Show simple item record

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorGarcia Sucerquia, Jorge Iván
dc.contributor.authorBuitrago Duque, Carlos Andrés
dc.date.accessioned2025-04-22T22:25:03Z
dc.date.available2025-04-22T22:25:03Z
dc.date.issued2024-10
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88076
dc.descriptionIlustraciones, fotografías
dc.description.abstractThe rapid innovation in modern microscopy has outpaced its commercialization and adoption, leaving many users unable to access these advances. Even within the scientific community, adopting complex peer-reported designs can be challenging. To bridge the gap between microscopy innovation and widespread implementation, efforts are needed to democratize the field, making custom, research-grade instruments easily accessible to all. In this thesis, the development of open-source tools to perform label-free analysis in current science and engineering applications through digital holographic microscopy (DHM) systems, and its related technologies, was sought. To achieve it, simulation platforms, which account for the main parameters in an experimental setup, and numerical reconstruction tools that allow the digital processing of label-free recordings, were initially developed and openly distributed. Supported by these tools, accessible instrumentation of DHM systems was pursued, allowing the design and assembly of systems with increased portability and reduced cost and complexity. The developed devices and systems were validated in real-world applications, gathering valuable feedback that highlighted improvement opportunities. Finally, these opportunities were harnessed in the refinement of the proposed systems, both the software and hardware tools, enhancing their functionality. The results were reported on 13 manuscripts submitted to indexed journals of international circulation and shared in 17 presentations in international conferences. These works, which constitute the core of the present thesis, represent significant progress towards accessible, high-performance DHM and DLHM systems, with broad potential applications in both scientific research and education. (Tomado de la fuente)
dc.description.abstractLa rápida innovación en microscopía moderna ha superado su comercialización y adopción, dejando a muchos usuarios sin acceso a estos avances. Incluso dentro de la comunidad científica, la incorporación de diseños complejos reportados en la literatura es un desafío. Para cerrar la brecha entre la innovación en microscopía y su implementación generalizada, es necesario democratizar esta área de investigación, facilitando el acceso a instrumentos personalizados de nivel investigativo. En esta tesis se desarrollaron herramientas libres para realizar análisis sin marcadores en aplicaciones actuales de ciencia e ingeniería, mediante sistemas de microscopía holográfica digital (DHM) y tecnologías afines. Para ello, se desarrollaron y distribuyeron plataformas de simulación que incorporan los principales parámetros de un entorno experimental, y herramientas de reconstrucción numérica para el procesamiento digital de registros sin marcadores. Estas herramientas apoyaron el desarrollo de instrumentación accesible para sistemas DHM, permitiendo la creación de dispositivos más portátiles, económicos y de menor complejidad. Los sistemas desarrollados fueron validados en aplicaciones reales, recopilando retroalimentaciones y oportunidades de mejora, que luego fueron aprovechadas para optimizar tanto las herramientas de software como los dispositivos de hardware, mejorando su funcionalidad. Los resultados se reportaron en 13 manuscritos sometidos a revistas indexadas de circulación internacional y 17 presentaciones en conferencias internacionales. Estos trabajos, que constituyen el núcleo de esta tesis, representan un avance significativo hacia sistemas DHM y DLHM accesibles y de alto desempeño, con aplicaciones en investigación y docencia.
dc.format.extent98 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc530 - Física::535 - Luz y radiación relacionada
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.titleOpen-Source Label-Free Microscopy
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Doctorado en Ciencias - Física
dc.contributor.researchgroupOptica y Procesamiento Opto-Digital
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Física
dc.description.researchareaMicroscopía Holográfica Digital
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Realistic simulation and real-time reconstruction of digital holographic microscopy experiments in ImageJ. Appl Opt 2022;61:B56. https://doi.org/10.1364/AO.443137.
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J, Martínez-Corral M, Sánchez-Ortiga E. Revisiting the sample transmittance and camera bit-depth effects on quantitative phase imaging in off-axis digital holographic microscopy. Opt Lasers Eng 2024;175. https://doi.org/10.1016/j.optlaseng.2023.108002.
dc.relation.referencesLopera MJ, Buitrago-Duque C, Garcia-Sucerquia J, Nie Y, Ottevaere H, Trujillo C. Simulation of digital lensless holographic microscopy holograms: a physics-image processing approach. Opt Express 2024;32:48509. https://doi.org/10.1364/OE.541013.
dc.relation.referencesTobón-Maya H, Gómez-Ramírez A, Buitrago-Duque C, Garcia-Sucerquia J. Adapting a Blu-ray optical pickup unit as a point source for digital lensless holographic microscopy. Appl Opt 2023;62:D39. https://doi.org/10.1364/AO.474916.
dc.relation.referencesBuitrago-Duque C, Patiño-Jurado B, Garcia-Sucerquia J. Point sources for digital lensless holographic microscopy: comparative assessment. Opt Eng 2024;63:1–17. https://doi.org/10.1117/1.oe.63.11.111808.
dc.relation.referencesBuitrago-Duque C, Patiño-Jurado B, Garcia-Sucerquia J. Robust and compact digital Lensless Holographic microscope for Label-Free blood smear imaging. HardwareX 2023;13:e00408. https://doi.org/10.1016/j.ohx.2023.e00408.
dc.relation.referencesBuitrago-Duque C, Tobon-Maya H, Zapata-Valencia S, Garcia-Sucerquia J. Cost-effective, DIY, and open-source digital lensless holographic microscope with distortion correction. Opt Eng 2024;63:1–12. https://doi.org/10.1117/1.OE.63.11.111807.
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Digital holographic microscopy: our contributions to its democratization. Opt Pura y Apl 2022;55:4070–5. https://doi.org/10.7149/OPA.55.1.51106.
dc.relation.referencesMontoya M, Lopera MJ, Gómez-Ramírez A, Buitrago-Duque C, Pabón-Vidal A, Herrera-Ramirez J, et al. FocusNET: An autofocusing learning‐based model for digital lensless holographic microscopy. Opt Lasers Eng 2023;165:107546. https://doi.org/10.1016/j.optlaseng.2023.107546.
dc.relation.referencesBuitrago-Duque C, Tobón-Maya H, Gómez-Ramírez A, Zapata-Valencia SI, Lopera MJ, Trujillo C, et al. Open-access database for digital lensless holographic microscopy and its application on the improvement of deep-learning-based autofocusing models. Appl Opt 2024;63:B49. https://doi.org/10.1364/ao.507412.
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Noise reduction in digital holography phase maps by phase-preserving discrete Fourier resampling. Opt Lett 2023;48:5807. https://doi.org/10.1364/ol.504038.
dc.relation.referencesBuitrago-Duque C, Zapata-Valencia S, Garcia-Sucerquia J. Multi-view occlusion removal in digital lensless holographic microscopy. Opt Eng 2024;63:1–9. https://doi.org/10.1117/1.oe.63.11.111806.
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Digital Holographic Microscopy Experiments in ImageJ. Focus Microsc. 2023, Porto, Portugal: 2023, p. P1-E/8.
dc.relation.referencesBuitrago-Duque C, García-Sucerquia J, Martínez-Corral M, Sánchez-Ortiga E. Sample Transmittance and Camera Bit-Depth Effects in Single-Shot Digital Holographic Microscopy. Opt. Imaging Congr. (3D, COSI, DH, FLatOptics, IS, pcAOP), Washington, D.C.: Optica Publishing Group; 2023, p. HTu3C.2. https://doi.org/10.1364/DH.2023.HTu3C.2.
dc.relation.referencesMartinez-Corral M, Buitrago-Duque C, Garcia-Sucerquia J, Sánchez-Ortiga E. Exploring limits in Off-Axis Digital Holographic Microscopy [Invited]. Imaging Appl. Opt. Congr., 2024.
dc.relation.referencesBuitrago-Duque C, Patino-Jurado B, Garcia-Sucerquia J. A Comparative Assessment of Point Sources for Digital Lensless Holographic Microscopy. Opt. Lat. Am. Opt. Photonics Conf. 2024, Washington, D.C.: Optica Publishing Group; 2024, p. Tu4A.12. https://doi.org/10.1364/LAOP.2024.Tu4A.12.
dc.relation.referencesTobón-Maya H, Zapata-Valencia S, Buitrago-Duque C, Gomez-Ramirez A, Garcia-Sucerquia J. 3D printable open-source hardware for conical-shaped optical fiber tip fabrication. XI Iberoam. Opt. Meet. / XIV Lat. Meet. Opt. Lasers Appl., San José de Costa Rica: 2023.
dc.relation.referencesBuitrago-Duque C, Patiño-Jurado B, Garcia-Sucerquia J. Robust Digital Lensless Holographic Microscope for Label-Free Blood Smear Imaging. 10th Int. Symp. Opt. Its Appl., Cali, Colombia: 2022.
dc.relation.referencesBuitrago-Duque C, Patiño-Jurado B, Garcia-Sucerquia J. Robust Digital Lensless Holographic Microscope for Label-Free Blood Smear Imaging. Focus Microsc. 2023, Porto, Portugal: 2023, p. P1-E/9.
dc.relation.referencesTobon-Maya H, Zapata-Valencia S, Buitrago-Duque C, Garcia-Sucerquia J. Cost-effective, DIY and open-source digital lensless holographic microscopy with astigmatism correction and aberration reduction. XI Iberoam. Opt. Meet. / XIV Lat. Meet. Opt. Lasers Appl., San José de Costa Rica: 2023.
dc.relation.referencesBuitrago-Duque C, Tobón-Maya H, Garcia-Sucerquia J. Cost-Effective, DIY, and Open-Source Digital Lensless Holographic Microscope with Distortion Correction. Opt. Digit. Hologr. Three-Dimensional Imaging 2024, Washington, D.C.: Optica Publishing Group; 2024, p. W4A.20. https://doi.org/10.1364/DH.2024.W4A.20.
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Herramientas Libres y de Código Abierto para Investigación y Docencia en Microscopía Holográfica Digital. Encuentro Nac. Óptica y Conf. Andin. y del Caribe en Óptica y sus Apl., Medellin, Colombia: 2021.
dc.relation.referencesZapata-Valencia SI, Gómez-Ramírez A, Tobon-Maya H, Buitrago-Duque CA, Garcia-Sucerquia J. Beyond maxima and minima: a hands-on approach for undergraduate teaching of diffraction. Proc.SPIE, vol. 12723, 2023, p. 1272302. https://doi.org/10.1117/12.2662594.
dc.relation.referencesBuitrago-Duque CA, Zapata-Valencia SI, Tobon-Maya H, Gomez-Ramirez A, Garcia-Sucerquia J. Introduction to holography at undergraduate level using research-grade open-source software. Proc.SPIE, vol. 12723, 2023, p. 127231V. https://doi.org/10.1117/12.2670815.
dc.relation.referencesGomez-Ramirez A, Tobon-Maya H, Zapata-Valencia S, Buitrago-Duque C, Garcia-Sucerquia J. High-quality open-source dataset of Digital Lensless Holographic Microscopy recordings and reconstructions. XI Iberoam. Opt. Meet. / XIV Lat. Meet. Opt. Lasers Appl., San José de Costa Rica: 2023.
dc.relation.referencesBuitrago-Duque C, García-Sucerquia J. Single-shot Noise Reduction of Phase Maps through Phase-preserving Sliding Window Spatial Filtering. Opt. Imaging Congr. (3D, COSI, DH, FLatOptics, IS, pcAOP), Washington, D.C.: Optica Publishing Group; 2023, p. HTu3C.6. https://doi.org/10.1364/DH.2023.HTu3C.6.
dc.relation.referencesBuitrago-Duque C, Zapata-Valencia S, Garcia-Sucerquia J. Experimental Method to Remove Occlusions in Digital Lensless Holographic Microscopy. Opt. Digit. Hologr. Three-Dimensional Imaging 2024, Washington, D.C.: Optica Publishing Group; 2024, p. Tu2B.4. https://doi.org/10.1364/DH.2024.Tu2B.4.
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Can Digital Lensless Holographic Microscopy (DLHM) do Quantiative Phase Imaging (QPI)? [Invited]. Opt. Digit. Hologr. Three-Dimensional Imaging 2024, Paestum. Italy: n.d.
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Compact Self-Interference Digital Holographic Microscope Based on a Budget Fresnel Bi-Mirror. Opt. Digit. Hologr. Three-Dimensional Imaging 2024, Washington, D.C.: Optica Publishing Group; 2024, p. Tu5A.2. https://doi.org/10.1364/DH.2024.Tu5A.2.
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Realistic modeling of digital holographic microscopy. Opt Eng 2020;59:1. https://doi.org/10.1117/1.OE.59.10.102418.
dc.relation.referencesBuitrago-Duque C. Noise Reduction in Phase Maps from Digital Holographic Microscopy. Universidad Nacional de Colombia, 2020.
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Non-approximated Rayleigh–Sommerfeld diffraction integral: advantages and disadvantages in the propagation of complex wave fields. Appl Opt 2019;58:G11. https://doi.org/10.1364/ao.58.000g11.
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Sizing calibration in digital lensless holographic microscopy via iterative Talbot self-imaging. Opt Lasers Eng 2020;134:106176. https://doi.org/10.1016/j.optlaseng.2020.106176.
dc.relation.referencesTobon-Maya H, Zapata-Valencia S, Zora-Guzmán E, Buitrago-Duque C, Garcia-Sucerquia J. Open-source, cost-effective, portable, 3D-printed digital lensless holographic microscope. Appl Opt 2021;60:A205. https://doi.org/10.1364/AO.405605.
dc.relation.referencesBuitrago-Duque C, Castañeda R, Garcia-Sucerquia J. Pointwise phasor tuning for single-shot speckle noise reduction in phase wave fields. Opt Lasers Eng 2021;137:106365. https://doi.org/10.1016/j.optlaseng.2020.106365.
dc.relation.referencesBuitrago-Duque C, Castañeda R, Garcia-Sucerquia J. Single-shot pseudostochastic speckle noise reduction in numerical complex-valued wavefields. Opt Eng 2020;59:1. https://doi.org/10.1117/1.OE.59.7.073107.
dc.relation.referencesBuitrago-Duque C, Garcia-Sucerquia J. Physical pupil manipulation for speckle reduction in digital holographic microscopy. Heliyon 2021;7:e06098. https://doi.org/10.1016/j.heliyon.2021.e06098.
dc.relation.referencesAmelinckx S, van Dyck D, van Landuyt J, van Tendeloo G, editors. Handbook of Microscopy. Wiley; 1996. https://doi.org/10.1002/9783527620753.
dc.relation.referencesMilestones in light microscopy. Nat Cell Biol 2009;11:1165–1165. https://doi.org/10.1038/ncb1009-1165.
dc.relation.referencesGarini Y, Vermolen BJ, Young IT. From micro to nano: recent advances in high-resolution microscopy. Curr Opin Biotechnol 2005;16:3–12. https://doi.org/10.1016/j.copbio.2005.01.003.
dc.relation.referencesVangindertael J, Camacho R, Sempels W, Mizuno H, Dedecker P, Janssen KPF. An introduction to optical super-resolution microscopy for the adventurous biologist. Methods Appl Fluoresc 2018;6:022003. https://doi.org/10.1088/2050-6120/aaae0c.
dc.relation.referencesGrigg FC. Colour-Contrast Phase Microscopy. Nature 1950;165:368–9. https://doi.org/10.1038/165368b0.
dc.relation.referencesPark YK, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine. Nat Photonics 2018;12:578–89. https://doi.org/10.1038/s41566-018-0253-x.
dc.relation.referencesZangle TA, Teitell MA. Live-cell mass profiling: an emerging approach in quantitative biophysics. Nat Methods 2014;11:1221–8. https://doi.org/10.1038/nmeth.3175.
dc.relation.referencesPaddock SW, editor. Confocal Microscopy. Humana New York; 2016. https://doi.org/10.1007/978-1-60761-847-8.
dc.relation.referencesBewersdorf J, Pick R, Hell SW. Multifocal multiphoton microscopy. Opt Lett 1998;23:655. https://doi.org/10.1364/OL.23.000655.
dc.relation.referencesHoover EE, Squier JA. Advances in multiphoton microscopy technology. Nat Photonics 2013;7:93–101. https://doi.org/10.1038/nphoton.2012.361.
dc.relation.referencesVerveer PJ, Swoger J, Pampaloni F, Greger K, Marcello M, Stelzer EHK. High-resolution three-dimensional imaging of large specimens with light sheet–based microscopy. Nat Methods 2007;4:311–3. https://doi.org/10.1038/nmeth1017.
dc.relation.referencesGustafsson MGL. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 2000;198:82–7. https://doi.org/10.1046/j.1365-2818.2000.00710.x.
dc.relation.referencesHuang B, Babcock H, Zhuang X. Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells. Cell 2010;143:1047–58. https://doi.org/10.1016/j.cell.2010.12.002.
dc.relation.referencesBechhoefer J. What is superresolution microscopy? Am J Phys 2015;83:22–9. https://doi.org/10.1119/1.4900756.
dc.relation.referencesKim MK. Digital Holographic Microscopy: Principles, Techniques, and Applications. Springer; 2011. https://doi.org/10.1007/978-1-4419-7793-9.
dc.relation.referencesLatychevskaia T. Iterative phase retrieval for digital holography: tutorial. J Opt Soc Am A 2019;36:D31. https://doi.org/10.1364/JOSAA.36.000D31.
dc.relation.referencesZheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat Photonics 2013;7:739–45. https://doi.org/10.1038/nphoton.2013.187.
dc.relation.referencesGuo C, Liu W, Hua X, Li H, Jia S. Fourier light-field microscopy. Opt Express 2019;27:25573. https://doi.org/10.1364/OE.27.025573.
dc.relation.referencesPower RM, Huisken J. Putting advanced microscopy in the hands of biologists. Nat Methods 2019;16:1069–73. https://doi.org/10.1038/s41592-019-0618-1.
dc.relation.referencesFantner GE, Oates AC. Instruments of change for academic tool development. Nat Phys 2021;17:421–4. https://doi.org/10.1038/s41567-021-01221-3.
dc.relation.referencesMaia Chagas A. Haves and have nots must find a better way : The case for open scientific hardware. PLOS Biol 2018;16:e3000014. https://doi.org/10.1371/journal.pbio.3000014.
dc.relation.referencesMarder E. Living Science: The haves and the have nots. Elife 2013. https://doi.org/10.7554/eLife.01515.
dc.relation.referencesPerry L, Malkin R. Effectiveness of medical equipment donations to improve health systems: how much medical equipment is broken in the developing world? Med Biol Eng Comput 2011;49:719–22. https://doi.org/10.1007/s11517-011-0786-3.
dc.relation.referencesPearce JM. Building Research Equipment with Free, Open-Source Hardware. Science (80- ) 2012;337:1303–4. https://doi.org/10.1126/science.1228183.
dc.relation.referencesHohlbein J, Diederich B, Marsikova B, Reynaud EG, Holden S, Jahr W, et al. Open microscopy in the life sciences: quo vadis? Nat Methods 2022;19:1020–5. https://doi.org/10.1038/s41592-022-01602-3.
dc.relation.referencesCybulski JS, Clements J, Prakash M. Foldscope: Origami-Based Paper Microscope. PLoS One 2014;9:e98781. https://doi.org/10.1371/journal.pone.0098781.
dc.relation.referencesDiederich B, Lachmann R, Carlstedt S, Marsikova B, Wang H, Uwurukundo X, et al. A versatile and customizable low-cost 3D-printed open standard for microscopic imaging. Nat Commun 2020;11:5979. https://doi.org/10.1038/s41467-020-19447-9.
dc.relation.referencesSharkey JP, Foo DCWW, Kabla A, Baumberg JJ, Bowman RW. A one-piece 3D printed flexure translation stage for open-source microscopy. Rev Sci Instrum 2016;87:025104. https://doi.org/10.1063/1.4941068.
dc.relation.referencesSchneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012;9:671–5. https://doi.org/10.1038/nmeth.2089.
dc.relation.referencesEdelstein AD, Tsuchida MA, Amodaj N, Pinkard H, Vale RD, Stuurman N. Advanced methods of microscope control using μManager software. J Biol Methods 2014;1:e10. https://doi.org/10.14440/jbm.2014.36.
dc.relation.referencesSwedlow JR, Goldberg I, Brauner E, Sorger PK. Informatics and Quantitative Analysis in Biological Imaging. Science (80- ) 2003;300:100–2. https://doi.org/10.1126/science.1082602.
dc.relation.referencesEisenstein M. Microscopy made to order. Nat Methods 2021;18:1277–81. https://doi.org/10.1038/s41592-021-01313-1.
dc.relation.referencesEvanko D. Label-free microscopy. Nat Methods 2010;7:36–36. https://doi.org/10.1038/nmeth.f.288.
dc.relation.referencesShaked NT, Boppart SA, Wang L V., Popp J. Label-free biomedical optical imaging. Nat Photonics 2023;17:1031–41. https://doi.org/10.1038/s41566-023-01299-6.
dc.relation.referencesZernike F. Phase contrast, a new method for the microscopic observation of transparent objects part II. Physica 1942;9:974–86. https://doi.org/10.1016/S0031-8914(42)80079-8.
dc.relation.referencesBorn M, Wolf E, Bhatia AB, Clemmow PC, Gabor D, Stokes AR, et al. Principles of Optics. 7th ed. Cambridge, UK: Cambridge University Press; 1999. https://doi.org/10.1017/CBO9781139644181.
dc.relation.referencesNguyen TH, Kandel M, Shakir HM, Best-Popescu C, Arikkath J, Do MN, et al. Halo-free Phase Contrast Microscopy. Sci Rep 2017;7:44034. https://doi.org/10.1038/srep44034.
dc.relation.referencesCuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl Opt 1999;38:6994. https://doi.org/10.1364/AO.38.006994.
dc.relation.referencesMarquet P, Rappaz B, Magistretti PJ, Cuche E, Emery Y, Colomb T, et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt Lett 2005;30:468. https://doi.org/10.1364/OL.30.000468.
dc.relation.referencesTrolinger JD, Mansoor MM. History and metrology applications of a game-changing technology: digital holography [Invited]. J Opt Soc Am A 2022;39:A29. https://doi.org/10.1364/JOSAA.440610.
dc.relation.referencesSchnars U, Jueptner WPO. Digital Holography. Berlin Heidelberg: Springer-Verlag; 2005. https://doi.org/10.1007/b138284.
dc.relation.referencesGoodman JW. Introduction to Fourier Optics. 3rd ed. Roberts & Company Publishers; 2005.
dc.relation.referencesPicart P, Leval J. General theoretical formulation of image formation in digital Fresnel holography. J Opt Soc Am A 2008;25:1744–61. https://doi.org/10.1364/JOSAA.25.001744.
dc.relation.referencesXu L, Miao J, Asundi A. Properties of digital holography based on in-line configuration. Opt Eng 2000;39:3214–9.
dc.relation.referencesCuche E, Marquet P, Depeursinge C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl Opt 2000;39:4070–5. https://doi.org/10.1364/AO.39.004070.
dc.relation.referencesTakeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J Opt Soc Am 1982;72:156. https://doi.org/10.1364/JOSA.72.000156.
dc.relation.referencesSánchez-Ortiga E, Doblas A, Saavedra G, Martínez-Corral M, Garcia-Sucerquia J. Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit. Appl Opt 2014;53:2058. https://doi.org/10.1364/AO.53.002058.
dc.relation.referencesLatychevskaia T, Fink H-W. Solution to the Twin Image Problem in Holography. Phys Rev Lett 2007;98:233901. https://doi.org/10.1103/PhysRevLett.98.233901.
dc.relation.referencesGoodwin EP, Wyant JC. Field Guide to Interferometric Optical Testing. SPIE; 2009. https://doi.org/10.1117/3.702897.
dc.relation.referencesCreath K. V Phase-Measurement Interferometry Techniques. Prog. Opt., 1988, p. 349–93. https://doi.org/10.1016/S0079-6638(08)70178-1.
dc.relation.referencesGuizar-Sicairos M, Fienup JR. Understanding the twin-image problem in phase retrieval. J Opt Soc Am A 2012;29:2367. https://doi.org/10.1364/JOSAA.29.002367.
dc.relation.referencesPopescu G. Quantitative phase imaging of cells and tissues. McGraw Hill Professional; 2011.
dc.relation.referencesKreis T. Handbook of Holographic Interferometry: Optical and Digital Methods. Weinheim: WILEY-VCH GmbH & Co; 2005.
dc.relation.referencesBrandt GB. Image Plane Holography 1969;8:1421–9. https://doi.org/10.1364/AO.8.001421.
dc.relation.referencesErsoy OK. Diffraction, Fourier Optics and Imaging. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2007. https://doi.org/10.1002/0470085002.
dc.relation.referencesCastañeda R, Toro W, Garcia-Sucerquia J. Evaluation of the limits of application for numerical diffraction methods based on basic optics concepts. Optik (Stuttg) 2015;126:5963–70. https://doi.org/10.1016/j.ijleo.2015.08.109.
dc.relation.referencesSchnars U, Jüptner W. Direct recording of holograms by a CCD target and numerical reconstruction. Appl Opt 1994;33:179–81. https://doi.org/10.1364/AO.33.000179.
dc.relation.referencesGabor D. A New Microscopic Principle. Nature 1948;161:777–778.
dc.relation.referencesGabor D. Microscopy by reconstructed wave-fronts. Procedings R Soc London 1949;197:454–87. https://doi.org/10.1038/166399b0.
dc.relation.referencesGarcia-Sucerquia J, Xu W, Jericho SK, Klages P, Jericho MH, Kreuzer HJ. Digital in-line holographic microscopy. Appl Opt 2006;45:836. https://doi.org/10.1364/AO.45.000836.
dc.relation.referencesPatiño-Jurado B, Botero-Cadavid JF, Garcia-Sucerquia J. Optical Fiber Point-Source for Digital Lensless Holographic Microscopy. J Light Technol 2019;37:5660–6. https://doi.org/10.1109/JLT.2019.2921307.
dc.relation.referencesSerabyn E, Liewer K, Lindensmith C, Wallace K, Nadeau J. Compact, lensless digital holographic microscope for remote microbiology. Opt Express 2016;24:28540–8. https://doi.org/10.1364/OE.24.028540.
dc.relation.referencesSanz M, Trusiak M, García J, Micó V. Variable zoom digital in-line holographic microscopy. Opt Lasers Eng 2020;127:105939. https://doi.org/10.1016/j.optlaseng.2019.105939.
dc.relation.referencesRepetto L, Piano E, Pontiggia C. Lensless digital holographic microscope with light-emitting diode illumination. Opt Lett 2004;29:1132. https://doi.org/10.1364/OL.29.001132.
dc.relation.referencesJericho MH, Kreuzer HJ. Point Source Digital In-line Holographic Microscopy. In: Ferraro P, Wax A, Zalevvsky Z, editors. Coherent Light Microsc., Springer-Verlag Berlin Heidelberg; 2011, p. 3–30.
dc.relation.referencesJericho MH, Jürgen Kreuzer H. Point Source Digital In-Line Holographic Microscopy Digital In-Line Holographic Microscopy, 2011, p. 3–30. https://doi.org/10.1007/978-3-642-15813-1_1.
dc.relation.referencesSchnars U, J ptner WPO. Digital recording and numerical reconstruction of holograms. Meas Sci Technol 2002;13:R85–101. https://doi.org/10.1088/0957-0233/13/9/201.
dc.relation.referencesKreuzer HJ. Holographic microscope and method of hologram reconstruction. US 6,411,406 B1, 2002.
dc.relation.referencesTrujillo C, Piedrahita-Quintero P, Garcia-Sucerquia J. Digital lensless holographic microscopy: numerical simulation and reconstruction with ImageJ. Appl Opt 2020;59:5788. https://doi.org/10.1364/AO.395672.
dc.relation.referencesRestrepo JF, Garcia-Sucerquia J. Magnified reconstruction of digitally recorded holograms by Fresnel-Bluestein transform. Appl Opt 2010;49:6430–5. https://doi.org/10.1364/AO.49.006430.
dc.relation.referencesKemper B, Bauwens A, Bettenworth D, Götte M, Greve B, Kastl L, et al. Label-Free Quantitative In Vitro Live Cell Imaging with Digital Holographic Microscopy, 2019. https://doi.org/10.1007/11663_2019_6.
dc.relation.referencesEisenstein M. AI under the microscope: the algorithms powering the search for cells. Nature 2023;623:1095–7. https://doi.org/10.1038/d41586-023-03722-y.
dc.relation.referencesShroff H, Testa I, Jug F, Manley S. Live-cell imaging powered by computation. Nat Rev Mol Cell Biol 2024;25:443–63. https://doi.org/10.1038/s41580-024-00702-6.
dc.relation.referencesColomb T, Pavillon N, Kühn J, Cuche E, Depeursinge C, Emery Y. Extended depth-of-focus by digital holographic microscopy. Opt Lett 2010;35:1840–2.
dc.relation.referencesHong J, Kim Y, Bae H, Hong S. OpenHolo: Open source library for hologram generation, reconstruction and signal processing. Imaging Appl. Opt. Congr., Washington, D.C.: Optica Publishing Group; 2020, p. HF3G.1. https://doi.org/10.1364/DH.2020.HF3G.1.
dc.relation.referencesRueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 2017;18:529. https://doi.org/10.1186/s12859-017-1934-z.
dc.relation.referencesHariharan P. Optical Holography: Principles, Techniques, and Applications. 2nd ed. Cambridge, UK: Cambridge University Press; 1996.
dc.relation.referencesPiedrahita-Quintero P, Castañeda R, Garcia-Sucerquia J. Numerical wave propagation in ImageJ. Appl Opt 2015;54. https://doi.org/10.1364/AO.54.006410.
dc.relation.referencesRestrepo JF, Garcia-Sucerquia J. Diffraction-based modeling of high-numerical-aperture in-line lensless holograms. Appl Opt 2011;50:1745–52. https://doi.org/10.1364/AO.50.001745.
dc.relation.referencesHartley R, Sing Bing Kang. Parameter-Free Radial Distortion Correction with Center of Distortion Estimation. IEEE Trans Pattern Anal Mach Intell 2007;29:1309–21. https://doi.org/10.1109/TPAMI.2007.1147.
dc.relation.referencesHwu EE-T, Boisen A. Hacking CD/DVD/Blu-ray for Biosensing. ACS Sensors 2018;3:1222–32. https://doi.org/10.1021/acssensors.8b00340.
dc.relation.referencesPatiño-Jurado B, Botero-Cadavid JF, Garcia-Sucerquia J. Cone-shaped optical fiber tip for cost-effective digital lensless holographic microscopy. Appl Opt 2020;59:2969–75. https://doi.org/10.1364/ao.384208.
dc.relation.referencesMaritz MG, Schoeman J. Programmable Aperture Using a Digital Micromirror Device for In-Line Holographic Microscopy. IEEE J Quantum Electron 2022;58:1–8. https://doi.org/10.1109/JQE.2022.3190501.
dc.relation.referencesLopera MJ, Trujillo C. Holographic point source for digital lensless holographic microscopy. Opt Lett 2022;47:2862–5. https://doi.org/10.1364/OL.459146.
dc.relation.referencesGu N, Li C, Sun L, Liu Z, Sun Y, Xu L. Controllable fabrication of fiber nano-tips by dynamic chemical etching based on siphon principle. J Vac Sci Technol B Microelectron Nanom Struct 2004;22:2283. https://doi.org/10.1116/1.1781185.
dc.relation.referencesWróbel P, Stefaniuk T, Antosiewicz TJ, Libura A, Nowak G, Wejrzanowski T, et al. Fabrication of corrugated probes for scanning near-field optical microscopy. In: Kuzmiak V, Markos P, Szoplik T, editors., 2011, p. 80700I. https://doi.org/10.1117/12.886844.
dc.relation.referencesPatiño-Jurado B. Fiber optics point-source for digital lensless holographic microscopy. Universidad Nacional de Colombia, 2019.
dc.relation.referencesPark Y, Diez-Silva M, Popescu G, Lykotrafitis G, Choi W, Feld MS, et al. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc Natl Acad Sci 2008;105:13730–5. https://doi.org/10.1073/pnas.0806100105.
dc.relation.referencesHanssen E, McMillan PJ, Tilley L. Cellular architecture of Plasmodium falciparum-infected erythrocytes. Int J Parasitol 2010;40:1127–35. https://doi.org/10.1016/j.ijpara.2010.04.012.
dc.relation.referencesSuresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, et al. Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater 2005;1:15–30. https://doi.org/10.1016/j.actbio.2004.09.001.
dc.relation.referencesMills JP, Diez-Silva M, Quinn DJ, Dao M, Lang MJ, Tan KSW, et al. Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc Natl Acad Sci 2007;104:9213–7. https://doi.org/10.1073/pnas.0703433104.
dc.relation.referencesDubois F, Schockaert C, Callens N, Yourassowsky C. Focus plane detection criteria in digital holography microscopy by amplitude analysis. Opt Express 2006;14:5895. https://doi.org/10.1364/OE.14.005895.
dc.relation.referencesLyu M, Yuan C, Li D, Situ G. Fast autofocusing in digital holography using the magnitude differential. Appl Opt 2017;56:F152. https://doi.org/10.1364/AO.56.00F152.
dc.relation.referencesTrujillo CA, Garcia-Sucerquia J. Automatic method for focusing biological specimens in digital lensless holographic microscopy. Opt Lett 2014;39:2569–72. https://doi.org/10.1364/OL.39.002569.
dc.relation.referencesBianco V, Memmolo P, Paturzo M, Finizio A, Javidi B, Ferraro P. Quasi noise-free digital holography. Light Sci Appl 2016;5:e16142–e16142. https://doi.org/10.1038/lsa.2016.142.
dc.relation.referencesBianco V, Memmolo P, Leo M, Montresor S, Distante C, Paturzo M, et al. Strategies for reducing speckle noise in digital holography. Light Sci Appl 2018;7:48. https://doi.org/10.1038/s41377-018-0050-9.
dc.relation.referencesGarcia-Sucerquia J, Herrera-Ramírez J, Velásquez D. Reduction of speckle noise in digital holography by using digital image processing. Opt - Int J Light Electron Opt 2005;116:44–8. https://doi.org/10.1016/j.ijleo.2004.12.004.
dc.relation.referencesHincapie D, Herrera-Ramírez J, Garcia-Sucerquia J. Single-shot speckle reduction in numerical reconstruction of digitally recorded holograms. Opt Lett 2015;40:1623–6. https://doi.org/10.1364/OL.40.001623.
dc.relation.referencesHerrera-Ramirez J, Hincapie-Zuluaga DA, Garcia-Sucerquia J. Speckle noise reduction in digital holography by slightly rotating the object. Opt Eng 2016;55:121714. https://doi.org/10.1117/1.OE.55.12.121714.
dc.relation.referencesMaycock J, Hennelly BM, McDonald JB, Castro A, Naughton TJ, Frauel Y, et al. Reduction of speckle in digital holography by discrete Fourier filtering. J Opt Soc Am A 2007;24:1617–22. https://doi.org/10.1364/JOSAA.24.001617.
dc.relation.referencesBianco V, Paturzo M, Memmolo P, Finizio A, Ferraro P, Javidi B. Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography. Opt Lett 2013;38:619–21. https://doi.org/10.1364/OL.38.000619.
dc.relation.referencesZapata-Valencia SI, Tobon-Maya H, Garcia-Sucerquia J. Image enhancement and field of view enlargement in digital lensless holographic microscopy by multi-shot imaging. J Opt Soc Am A 2023;40:C150. https://doi.org/10.1364/JOSAA.482496.
dc.relation.referencesRestrepo JF, Garcia-Sucerquia J. Numerical evaluation of the limit of concentration of colloidal samples for their study with digital lensless holographic microscopy. Appl Opt 2013;52:A310. https://doi.org/10.1364/AO.52.00A310.
dc.relation.referencesJericho MH, Kreuzer HJ, Kanka M, Riesenberg R. Quantitative phase and refractive index measurements with point-source digital in-line holographic microscopy. Appl Opt 2012;51:1503. https://doi.org/10.1364/AO.51.001503.
dc.relation.referencesOzcan A, McLeod E. Lensless Imaging and Sensing. Annu Rev Biomed Eng 2016;18:77–102. https://doi.org/10.1146/annurev-bioeng-092515-010849.
dc.relation.referencesWdowiak E, Rogalski M, Arcab P, Zdańkowski P, Józwik M, Trusiak M. Quantitative phase imaging verification in large field-of-view lensless holographic microscopy via two-photon 3D printing. Sci Rep 2024;14:23611. https://doi.org/10.1038/s41598-024-74866-8.
dc.relation.referencesUgele M, Weniger M, Leidenberger M, Huang Y, Bassler M, Friedrich O, et al. Label-free, high-throughput detection of P. falciparum infection in sphered erythrocytes with digital holographic microscopy. Lab Chip 2018;18:1704–12.
dc.relation.referencesPark Y. Optical Measurement of Biomechanical Properties of Human Red Blood Cell using Digital Holographic Microscopy: Malaria and Sickle Cell Diseases. Biophys J 2013;104:341a. https://doi.org/10.1016/j.bpj.2012.11.1896.
dc.relation.referencesKemper B, Vollmer A, von Bally G, Rommel CE, Schnekenburger J. Simplified approach for quantitative digital holographic phase contrast imaging of living cells. J Biomed Opt 2011;16:1. https://doi.org/10.1117/1.3540674.
dc.relation.referencesMa C, Li Y, Zhang J, Li P, Xi T, Di J, et al. Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer. Opt Express 2017;25:13659. https://doi.org/10.1364/OE.25.013659.
dc.relation.referencesChhaniwal V, Singh ASG, Leitgeb RA, Javidi B, Anand A. Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror. Opt Lett 2012;37:5127. https://doi.org/10.1364/OL.37.005127.
dc.relation.referencesLee K, Park Y. Quantitative phase imaging unit. Opt Lett 2014;39:3630. https://doi.org/10.1364/OL.39.003630.
dc.relation.referencesEbrahimi S, Dashtdar M, Sánchez-Ortiga E, Martínez-Corral M, Javidi B. Stable and simple quantitative phase-contrast imaging by Fresnel biprism. Appl Phys Lett 2018;112. https://doi.org/10.1063/1.5021008.
dc.relation.referencesSingh ASG, Anand A, Leitgeb RA, Javidi B. Lateral shearing digital holographic imaging of small biological specimens. Opt Express 2012;20:23617. https://doi.org/10.1364/OE.20.023617.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembMicroscopía
dc.subject.lembHolografía
dc.subject.lembMicroscopía digital
dc.subject.lembNanotecnología
dc.subject.proposalDigital Holographic Microscopy
dc.subject.proposalOpen Microscopy
dc.subject.proposalLabel-Free Imaging
dc.subject.proposalQuantitative Phase Imaging
dc.subject.proposalOpen Science
dc.subject.proposalMicroscopía Holográfica Digital
dc.subject.proposalCiencia Abierta
dc.subject.proposalMicroscopía Abierta
dc.subject.proposalImágenes sin marcadores
dc.subject.proposalImágenes Cuantitativas de Fase
dc.title.translatedMicroscopía Abierta sin Marcadores
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.description.curricularareaFísica.Sede Medellín
dc.contributor.orcidBuitrago Duque, Carlos Andrés [0000-0001-7523-9735]
dc.contributor.cvlac0000127437
dc.contributor.scopus56051519100
dc.contributor.researchgateCarlos-Buitrago-Duque
dc.contributor.googlescholarnCo6tr0AAAAJ


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit