). Influence of biochar use on sugarcane growth,
soil parameters, and groundwater quality, doi:10.1071/SR1001, Aust. J. Soil Res., 48,
526– 530. |
dc.relation.references | Chen, Y. O. N. A., Clapp, C. E., & Magen, H. (2004). Mechanisms of plant growth
stimulation by humic substances: The role of organo-iron complexes. Soil Science and
Plant Nutrition, 50(7), 1089-1095. |
dc.relation.references | Chen, Z., Li, Y., Hu, M., Xiong, Y., Huang, Q., Jin, S., & Huang, G. (2023). Lignite
bioorganic fertilizer enhanced microbial co-occurrence network stability and plant–
microbe interactions in saline-sodic soil. Science of The Total Environment, 879, 163113. |
dc.relation.references | Christanis, K., Giannouli, A., Kalaitzidis, S., Katzur, J., Böcker,L., Petrakis, G. 2006.
Application of soil-improving media produced on lignite-basis on the rehabilitation of post-
mining sites. Mineral Wealth 140: 43–55. |
dc.relation.references | Chung, S., & Horton, R. (1987). Soil heat and water flow with a partial surface mulch.
Water Resources Research, 23(12), 2175-2186. https://doi.org/10.1029/wr023i012p02175 |
dc.relation.references | Ciarkowska, K., Sołek-Podwika, K., Filipek-Mazur, B., & Tabak, M. (2017). Comparative
effects of lignite-derived humic acids and FYM on soil properties and vegetable yield.
Geoderma, 303, 85-92. |
dc.relation.references | Çimrin, K. M., Türkmen, Ö., Turan, M., & Tuncer, B. (2010). Phosphorus and humic acid
application alleviate salinity stress of pepper seedling. African Journal of Biotechnology,
9(36). |
dc.relation.references | Clapp, C. E., Hayes, M. H. B., Simpson, A. J., & Kingery, W. L. (2005). Chemistry of soil
organic matter. Chemical processes in soils, 8, 1-150. |
dc.relation.references | Coleman, N. T., & Mehlich, A. (1957). The chemistry of soil pH. Soil: The, 72-79. |
dc.relation.references | Côté, J., & Konrad, J. M. (2005). A generalized thermal conductivity model for soils and
construction materials. Canadian Geotechnical Journal, 42(2), 443-458. |
dc.relation.references | Criquet, S., Clouard, M., Borschneck, D., Ziarelli, F., & Keller, C. (2023). Pedobiological
properties of a lignite spoil heap in the Provence coal mine basin (south-east of France).
Geoderma Regional, 35, e00711. |
dc.relation.references | Cubillos, J. 2014. Efecto de la aplicación de bacterias productoras de sustancias húmicas
mediante la biosolubilización de carbón de bajo rango en un suelo salino-sódico en el
valle del Cesar. Universidad Nacional de Colombia. |
dc.relation.references | Cubillos-Hinojosa, J. G., Valero, N. O., & Melgarejo, L. M. (2015). Assessment of a low
rank coal inoculated with coal solubilizing bacteria as an organic amendment for a saline-
sodic soil. Chemical and biological technologies in agriculture, 2, 1-10. |
dc.relation.references | Cubillos-Hinojosa, J. G., Valero, N., & Peralta Castilla, A. D. J. (2017). Effect of a low rank
coal inoculated with coal solubilizing bacteria for the rehabilitation of a saline-sodic soil in
field conditions. Revista Facultad Nacional de Agronomía Medellín, 70(3), 8271-8283. |
dc.relation.references | Cui, F., Zhang, W., Liu, Z., Wang, W., Chen, J., Jin, L., & Peng, H. (2020). Assessment
for Thermal Conductivity of Frozen Soil Based on Nonlinear Regression and Support
Vector Regression Methods. Advances In Civil Engineering, 2020, 1-12.
https://doi.org/10.1155/2020/8898126. |
dc.relation.references | Dai, Y., Wei, N., Yuan, H., Zhang, S., Shangguan, W., Liu, S., ... & Xin, Y. (2019).
Evaluation of soil thermal conductivity schemes for use in land surface modeling. Journal
of Advances in Modeling Earth Systems, 11(11), 3454-3473. |
dc.relation.references | Das, S.K. Biochar Application Method and Amount Both Changed the Dynamics of Soil
Temperature-Moisture-Metals in an Acidic Inceptisols. Water Air Soil Pollut 235, 303
(2024). https://doi-org.ezproxy.unal.edu.co/10.1007/s11270-024-07108-2 |
dc.relation.references | De Vries, D. A. (1963). Thermal properties of soils. Physics of plant environment., In W.R.
van Wijk, Physics of Plant Environment, North-Holland Publishing Company, Amsterdam.
210-235. |
dc.relation.references | De'ath, G. and Fabricius, K.E. (2000), Classification and regression trees: a powerful yet
simple technique for ecological data analysis. Ecology, 81: 3178-3192.
https://doi.org/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2 |
dc.relation.references | Dębska, B., Maciejewska, A., & Kwiatkowska, J. (2002). The effect of fertilization with
brown coal on Haplic Luvisol humic acids. |
dc.relation.references | Dec, D., Dörner, J., Horn, R., 2009. Effect of soil management on their thermal properties.
J. Soil Sci. Plant Nutr. 9, 26–39. |
dc.relation.references | Decagon Devices Inc., (2008). KD2 Pro Thermal Properties Analyzer Operator’s Manual
Version 12(pp. 72): Decagon Devices, Inc., |
dc.relation.references | De Kreij C., Basar H. 1995. Effect of humic substances in nutrient film technique on
nutrient uptake. Journal of Plant Nutrition, 18: 793–802. |
dc.relation.references | Demisie, W., Liu, Z., & Zhang, M. (2014). Effect of biochar on carbon fractions and
enzyme activity of red soil. CATENA, 121, 214-221.
https://doi.org/10.1016/j.catena.2014.05.020. |
dc.relation.references | Deng, Z. (2004). Modeling of standing column wells in ground source heat pump systems.
Oklahoma State University. |
dc.relation.references | Dobbss, L. B., Canellas, L. P., Olivares, F. L., Aguiar, N. O., Peres, L. E. P., Azevedo, M.,
Spaccini, R., Piccolo, A., & Façanha, A. R. (2010). Bioactivity of Chemically Transformed
Humic Matter from Vermicompost on Plant Root Growth. Journal Of Agricultural And Food
Chemistry, 58(6), 3681-3688. https://doi.org/10.1021/jf904385c |
dc.relation.references | Dobrokhotov, A. V., & Kozyreva, L. V. (2023). Influence of the biochar application on the
thermal properties of soddy-podzolic soil and on the energy balance fluxes of spring
wheat in the Leningrad region under various soil moisture conditions. Бюллетень
Почвенного института им. ВВ Докучаева, (116), 43-75. |
dc.relation.references | Domazetis, G., & James, B. D. (2006). Molecular models of brown coal containing
inorganic species. Organic geochemistry, 37(2), 244-259. |
dc.relation.references | Dong, L., Zhang, W., Xiong, Y., Zou, J., Huang, Q., Xu, X., ... & Huang, G. (2022). Impact
of short-term organic amendments incorporation on soil structure and hydrology in semiarid agricultural lands. International Soil and Water Conservation Research, 10(3),
457-469. |
dc.relation.references | Dunlap, J. (1986). Influence of soil temperature on the early growth of three muskmelon
cultivars. Scientia Horticulturae, 29(3), 221-228. https://doi.org/10.1016/0304-
4238(86)90065-8 |
dc.relation.references | Eyheraguibel, B., Silvestre, J., & Morard, P. (2008). Effects of humic substances derived
from organic waste enhancement on the growth and mineral nutrition of maize.
Bioresource technology, 99(10), 4206-4212. |
dc.relation.references | Farouki, O. T. (1981). The thermal properties of soils in cold regions. Cold Regions
Science and Technology, 5(1), 67-75. |
dc.relation.references | Fei, Z., Yang, F., Tsui, K. L., Li, L., & Zhang, Z. (2021). Early prediction of battery lifetime
via a machine learning based framework. Energy, 225, 120205. |
dc.relation.references | Ficke, L. E., Novak, R. R., & Brennecke, J. F. (2010). Thermodynamic and
thermophysical properties of ionic liquid+ water systems. Journal of Chemical &
Engineering Data, 55(11), 4946-4950. |
dc.relation.references | Fischer, B. M., Manzoni, S., Morillas, L., Garcia, M., Johnson, M. S., & Lyon, S. W.
(2019). Improving agricultural water use efficiency with biochar–A synthesis of biochar
effects on water storage and fluxes across scales. Science of the Total Environment, 657,
853-862. |
dc.relation.references | Fu, Y., Lu, S., Ren, T., Horton, R., & Heitman, J. L. (2021). Estimating soil water retention
curves from soil thermal conductivity measurements. Journal of Hydrology, 603, 127171. |
dc.relation.references | Gamage, D. N. V., Biswas, A., & Strachan, I. B. (2019). Spatial variability of soil thermal
properties and their relationships with physical properties at field scale. Soil And Tillage
Research, 193, 50-58. https://doi.org/10.1016/j.still.2019.05.012 |
dc.relation.references | Ganjegunte, G. K., King, L. A., & Vance, G. F. (2008). Cumulative soil chemistry changes
from land application of saline–sodic waters. Journal of Environmental Quality, 37(S5), S-
128. |
dc.relation.references | Gasca, C. A., Menjivar, J. C., & Torrente Trujillo, A. (2011). Changes specific absortion
rate (SAR) and exchange sodium percentaje (ESP) of a soil and its influence on microbial
activity and biomass. Acta Agronómica, 60(1), 27-38. |
dc.relation.references | Gayathri, R., Rani, S. U., Čepová, L., Rajesh, M., & Kalita, K. (2022). A Comparative
Analysis of Machine Learning Models in Prediction of Mortar Compressive Strength.
Processes, 10(7), 1387. https://doi.org/10.3390/pr10071387 |
dc.relation.references | Gharaibeh, M. A., Eltaif, N. I., & Shra’Ah, S. H. (2010). Reclamation of a calcareous
saline-sodic soil using phosphoric acid and by-product gypsum. Soil Use and
Management, 26(2), 141-148. |
dc.relation.references | Ghuman, B. y Lal, R., (1985). Thermal conductivity, thermal diffusivity, and thermal
capacity of some nigerian soils, https://doi.org/10.1097/00010694-198501000-00011, Soil
Science, 139, 74–80 |
dc.relation.references | Giannouli, A., Kalaitzidis, S., Siavalas, G., Chatziapostolou, A., Christanis, K.,
Papazisimou, S., Papanicolaou, C., & Foscolos, A. (2008). Evaluation of Greek low-rank
coals as potential raw material for the production of soil amendments and organic
fertilizers. International Journal Of Coal Geology, 77(3-4), 383-393.
https://doi.org/10.1016/j.coal.2008.07.008 |
dc.relation.references | Githinji, L. (2014). Effect of biochar application rate on soil physical and hydraulic
properties of a sandy loam. Archives of Agronomy and Soil Science, 60(4), 457-470. |
dc.relation.references | Githinji, L. (2014). Effect of biochar application rate on soil physical and hydraulic
properties of a sandy loam. Archives of Agronomy and Soil Science, 60(4), 457-470. |
dc.relation.references | Grattan S.R., Grieve C.M.,1999. Salinity mineral nutrient relations in horticultural crops.
Scientia Horticulturae, 78: 127–157. |
dc.relation.references | Guntiñas, M., Leirós, M., Trasar-Cepeda, C., & Gil-Sotres, F. (2012). Effects of moisture
and temperature on net soil nitrogen mineralization: A laboratory study. European Journal
Of Soil Biology, 48, 73-80. https://doi.org/10.1016/j.ejsobi.2011.07.015 |
dc.relation.references | Guo, G., Zhang, H., Araya, K., Jia, H., Ohomiya, K., & Matsuda, J. (2007). Improvement of salt-affected soils, Part 4: Heat transfer coefficient and thermal conductivity of salt-affected soils. Biosystems engineering, 96(4), 593-603. |
dc.relation.references | Guo, L., Nie, Z., Zhou, J., Zhang, S., An, F., Zhang, L., Tóth, T., Yang, F., & Wang, Z.
(2022). Effects of Different Organic Amendments on Soil Improvement, Bacterial
Composition, and Functional Diversity in Saline–Sodic Soil. Agronomy, 12(10), 2294.
https://doi.org/10.3390/agronomy12102294 |
dc.relation.references | Guo, L., Nie, Z., Zhou, J., An, F., Zhang, L., Zhang, S., Tóth, T., Yang, F., & Wang, Z.
(2023). Effects of organic amendments on soil bacterial community structure and yield in
a saline-sodic soil cropped with rice. Land Degradation And Development, 34(17), 5514-
5527. https://doi.org/10.1002/ldr.4861. |
dc.relation.references | Guyader, E. L., Morvan, X., Miconnet, V., Marin, B., Moussa, M., Intrigliolo, D. S.,
Delgado-Iniesta, M. J., Girods, P., Fontana, S., Sbih, M., Boumaraf, B., Tirichine, A.,
Kavvadias, V., & Gommeaux, M. (2024b). Influence of Date Palm-Based Biochar and
Compost on Water Retention Properties of Soils with Different Sand Contents. Forests,
15(2), 304. https://doi.org/10.3390/f15020304 |
dc.relation.references | Hadas, A. (1977). Heat Transfer in Dry Aggregated Soil: I. Heat Conduction. Soil Science
Society Of America Journal, 41(6), 1055-1059.
https://doi.org/10.2136/sssaj1977.03615995004100060007x. |
dc.relation.references | Haigh, S. K. (2012). Thermal conductivity of sands. Geotechnique, 62(7), 617-625. |
dc.relation.references | Hanson, B.R., & Kaita, K. (1997). Response of Electromagnetic Conductivity Meter to Soil
Salinity and Soil-Water Content. Journal of Irrigation and Drainage Engineering-asce,
123, 141-143. |
dc.relation.references | Hayes, M. H., & Clapp, C. E. (2001). Humic substances: considerations of compositions,
aspects of structure, and environmental influences. Soil Science, 166(11), 723-737.
https://doi.org/10.1097/00010694-200111000-00002 |
dc.relation.references | He, H., Zhao, Y., Dyck, M. F., Si, B., Jin, H., Lv, J., & Wang, J. (2017). A modified
normalized model for predicting effective soil thermal conductivity. Acta Geotechnica,
12(6), 1281-1300. https://doi.org/10.1007/s11440-017-0563-z |
dc.relation.references | Heitman, JL , R. Horton , TJ Sauer y TM DeSutter ( 2008 ), Sensible Heat Observations
Reveal Soil-Water Evaporation Dynamics, J. Hydrometeorol. , 9 , 165 – 171 , doi:
10.1175/2007JHM963.1 . |
dc.relation.references | Hinojosa, J. G. C., Valero, N. o. V., & De Jesús Peralta, A. (2017). Effect of a low rank
coal inoculated with coal solubilizing bacteria for the rehabilitation of a saline-sodic soil in
field conditions. Revista Facultad Nacional de Agronomía Medellín, 70(3), 8271-8283.
https://doi.org/10.15446/rfna.v70n3.62478. |
dc.relation.references | Honorato, R. 2000. Manual de Edafología. 4a ed. Santiago: Universidad Católica de Chile
Alfaomega 267 p. |
dc.relation.references | Hopmans, J. W., & Overmars, B. (1986). Presentation and application of an analytical
model to describe soil hydraulic properties. Journal of hydrology, 87(1-2), 135-143. |
dc.relation.references | Horn, R. (1994). The Effect of Aggregation of Soils on Water, Gas, and Heat Transport.
En Elsevier eBooks (pp. 335-361). https://doi.org/10.1016/b978-0-12-633070-0.50015-3 |
dc.relation.references | Hu, W., & Si, B. C. (2013). Soil water prediction based on its scale-specific control using
multivariate empirical mode decomposition. Geoderma, 193-194, 180-188.
https://doi.org/10.1016/j.geoderma.2012.10.021 |
dc.relation.references | IGAC., Guzmán, I. D. G., & Morales, E. R. (2006). Métodos analíticos del laboratorio de
suelos. |
dc.relation.references | Imbufe, A. U., Patti, A., Surapaneni, A., & Webb, J. A. (2004). Effects of brown coal
derived materials on pH and electrical conductivity of an acidic vineyard soil.
ResearchGate. https://www.researchgate.net/publication/253988717_Effects_of_brown_coal_derived_ma
terials_on_pH_and_electrical_conductivity_of_an_acidic_vineyard_soil |
dc.relation.references | Instituto de Hidrología, Meteorología y Estudios Ambientales. Mapa nacional de
degradación de suelos por salinización IDEAM, 2019 |
dc.relation.references | Jackson, R D., and S. A. Taylor. 1965. Heat transfer. In Methods of soil analysis, pt 1. C.
A. Black (ed.). Agron |
dc.relation.references | Jahan, S., Islam, M. S., Islam, L., Rashme, T. Y., Prova, A. A., Paul, B. K., ... & Mosharof,
M. K. (2021). Automated invasive cervical cancer disease detection at early stage through
suitable machine learning model. SN Applied Sciences, 3, 1-17. |
dc.relation.references | Janos, P., Závodská, L., Lesný, J., Kříženecká, S., Synek, V., Hejda, S., Kub, M. 2011.
Young Brown Coals for Environmental Applications: Composition, Acid-Base,
IonExchange, and Sorption Properties of Selected Central European Coals. In: Coal
Extraction. James J. Stewart Ed. Nova Science Publishers; Hauppauge N.Y. p. 71-90. |
dc.relation.references | Jien, S., & Wang, C. (2013). Effects of biochar on soil properties and erosion potential in a
highly weathered soil. CATENA, 110, 225-233.
https://doi.org/10.1016/j.catena.2013.06.021 |
dc.relation.references | Johansen, O. 1975. Thermal conductivity of soils. Ph.D. thesis. Trondheim, Norway
(CRREL Draft Translation 637, 1977) ADA 044002. |
dc.relation.references | Jones, C. A., Jacobsen, J. S., & Mugaas, A. (2007). Effect of low-rate commercial humic
acid on phosphorus availability, micronutrient uptake, and spring wheat yield.
Communications in Soil Science and Plant Analysis, 38(7-8), 921-933. |
dc.relation.references | Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and
prospects. Science, 349(6245), 255-260. https://doi.org/10.1126/science.aaa8415. |
dc.relation.references | Ju, Z., Guo, K., & Liu, X. (2023). Modelling thermal conductivity on salt-affected soils and
its modification. International Journal of Thermal Sciences, 185, 108071. |
dc.relation.references | Ju, Z., Ren, T., & Hu, C. (2011). Soil Thermal Conductivity as Influenced by Aggregation
at Intermediate Water Contents. Soil Science Society Of America Journal, 75(1), 26-29.
https://doi.org/10.2136/sssaj2010.0050n |
dc.relation.references | Kardani, N., Bardhan, A., Gupta, S., Samui, P., Nazem, M., Zhang, Y., & Zhou, A. (2021).
Predicting permeability of tight carbonates using a hybrid machine learning approach of
modified equilibrium optimizer and extreme learning machine. Acta Geotechnica, 1-17. |
dc.relation.references | Kardani, N., Aminpour, M., Raja, M. N. A., Kumar, G., Bardhan, A., & Nazem, M. (2022).
Prediction of the resilient modulus of compacted subgrade soils using ensemble machine
learning methods. Transportation Geotechnics, 36, 100827. |
dc.relation.references | Karhu, K., Fritze, H., Tuomi, M., Vanhala, P., Spetz, P., Kitunen, V., & Liski, J. (2009).
Temperature sensitivity of organic matter decomposition in two boreal forest soil profiles.
Soil Biology And Biochemistry, 42(1), 72-82. https://doi.org/10.1016/j.soilbio.2009.10.002 |
dc.relation.references | Karhu, K., Mattila, T., Bergström, I., & Regina, K. (2011). Biochar addition to agricultural
soil increased CH4 uptake and water holding capacity–Results from a short-term pilot
field study. Agriculture, ecosystems & environment, 140(1-2), 309-313. |
dc.relation.references | Kaune, A., Turk, T., & Horn, R. (1993). Alteration of soil thermal properties by structure
formation. Journal Of Soil Science, 44(2), 231-248. https://doi.org/10.1111/j.1365-
2389.1993.tb00448.x |
dc.relation.references | Kauser A. Malik, Azam F. 1985. Effect of humic acid on corn seedling growth.
Environmental and Experimental Botany, 25: 245–252. |
dc.relation.references | Kaya, C., Akram, N. A., Ashraf, M., & Sonmez, O. (2018). Exogenous application of humic
acid mitigates salinity stress in maize (Zea mays L.) plants by improving some key
physico-biochemical attributes. Cereal Research Communications, 46, 67-78. |
dc.relation.references | Kersten, M. S. (1949, Wiener, O. (1912). Der abhandlungen der mathematisch-physischen klasse der Konigl. Sachsischen Gesellshaft der Wissenschaften, 32, 509-604.). Thermal Properties of Soils. https://conservancy.umn.edu/items/52fe807f-42d8-4d55-b644-0e3de3f54377 |
dc.relation.references | Khaledi, S., Delbari, M., Galavi, H., Bagheri, H., & Chari, M. M. (2022b). Effects of biochar
particle size, biochar application rate, and moisture content on thermal properties of an
unsaturated sandy loam soil. Soil And Tillage Research, 226, 105579.
https://doi.org/10.1016/j.still.2022.105579 |
dc.relation.references | Khaled, H., & Fawy, H. A. (2011). Effect of different levels of humic acids on the nutrient
content, plant growth, and soil properties under conditions of salinity. Soil and Water
Research, 6(1), 21. |
dc.relation.references | Khan, M., Akhtar, M., Ahmad, S., Khan, A., Khan, R. 2014. Chemical Composition of
Lignitic Humic Acid and Evaluating its Positive impacts on Nutrient Uptake, Growth and
Yield of Maize. Pak. J. Chem. 4(1): 19-25, 2014 Full Paper ISSN (Print): 2220-2625 ISSN
(Online): 2222-307X DOI: 10.15228/2014.v04.i01.p04 |
dc.relation.references | Khan, K. Y., Ali, B., Cui, X., Feng, Y., Stoffella, P. J., Tang, L., & Yang, X. (2017). Effect of
humic acid amendment on cadmium bioavailability and accumulation by pak choi
(Brassica rapa ssp. chinensis L.) to alleviate dietary toxicity risk. Archives of Agronomy
and Soil Science, 63(10), 1431-1442. |
dc.relation.references | Kim, H., & Park, J.H. (2024). Monitoring of soil EC for the prediction of soil nutrient regime
under different soil water and organic matter contents. Applied Biological Chemistry, 67,
1-9. |
dc.relation.references | Kim, H., Cosh, MH., Bindlish, R. y Lakshmi, V., (2020). Field evaluation of portable soil
water content sensors in a sandy loam, https://doi.org/10.1002/vzj2.20033, Vadose Zone
Journal, 19, (1) |
dc.relation.references | Kong, X., Doré, G., & Calmels, F. (2019). Thermal modeling of heat balance through
embankments in permafrost regions. Cold Regions Science and Technology, 158, 117-
127. |
dc.relation.references | Kononova, M. 1982. Bioquímica del proceso de formación del humus. En: La
materiaorgánica del suelo. Su naturaleza, propiedades y métodos de investigación.
Editorial, Oikos-Tau. Barcelona (España). p. 63-109. |
dc.relation.references | Koorevaar, P., Menelik, G., & Dirksen, C. (1983). Elements of soil physics. Elsevier. |
dc.relation.references | Kumar, A., & Bhattacharya, T. (2023). Biochar for improvement of soil properties. In Bio-
Inspired Land Remediation (pp. 403-444). Cham: Springer International Publishing. |
dc.relation.references | Lal, R. (2004). Soil Carbon Sequestration Impacts on Global Climate Change and Food
Security. Science, 304(5677), 1623-1627. https://doi.org/10.1126/science.1097396 |
dc.relation.references | Lan, T., Hu, H., Jiang, C., Yang, G., & Zhao, Z. (2020). A comparative study of decision
tree, random forest, and convolutional neural network for spread-F identification.
Advances in Space Research, 65(8), 2052-2061. |
dc.relation.references | Łaźny, R., Mirgos, M., Przybył, J. L., Nowak, J. S., Kunka, M., Gajc-Wolska, J., &
Kowalczyk, K. (2021). Effect of Re-Used Lignite and Mineral Wool Growing Mats on Plant
Growth, Yield and Fruit Quality of Cucumber and Physical Parameters of Substrates in
Hydroponic Cultivation. Agronomy, 11(5), 998.
https://doi.org/10.3390/agronomy11050998. |
dc.relation.references | Lee Y.S., Barlett J.R. (1976): Stimulation of plant growth by humic substances. Soil
Science Society of America Journal, 40: 876–879 |
dc.relation.references | Leszczyńska, D., & Kwiatkowska-Malina, J. (2011). Effect of organic matter from various
sources on yield and quality of plant on soils contaminated with heavy metals. Ecological
Chemistry and Engineering S, 18(4), 501-507. |
dc.relation.references | Li, K. Q., Kang, Q., Nie, J. Y., & Huang, X. W. (2022). Artificial neural network for
predicting the thermal conductivity of soils based on a systematic database. Geothermics,
103, 102416. |
dc.relation.references | Li, K., Horton, R., & He, H. (2023a). Application of machine learning algorithms to model
soil thermal diffusivity. International Communications In Heat And Mass Transfer, 149,
107092. https://doi.org/10.1016/j.icheatmasstransfer.2023.107092 |
dc.relation.references | Li, Y. Q., Li, L. J., Zhao, B. W., Zhao, Y., Zhang, X., & Dong, X. (2023b). Effects of Corn
Straw Biochar, Soil Bulk Density and Soil Water Content on Thermal Properties of a Light
Sierozem Soil. Nature Environment And Pollution Technology, 22(2), 895-903.
https://doi.org/10.46488/nept.2023.v22i02.032 |
dc.relation.references | Li, Z., Wang, S., Chin, W. S., Achenie, L. E., & Xin, H. (2017). High-throughput screening
of bimetallic catalysts enabled by machine learning. Journal of Materials Chemistry A,
5(46), 24131-24138. |
dc.relation.references | Liakos, K., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine Learning
in Agriculture: A Review. Sensors, 18(8), 2674. https://doi.org/10.3390/s18082674 |
dc.relation.references | Liu, C., Hu, X., Yao, R., Han, Y., Wang, Y., He, W., Fan, H., & Du, L. (2020). Assessment
of Soil Thermal Conductivity Based on BPNN Optimized by Genetic Algorithm. Advances
In Civil Engineering, 2020, 1-10. https://doi.org/10.1155/2020/6631666 |
dc.relation.references | Liu, J., & Lu, S. (2023). Amendment of different biochars changed pore characteristics
and permeability of Ultisol macroaggregates identified by X-ray computed tomography
(CT). Geoderma, 434, 116470. https://doi.org/10.1016/j.geoderma.2023.116470 |
dc.relation.references | Liu, W., Li, R., Wu, T., Shi, X., Zhao, L., Wu, X., Hu, G., Yao, J., Xiao, Y., Ma, J., Jiao, Y.,
& Wang, S. (2023). Simulation of soil thermal conductivity based on different schemes: An
empirical comparison of 13 models. International Journal Of Thermal Sciences, 190,
108301. https://doi.org/10.1016/j.ijthermalsci.2023.108301 |
dc.relation.references | Liu, Y., Wang, Q., Zhang, X., Song, S., Niu, C., & Shangguan, Y. (2018). Using ANFIS
and BPNN methods to predict the unfrozen water content of saline soil in Western Jilin,
China. Symmetry, 11(1), 16. |
dc.relation.references | Liu, Z., Xu, J., Li, X., & Wang, J. (2018). Mechanisms of biochar effects on thermal
properties of red soil in south China. Geoderma, 323, 41-51.
https://doi.org/10.1016/j.geoderma.2018.02.045 |
dc.relation.references | Liu, X., Zhao, X., & Lv, J. (2023). Molecular Characterization of Size-Fractionated Humic
Acids Derived from Lignite and Its Activation of Soil Legacy Phosphorus and Lactuca
sativa Growth-Promoting Performances. ACS omega, 8(7), 6838-6846. |
dc.relation.references | Lohar, S., Kumari, P., Sharma, A., & Sankhla, M. S. (2024). Biochar Enhancing Soil
Resilience: A Dual Strategy for Mitigating Heavy Metal Contamination and Drought
Stress. ResearchGate. https://doi.org/10.33263/LIANBS132.070 |
dc.relation.references | Lu, H., & Mazumder, R. (2020). Randomized gradient boosting machine. SIAM Journal
On Optimization, 30(4), 2780-2808. https://doi.org/10.1137/18m1223277 |
dc.relation.references | Lu, S., Lu, Y., Peng, W., Ju, Z., & Ren, T. (2019). A generalized relationship between
thermal conductivity and matric suction of soils. Geoderma, 337, 491-497. |
dc.relation.references | Lu, S., Ren, T., Gong, Y., & Horton, R. (2007). An Improved Model for Predicting Soil
Thermal Conductivity from Water Content at Room Temperature. Soil Science Society Of
America Journal, 71(1), 8-14. https://doi.org/10.2136/sssaj2006.0041 |
dc.relation.references | Lv, Z., Lou, R., Feng, H., Chen, D., & Lv, H. (2021). Novel machine learning for big data
analytics in intelligent support information management systems. ACM Transactions on
Management Information System (TMIS), 13(1), 1-21. |
dc.relation.references | Lyu, X., & Hu, J. (2022). Assessment of lignite upgrade and hydrogen evolution via
electrolysis. Energy Conversion and Management, 253, 115181. |
dc.relation.references | Ma, B., Ma, B., McLaughlin, N. B., Li, M., & Liu, J. (2022). Improvement in dryland crop
performance and soil properties with multiple annual applications of lignite-derived humic
amendment. Soil And Tillage Research, 218, 105306.
https://doi.org/10.1016/j.still.2021.105306. |
dc.relation.references | Mackowiak, C. L., Grossl, P. R., & Bugbee, B. G. (2001). Beneficial effects of humic acid
on micronutrient availability to wheat. Soil Science Society of America Journal, 65(6),
1744-1750. |
dc.relation.references | Maggioni A., Varanini Z., Nardi S., Pinton R. (1987): Action of soil humic matter on plant
roots: Stimulation of ion uptake and effects on (Mg2+, K+) ATPase activity. Science of the
Total Environment, 62: 355–363. |
dc.relation.references | Major, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2010). Maize yield and
nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and
soil, 333, 117-128. |
dc.relation.references | Malek, K., Malek, K., & Khanmohammadi, F. (2021). Response of soil thermal
conductivity to various soil properties. International Communications In Heat And Mass
Transfer, 127, 105516. https://doi.org/10.1016/j.icheatmasstransfer.2021.105516 |
dc.relation.references | Manasa, M.R., Katukuri, N.R., Darveekaran Nair, S.S., Haojie, Y., Yang, Z., & Guo, R.
(2020). Role of biochar and organic substrates in enhancing the functional characteristics
and microbial community in a saline soil. Journal of environmental management, 269,
110737 . |
dc.relation.references | Mellander P-E, Bishop K, Lundmark T (2004) The influence of soil temperature on
transpiration: a plot scale manipulation in a young Scots pine stand. For Ecol Manag
195:15–28. |
dc.relation.references | Mendis, S. S., Udawatta, R. P., Anderson, S. H., Nelson, K. A., & Cordsiemon II, R. L.
(2022). Effects of cover crops on soil moisture dynamics of a corn cropping system. Soil
Security, 8, 100072. |
dc.relation.references | Mendis, S. S., Udawatta, R. P., Anderson, S. H., Nelson, K. A., & Cordsiemon II, R. L.
(2022). Effects of cover crops on soil moisture dynamics of a corn cropping system. Soil
Security, 8, 100072. |
dc.relation.references | Mochizuki, H., T. Miyazaki, and M. Nakano. (1998). The effect of salts on thermal
conductivity of Toyoura sand. Transactions of the Japanese Society of Irrigation,
Drainage and Reclamation Engineering (Japan) 198 . |
dc.relation.references | Mochizuki, H., Mizoguchi, M., & Miyazaki, T. (2003). Effects of water content and NaCl
concentration on thermal conductivity of swelling and nonswelling clays. Transactions of
the Japanese Society of Irrigation, Drainage and Reclamation Engineering (Japan), (225). |
dc.relation.references | Montenegro H. y Malagón, D., (1990). Propiedades físicas de los suelos. Instituto
Geográfico Agustín Codazzi (IGAC), Subdirección Agrológica, Colombia |
dc.relation.references | Naciones Unidas (2018), La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una
oportunidad para América Latina y el Caribe (LC/G. 2681-P/Rev. 3) |
dc.relation.references | Nan, J., Chen, X., Wang, X., Lashari, M. S., Wang, Y., Guo, Z., & Du, Z. (2016). Effects of
applying flue gas desulfurization gypsum and humic acid on soil physicochemical
properties and rapeseed yield of a saline-sodic cropland in the eastern coastal area of
China. Journal of soils and sediments, 16, 38-50. |
dc.relation.references | Nardi, S. Pizzeghello, D. Muscolo, A. Vianello, A. 2002. Physiological effects of humic
substances on higher plants. Soil Biol Biochem. 34:1527-1536 |
dc.relation.references | Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers In
Neurorobotics, 7. https://doi.org/10.3389/fnbot.2013.00021 |
dc.relation.references | Noborio, K., & McInnes, K. J. (1993). Thermal Conductivity of Salt-Affected Soils. Soil
Science Society Of America Journal, 57(2), 329-334.
https://doi.org/10.2136/sssaj1993.03615995005700020007x |
dc.relation.references | Novak, J., Sigua, G., Watts, D., Cantrell, K., Shumaker, P., Szogi, A., Johnson, M. G., &
Spokas, K. (2016). Biochars impact on water infiltration and water quality through a
compacted subsoil layer. Chemosphere, 142, 160-167.
https://doi.org/10.1016/j.chemosphere.2015.06.038 |
dc.relation.references | Nikoosokhan, S., Nowamooz, H., & Chazallon, C. (2015). Effect of dry density, soil texture
and time-spatial variable water content on the soil thermal conductivity. Geomechanics
And Geoengineering, 11(2), 149-158. https://doi.org/10.1080/17486025.2015.1048313 |
dc.relation.references | Ochsner, T. E., Horton, R., & Ren, T. (2001). A New Perspective on Soil Thermal
Properties. Soil Science Society Of America Journal, 65(6), 1641-1647.
https://doi.org/10.2136/sssaj2001.1641 |
dc.relation.references | O’Keefe, J. M., Bechtel, A., Christanis, K., Dai, S., DiMichele, W. A., Eble, C. F., Esterle,
J. S., Mastalerz, M., Raymond, A. L., Valentim, B. V., Wagner, N. J., Ward, C. R., &
Hower, J. C. (2013). On the fundamental difference between coal rank and coal type.
International Journal Of Coal Geology, 118, 58-87.
https://doi.org/10.1016/j.coal.2013.08.007 |
dc.relation.references | Ortiz, O., & Ramirez, R. (2022). Impacto de la adición de carbón de bajo rango en la
conductividad térmica del suelo salino sódico. Información tecnológica, 33(4), 53-62. |
dc.relation.references | Ouyang, L., Wang, F., Tang, J., Yu, L., & Zhang, R. (2013). Effects of biochar amendment
on soil aggregates and hydraulic properties. Journal of soil science and plant nutrition,
13(4), 991-1002. |
dc.relation.references | Padarian, J., Minasny, B., & McBratney, A. B. (2020). Machine learning and soil sciences:
a review aided by machine learning tools. SOIL, 6(1), 35-52. https://doi.org/10.5194/soil-
6-35-2020 |
dc.relation.references | Padarian, J., Minasny, B., & McBratney, A. B. (2020b). Machine learning and soil
sciences: a review aided by machine learning tools. SOIL, 6(1), 35-52.
https://doi.org/10.5194/soil-6-35-2020 |
dc.relation.references | Pagliai, M., Vignozzi, N., & Pellegrini, S. (2004). Soil structure and the effect of
management practices. Soil And Tillage Research, 79(2), 131-143.
https://doi.org/10.1016/j.still.2004.07.002 |
dc.relation.references | Pantoja-Guerra, M., Ramirez-Pisco, R. y Valero-Valero, N., (2019). Improvement of
mining soil properties through the use of a new bio-conditioner prototype: a greenhouse
trial, https://doi.org/10.1007/s11368-018-2206-x, J Soils Sediments 19, 1850–1865 |
dc.relation.references | Patwa, D., Chandra, A., Ravi, K., & Sreedeep, S. (2021). Influence of Biochar Particle
Size Fractions on Thermal and Mechanical Properties of Biochar-Amended Soil. Journal
Of Materials In Civil Engineering, 33(9). https://doi.org/10.1061/(asce)mt.1943-
5533.0003915 |
dc.relation.references | Paramashivam, D., Clough, T.J., Carlton, A., Gough, K., Dickinson, N., Horswell, J.,
Sherlock, R.R., Clucas, L. and Robinson, B.H. (2016). The effect of lignite on nitrogen
mobility in a low-fertility soil amended with biosolids and urea. Science of the Total
Environment, 543, 601-608. |
dc.relation.references | Pavlovich, L. B., & Strakhov, V. M. (2018). Effect of humic fertilizers from brown coal on
the mineral composition of vegetable crops. Solid Fuel Chemistry, 52, 206-210. |
dc.relation.references | Peng, X., Ye, L., Wang, C., Zhou, H., & Sun, B. (2011). Temperature- and duration-
dependent rice straw-derived biochar: Characteristics and its effects on soil properties of
an Ultisol in southern China. Soil And Tillage Research, 112(2), 159-166.
https://doi.org/10.1016/j.still.2011.01.002 |
dc.relation.references | Peng, X., Zhu, Q. H., Xie, Z., Darboux, F., & Holden, N. M. (2015). The impact of manure,
straw and biochar amendments on aggregation and erosion in a hillslope Ultisol.
CATENA, 138, 30-37. https://doi.org/10.1016/j.catena.2015.11.008 |
dc.relation.references | Peña-Mendez EM, Havel J y Patocka J., (2005). Humic substances compounds of still
unknown structure applications in agriculture, industry, environment and biomedicine, doi:
10.32725/jab.2005.002, J Appl Biomed, 3,13–24 |
dc.relation.references | Petersen, C. T., Hansen, E., Larsen, H. H., Hansen, L. V., Ahrenfeldt, J., & Hauggaard-
Nielsen, H. (2016). Pore-size distribution and compressibility of coarse sandy subsoil with
added biochar. European Journal of Soil Science, 67(6), 726-736. |
dc.relation.references | Piccolo A. y Mbagwu JS., (1999). Role of hydrophobic components of soil organic matter
on soil aggregate stability, https://doi.org/10.2136/sssaj1999.6361801x, Soil Sci Soc Am
J,63, 1801–10 |
dc.relation.references | Piccolo, A., Nardi, S., & Concheri, G. (1996). Macromolecular changes of humic
substances induced by interaction with organic acids. European Journal of Soil Science,
47(3), 319-328. |
dc.relation.references | Piccolo, A., Pietramellara, G. y Mbagwu, J., (1995). Use of humic substances as soil
conditioners to increase aggregate stability, Geoderma, https://doi.org/10.1016/S0016-
7061(96)00092-4, Volume 75, Issues 3–4, Pages 267-277 |
dc.relation.references | Piccolo A, Spaccini R, Nieder R (2004) Sequestration of a biologically labile organic
carbon in soils by humified organic matter. Climatic Change 67(2-3):329-343. |
dc.relation.references | Porta C., J., M. López-Acevedo y C. Roquero. (1994). Edafología para la agricultura y el
medio ambiente. Mundi-Prensa. Madrid, España. |
dc.relation.references | Potter, K. N., Cruse, R. M., & Horton, R. (1985). Tillage Effects on Soil Thermal
Properties. Soil Science Society Of America Journal, 49(4), 968-973.
https://doi.org/10.2136/sssaj1985.03615995004900040035x |
dc.relation.references | Pranagal, J., & Kraska, P. (2020). 10-Years Studies of the Soil Physical Condition after
One-Time Biochar Application. Agronomy, 10(10), 1589.
https://doi.org/10.3390/agronomy10101589 |
dc.relation.references | Qi, Y., Szendrak, D., Yuen, R. T. W., Hoadley, A. F., & Mudd, G. (2011). Application of
sludge dewatered products to soil and its effects on the leaching behaviour of heavy
metals. Chemical Engineering Journal, 166(2), 586-595. |
dc.relation.references | Qi, Y., Szendrak, D., Yuen, R. T. W., Hoadley, A. F., & Mudd, G. (2011). Application of
sludge dewatered products to soil and its effects on the leaching behaviour of heavy
metals. Chemical Engineering Journal, 166(2), 586-595. |
dc.relation.references | R Core Team (2020). R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. |
dc.relation.references | Ramezanzadeh, H., Zarehaghi, D., Baybordi, A., Bouket, A. C., Oszako, T., Alenezi, F.
N., & Belbahri, L. (2023). The impacts of biochar-assisted factors on the hydrophysical
characteristics of amended soils: a review. Sustainability, 15(11), 8700. |
dc.relation.references | Richards, L.A., 1954. Diagnosis and improvement of saline and alkali soils. Soil Sci. 78
(2),154. |
dc.relation.references | Rietz, D.N., Haynes, R.J., 2003. Effects of irrigation-induced salinity and sodicity on soil
microbial activity. Soil Biol. Biochem. 35 (6), 845–854. |
dc.relation.references | Rizvi, Z. H., Husain, S. M. B., Haider, H., & Wuttke, F. (2020). Effective thermal
conductivity of sands estimated by Group Method of Data Handling (GMDH). Materials
Today Proceedings, 26, 2103-2107. https://doi.org/10.1016/j.matpr.2020.02.454. |
dc.relation.references | Rojas, A., Zúñiga, O., De Prager, M. S., Pérez, J., & Gascó, J. M. (2007). Conductividad
térmica del suelo, materia orgánica, actividad y biomasa microbianas en sistemas de
cultivo de maracuyá en Toro, Valle del Cauca. Revista Colombiana de Ciencias Químico-
Farmacéuticas, 56(1), 17-22. |
dc.relation.references | Rose, M. T., Perkins, E. L., Saha, B. K., Tang, E. C. W., Cavagnaro, T. R., Jackson, W.
R., Hapgood, K. P., Hoadley, A. F. A., & Patti, A. F. (2016). A slow release nitrogen
fertiliser produced by simultaneous granulation and superheated steam drying of urea
with brown coal. Chemical And Biological Technologies In Agriculture, 3(1).
https://doi.org/10.1186/s40538-016-0062-8 |
dc.relation.references | Rovdan E.N. y Usowicz B., (2002). Investigation of thermal conductivity of some Polesye
soils (in Polish), In: Proceedings of the Polish–Ukrainian–Byelorussian Conference on
Natural Environment of Polesye-Current State and Changes, Lublin-Shatsk-Briest, June
17-21 |
dc.relation.references | Sahin, E. K., Colkesen, I., & Kavzoglu, T. (2020). A comparative assessment of canonical
correlation forest, random forest, rotation forest and logistic regression methods for
landslide susceptibility mapping. Geocarto International, 35(4), 341-363. |
dc.relation.references | Sangeetha, M., & Singaram, P. (2007). Effect of lignite humic acid and inorganic fertilizers
on growth and yield of onion. AN ASIAN JOURNAL OF SOIL SCIENCE, 2(1), 108-110.
http://www.connectjournals.com/file_html_pdf/588401H_108-110a.pdf |
dc.relation.references | Sanuade, O. A., Adetokunbo, P., Oladunjoye, M. A., & Olaojo, A. A. (2018). Predicting
moisture content of soil from thermal properties using artificial neural network. Arabian
Journal of Geosciences, 11, 1-10. |
dc.relation.references | Sarlaki, E., Kianmehr, M. H., Ghorbani, M., Kermani, A. M., Vakilian, K. A., Angelidaki, I.,
Wang, Y., Gupta, V. K., Pan, J., Tabatabaei, M., & Aghbashlo, M. (2023). Highly humified
nitrogen-functionalized lignite activated by urea pretreatment and ozone plasma oxidation.
Chemical Engineering Journal, 456, 140978. https://doi.org/10.1016/j.cej.2022.140978 |
dc.relation.references | Sarlaki, E., Kianmehr, M. H., Kermani, A., Ghorbani, M., Javid, M. G., Rezaei, M., Peng,
W., Lam, S. S., Tabatabaei, M., Aghbashlo, M., & Chen, X. (2023b). Valorizing lignite
waste into engineered nitro-humic fertilizer: Advancing resource efficiency in the era of a
circular economy. Sustainable Chemistry And Pharmacy, 36, 101283.
https://doi.org/10.1016/j.scp.2023.101283 |
dc.relation.references | Saruhan, V., Kusvuran, A., & Kokten, K. (2011). The effect of different replications of
humic acid fertilization on yield performances of common vetch (Vicia sativa L.). African
Journal of Biotechnology, 10(29), 5587-5592. |
dc.relation.references | Schnitzer M. (1982): Organic matter characterization. In: Page A.L., Miller R.H., Keeney
D.R. (eds): Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties.
2nd Ed. Soil Science Society of America, Madison, 581–594. |
dc.relation.references | Schnitzer M. (1982): Organic matter characterization. In: Page A.L., Miller R.H., Keeney
D.R. (eds): Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties.
2nd Ed. Soil Science Society of America, Madison, 581–594. |
dc.relation.references | Schönenberger, J., Momose, T., Wagner, B., Leong, W. H., & Tarnawski, V. R. (2012).
Canadian field soils I. Mineral composition by XRD/XRF measurements. International
Journal of Thermophysics, 33, 342-362. |
dc.relation.references | Senanayake, I., Yeo, I., Walker, J., & Willgoose, G. (2021). Estimating catchment scale
soil moisture at a high spatial resolution: Integrating remote sensing and machine
learning. The Science Of The Total Environment, 776, 145924.
https://doi.org/10.1016/j.scitotenv.2021.145924 |
dc.relation.references | Senesi, N., Plaza, C., Brunetti, G y Polo, A. A., (2007). Comparative Survey of Recent
Results on Humic-Like Fractions in Organic Amendments and Effects on Native Soil
Humic Substances, Soil Biology and Biochemistry, 39, 1244–1262, DOI:
10.1016/j.soilbio.2006.12.002 |
dc.relation.references | Sharif, M., Khattak, R. A. and Sarir, M. S. 2002. Effect of different levels of lignitic coal
derived humic acid on growth of maize plants. Commun. Soil Sci. Plant Anal. 33: 3567–
3580. |
dc.relation.references | Singh, D. N., & Devid, K. (2000). Generalized relationships for estimating soil thermal
resistivity. Experimental Thermal and Fluid Science, 22(3-4), 133-143. |
dc.relation.references | Skodras, G., Kokorotsikos, P., & Serafidou, M. (2014). Cation exchange capability and
reactivity of low-rank coal and chars. Open Chemistry, 12(1), 33-43.
https://doi.org/10.2478/s11532-013-0346-9 |
dc.relation.references | Solek-Podwika, K., Ciarkowska, K., & Filipek-Mazur, B. (2023). Soil Amendment with a
Lignite-Derived Humic Substance Affects Soil Properties and Biomass Maize Yield.
Sustainability, 15(3), 2304. https://doi.org/10.3390/su15032304 |
dc.relation.references | Stevenson, F. G. (1994). Humus chemistry: Genesis, composition, reactions. John Wiley
& Sons. |
dc.relation.references | Tahir, M., Khurshid, M., Khan, M., Abbasi, M., & Kazmi, M. (2010). Lignite-Derived Humic
Acid Effect on Growth of Wheat Plants in Different Soils. Pedosphere, 21(1), 124-131.
https://doi.org/10.1016/s1002-0160(10)60087-2 |
dc.relation.references | Tang, Y., Yang, Y., Cheng, D., Gao, B., Wan, Y., Li, Y. C., Yao, Y., Xie, J., & Liu, L. (2019). Multifunctional Slow-Release Fertilizer Prepared from Lignite Activated by a 3D-Molybdate-Sulfur Hierarchical Hollow Nanosphere Catalyst. ACS Sustainable Chemistry& Engineering, 7(12), 10533-10543. https://doi.org/10.1021/acssuschemeng.9b01092 |
dc.relation.references | Tanure, M., Costa, L., y otros cinco autores., Soil water retention, physiological
characteristics, and growth of maize plants in response to biochar application to soil, DOI:
173. 10.1016/j.still.2019.05.007, Soil and Tillage Research, 192, 164 (2019) |
dc.relation.references | Tarnawski, V. R., Coppa, P., Leong, W. H., McCombie, M., & Bovesecchi, G. (2020). On
modelling the thermal conductivity of soils using normalized-multi-variable pedotransfer
functions. International Journal of Thermal Sciences, 156, 106493. |
dc.relation.references | Tarnawski, V. R., Leong, W. H., McCombie, M., & Bovesecchi, G. (2022). Estimating soil
thermal conductivity by weighted average models with soil solids as a continuous
medium. International Journal of Thermophysics, 43(12), 182. |
dc.relation.references | Tarnawski, V. R., McCombie, M. L., Leong, W. H., Coppa, P., Corasaniti, S., &
Bovesecchi, G. (2018). Canadian field soils IV: modeling thermal conductivity at dryness
and saturation. International Journal of Thermophysics, 39, 1-29. |
dc.relation.references | Tarnawski, V. R., Wagner, B., Leong, W. H., McCombie, M., Coppa, P., & Bovesecchi, G.
(2021). Soil thermal conductivity model by de Vries: Re-examination and validation
analysis. European Journal of Soil Science, 72(5), 1940-1953. |
dc.relation.references | Tikhonravova, P. I. (2007). Effect of the water content on the thermal diffusivity of clay
loams with different degrees of salinization in the Transvolga region. Eurasian Soil
Science, 40, 47-50. |
dc.relation.references | Toková, L., Igaz, D., Horák, J., & Aydın, E. (2023). Can application of biochar improve the
soil water characteristics of silty loam soil? Journal Of Soils And Sediments, 23(7), 2832-
2847. https://doi.org/10.1007/s11368-023-03505-y |
dc.relation.references | Tran, C. K. T., Rose, M. T., Cavagnaro, T. R., & Patti, A. F. (2015). Lignite amendment
has limited impacts on soil microbial communities and mineral nitrogen availability.
Applied Soil Ecology, 95, 140-150. |
dc.relation.references | Trevisan S, Francioso O, Quaggiottil S, Nardi S. 2010. Humic substances biological
activity at the plant-soil interface From environmental aspects to molecular factors. Plant
Sig Beh 5(6):635-643. |
dc.relation.references | Tsetsegmaa, G., Akhmadi, K., Cho, W., Lee, S., Chandra, R., Jeong, C. E., ... & Kang, H.
(2018). Effects of oxidized brown coal humic acid fertilizer on the relative height growth
rate of three tree species. Forests, 9(6), 360. |
dc.relation.references | Turgay, O. C., Karaca, A., Unver, S., & Tamer, N. (2011). Effects of Coal- Derived Humic
Substance on Some Soil Properties and Bread Wheat Yield. Communications in Soil
Science and Plant Analysis, 42(9), 1050–1070.
https://doi.org/10.1080/00103624.2011.562586 |
dc.relation.references | Ulukan, H., Effect of soil applied humic acid at different sowing times on some yield
components in wheat (Triticum spp.) hybrids, DOI: 10.3923/ijb.2008.164.175, Int. J. Bot.,
4: 164-175 (2008) |
dc.relation.references | Usowicz, B., Kossowski, J., & Baranowski, P. (1996). Spatial variability of soil thermal
properties in cultivated fields. Soil And Tillage Research, 39(1-2), 85-100.
https://doi.org/10.1016/s0167-1987(96)01038-0 |
dc.relation.references | Usowicz, B., Lipiec, J., Usowicz, J., & Marczewski, W. (2012). Effects of aggregate size
on soil thermal conductivity: Comparison of measured and model-predicted data.
International Journal Of Heat And Mass Transfer, 57(2), 536-541.
https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.067 |
dc.relation.references | Usowicz, B., Lipiec, J., Łukowski, M., Bis, Z., Usowicz, J., & Latawiec, A. E. (2020).
Impact of biochar addition on soil thermal properties: Modelling approach. Geoderma,
376, 114574. https://doi.org/10.1016/j.geoderma.2020.114574 |
dc.relation.references | Valero, N., Gómez, L., Pantoja, M., & Ramírez, R. (2014). Production of humic substances
through coal-solubilizing bacteria. Brazilian Journal Of Microbiology, 45(3), 911-918.
https://doi.org/10.1590/s1517-83822014000300021. |
dc.relation.references | Valero, N., Melgarejo, L. M., & Ramírez, R. (2016). Effect of low-rank coal inoculated with
coal solubilizing bacteria on edaphic materials used in post-coal-mining land reclamation:
a greenhouse trial. Chemical and Biological Technologies in Agriculture, 3, 1-10. |
dc.relation.references | Valero, N. O., Gómez, L. C., & Melgarejo, L. M. (2018). Supramolecular characterization of
humic acids obtained through the bacterial transformation of a low rank coal. Journal of the
Brazilian Chemical Society, 29(9), 1842-1853. |
dc.relation.references | Valero Valero, N. (2013). Transformación microbiana de carbón de bajo rango para inducir
cambios en las propiedades del suelo. Universidad Nacional de Colombia. |
dc.relation.references | Vaughan, D., & Linehan, D. J. (1976). The growth of wheat plants in humic acid solutions
under axenic conditions. Plant and Soil, 44, 445-449. |
dc.relation.references | Vaughan D., Malcolm R.E. 1979. Effect of humic acid on invertase synthesis in roots of
plants. Soil Biology and Biochemistry, 11: 247–252. |
dc.relation.references | Villagra-Mendoza, K., & Horn, R. (2018). Effect of biochar addition on hydraulic functions
of two textural soils. Geoderma, 326, 88-95. |
dc.relation.references | Wang, C., Yang, Y., Cai, G., & Zhang, T. (2024). Improvement of normalized prediction
model of soil thermal conductivity. International Communications In Heat And Mass
Transfer, 157, 107792. https://doi.org/10.1016/j.icheatmasstransfer.2024.107792 |
dc.relation.references | Wang, C., Wan, S., Xing, X., Zhang, L., & Han, X. (2006). Temperature and soil moisture
interactively affected soil net N mineralization in temperate grassland in Northern China.
Soil Biology And Biochemistry, 38(5), 1101-1110.
https://doi.org/10.1016/j.soilbio.2005.09.009 |
dc.relation.references | Wiener, O. (1912). Der abhandlungen der mathematisch-physischen klasse der Konigl.
Sachsischen Gesellshaft der Wissenschaften, 32, 509-604. |
dc.relation.references | Wong, V. N., Dalal, R. C., & Greene, R. S. (2008). Salinity and sodicity effects on
respiration and microbial biomass of soil. Biology and fertility of soils, 44, 943-953. |
dc.relation.references | Woodside, W. M. J. H., & Messmer, J. H. (1961). Thermal conductivity of porous media. I.
Unconsolidated sands. Journal of applied physics, 32(9), 1688-1699. |
dc.relation.references | Wu, S. H., Jansson, P., & Kolari, P. (2012). The role of air and soil temperature in the
seasonality of photosynthesis and transpiration in a boreal Scots pine ecosystem.
Agricultural And Forest Meteorology, 156, 85-103.
https://doi.org/10.1016/j.agrformet.2012.01.006 |
dc.relation.references | Xiao, X., Horton, R., Sauer, T. J., Heitman, J. L., & Ren, T. (2011). Cumulative Soil Water
Evaporation as a Function of Depth and Time. Vadose Zone Journal, 10(3), 1016-1022.
https://doi.org/10.2136/vzj2010.0070 |
dc.relation.references | Xu, X., Luo, Y., & Zhou, J. (2012). Carbon quality and the temperature sensitivity of soil
organic carbon decomposition in a tallgrass prairie. Soil Biology And Biochemistry, 50,
142-148. https://doi.org/10.1016/j.soilbio.2012.03.007 |
dc.relation.references | Yang, S., Li, R., Wu, T., Wu, X., Zhao, L., Hu, G., Zhu, X., Du, Y., Xiao, Y., Zhang, Y., Ma,
J., Du, E., Shi, J., & Qiao, Y. (2021). Evaluation of soil thermal conductivity schemes
incorporated into CLM5.0 in permafrost regions on the Tibetan Plateau. Geoderma, 401,
115330. https://doi.org/10.1016/j.geoderma.2021.115330. |
dc.relation.references | Yeboah, S., Amankwaa-Yeboah, P., Asibuo, J. Y., Adomako, J., Maxwell, L., Darko, C.,
Agyeman, K. Pinamang, P & Butare, L. (2023). Response of common bean (Phaseolus
vulgaris L.) to nutrient amendments across variable agro-climatic conditions in Ghana. |
dc.relation.references | Yolcu, H., Seker, H., Gullap, M. K., Lithourgidis, A., & Gunes, A. (2011). Application of cattle
manure, zeolite and leonardite improves hay yield and quality of annual ryegrass ('Lolium
multiflorum'Lam.) under semiarid conditions. Australian Journal of Crop Science, 5(8), 926-
931. |
dc.relation.references | Yu, J., Wang, Z., Meixner, F.X., Yang, F., Wu, H., Chen, X., 2010. Biogeochemical char-
acterizations and reclamation strategies of saline–sodic soil in Northeastern China.
CLEAN− Soil, Air, Water 38 (11), 1010–1016. |
dc.relation.references | Yuan, J. H., Xu, R. K., Qian, W., & Wang, R. H. (2011). Comparison of the ameliorating
effects on an acidic ultisol between four crop straws and their biochars. Journal of soils and
sediments, 11, 741-750. |
dc.relation.references | Yurttakal, A. (2021). Extreme gradient boosting regression model for soil thermal
conductivity. Thermal Science, 25(Spec. issue 1), 1-7.
https://doi.org/10.2298/tsci200612001y |
dc.relation.references | Zhang, K., Li, S., Peng, W., & Yu, B. (2004). Erodibility of agricultural soils on the Loess
Plateau of China. Soil And Tillage Research, 76(2), 157-165.
https://doi.org/10.1016/j.still.2003.09.007 |
dc.relation.references | Zhang, N., & Wang, Z. (2017). Review of soil thermal conductivity and predictive models.
International Journal Of Thermal Sciences, 117, 172-183.
https://doi.org/10.1016/j.ijthermalsci.2017.03.013 |
dc.relation.references | Zhang, N., Zou, H., Zhang, L., Puppala, A. J., Liu, S., & Cai, G. (2020). A unified soil
thermal conductivity model based on artificial neural network. International Journal Of
Thermal Sciences, 155, 106414. https://doi.org/10.1016/j.ijthermalsci.2020.106414 |
dc.relation.references | Zhang, Q., Wang, Y., Wu, Y., Wang, X., Du, Z., Liu, X., & Song, J. (2013). Effects of Biochar
Amendment on Soil Thermal Conductivity, Reflectance, and Temperature. Soil Science
Society Of America Journal, 77(5), 1478-1487. https://doi.org/10.2136/sssaj2012.0180 |
dc.relation.references | Zhang, T., Wang, C., Liu, S., Zhang, N., & Zhang, T. (2020). Assessment of soil thermal
conduction using artificial neural network models. Cold Regions Science And Technology,
169, 102907. https://doi.org/10.1016/j.coldregions.2019.102907 |
dc.relation.references | Zhang, X., Zhang, X., Wang, W. (2023). Red neuronal artificial. En: Procesamiento
inteligente de información con Matlab. Springer, Singapur. https://doi-
org.ezproxy.unal.edu.co/10.1007/978-981-99-6449-9_1 |
dc.relation.references | Zhao, J., Ren, T., Zhang, Q., Du, Z., & Wang, Y. (2016). Effects of Biochar Amendment
on Soil Thermal Properties in the North China Plain. Soil Science Society Of America
Journal, 80(5), 1157-1166. https://doi.org/10.2136/sssaj2016.01.0020 |
dc.relation.references | Zhao, T., Liu, S., Xu, J., He, H., Wang, D., Horton, R., & Liu, G. (2022). Comparative
analysis of seven machine learning algorithms and five empirical models to estimate soil
thermal conductivity. Agricultural And Forest Meteorology, 323, 109080.
https://doi.org/10.1016/j.agrformet.2022.109080 |
dc.relation.references | Zhao, Y., & Naeth, M. A. (2022). Application timing optimization of lignite-derived humic
substances for three agricultural plant species and soil fertility (Vol. 51, No. 5, pp. 1035-
1043). |
dc.relation.references | Zhao, Y., & Naeth, M. A. (2024). Synergistic effects of coal waste derived humic
substances and inorganic fertilizer as soil amendments for barley in sandy soil. Heliyon,
10(8). |
dc.relation.references | Zhao, Y., & Si, B. (2019). Thermal properties of sandy and peat soils under unfrozen and
frozen conditions. Soil And Tillage Research, 189, 64-72.
https://doi.org/10.1016/j.still.2018.12.026 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.lemb | Conductividad térmica |
dc.subject.lemb | Carbón |
dc.subject.lemb | Propiedades fisicoquímicas del suelo |
dc.subject.lemb | Producción vegetal |
dc.subject.lemb | Suelos salinos |
dc.subject.proposal | Conductividad térmica |
dc.subject.proposal | Carbón de bajo rango |
dc.subject.proposal | Materia orgánica humificada |
dc.subject.proposal | Thermal conductivity |
dc.subject.proposal | Low rank coal |
dc.subject.proposal | Humified organic matter |
dc.title.translated | Dynamics of thermal conductivity and physical and chemical properties of a sodic saline soil with the application of low-rank coal and its relation to plant production. |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TD |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
oaire.fundername | Gobernación del Cesar |
dcterms.audience.professionaldevelopment | Estudiantes |
dcterms.audience.professionaldevelopment | Investigadores |
dcterms.audience.professionaldevelopment | Maestros |
dcterms.audience.professionaldevelopment | Público general |
dc.description.curriculararea | Producción Agraria Sostenible.Sede Medellín |
dc.contributor.orcid | Ortiz Benavides, Orieta [0000-0003-3952-2888] |