Show simple item record

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorLopez Arcos, Cristhiam Manuel
dc.contributor.advisorQuintero Velez, Alexander
dc.contributor.authorHerrera Correa, Daniel
dc.date.accessioned2025-04-22T23:02:53Z
dc.date.available2025-04-22T23:02:53Z
dc.date.issued2025
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88079
dc.description.abstractThis work studies the quantization of gauge theories in the sense of the Batalin-Vilkovisky (BV) formalism by using the language of dg-manifolds, introduced initially by Schwarz, Kontsevich, et. al., and some mathematical consequences of this language, with an emphasis on the fact that the underlying structure of the quantizable theory is a symplectic dg-manifold called QP-manifold. These structures give rise to homotopy Lie algebras such as L_infinity-algebras so that the classical BV formalism is translated into a Maurer-Cartan theory for a cyclic L_infinity-algebra that already recovers all the information of the associated gauge theory. The advantage of this language when describing the physics of particular models is that the L_infinity-algebra allows one to produce a generating function of tree-level amplitudes by directly implementing the so-called Berends-Giele currents. We tested this approach by explicitly calculating Berends-Giele currents from the L_infinity-structure of different theories, such as Yang-Mills theory, self-dual Yang-Mills, and self-dual Gravity, constructing the last one as the double-copy of self-dual Yang-Mills. (Tomado de la fuente)
dc.description.abstractEste trabajo estudia la cuantización de las teorías gauges por medio del formalismo de Batalin-Vilkovisky en el lenguaje de las variedades diferenciales graduadas, introducido inicialmente por Schwarz, Kontsevich, et. al. [AKSZ97], y algunas de las consecuencias matemáticas de este lenguaje, enfatizando el hecho de que la estructura geométrica subyacente a una teoría gauge cuantizable es una variedad simpléctica graduada equipada con un campo vectorial homológico. Estas estructuras inducen álgebras de Lie homotópicas, como las álgebras L_infinito, de manera que el formalismo de Batalin-Vilkovisky clásico puede ser traducido en una teoría de Maurer-Cartan homotópica que codifica la teoría gauge. La ganancia conceptual de este lenguaje en la física que describen es que el álgebra L_infinito permite construir funciones generatrices de amplitudes de dispersión a nivel de árbol, mediante la implementación de las corrientes de Berends-Giele. Probamos esta aproximación calculando las corrientes de Berends-Giele en el álgebra L_infinito de distintas teorías, como la teoría de Yang-Mills, Yang-Mills autodual, y gravedad autodual, construyendo esta última como la doble copia de la previa.
dc.format.extent97 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc510 - Matemáticas::516 - Geometría
dc.subject.ddc530 - Física::539 - Física moderna
dc.titleTree-level recursive self-dual Yang-Mills and self-dual Gravity
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Matemáticas
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Matemáticas
dc.description.researchareaFísica matemática
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesM. Alexandrov, M. Kontsevich, A. Schwarz, and O. Zaboronsky. The Geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A, 12:1405– 1429, 1997.
dc.relation.referencesLuigi Alfonsi and Charles A. S. Young. Towards non-perturbative bv-theory via derived differential geometry, 2023.
dc.relation.referencesZvi Bern. Perturbative quantum gravity and its relation to gauge theory. Living Reviews in Relativity, 5(1), July 2002
dc.relation.referencesFrits A. Berends and W. T. Giele. Recursive Calculations for Processes with n Gluons. Nucl. Phys. B, 306:759–808, 1988.
dc.relation.referencesRutger H. Boels, Reinke Sven Isermann, Ricardo Monteiro, and Donal O’Connell. Colour-kinematics duality for one-loop rational amplitudes. Journal of High Energy Physics, 2013(4), April 2013.
dc.relation.referencesC Becchi, A Rouet, and R Stora. Renormalization of gauge theories. Annals of Physics, 98(2):287–321, 1976.
dc.relation.referencesI. A. Batalin and G. A. Vilkovisky. Gauge Algebra and Quantization. Phys. Lett. B, 102:27–31, 1981.
dc.relation.referencesI. A. Batalin and G. a. Vilkovisky. FEYNMAN RULES FOR REDUCIBLE GAUGE THEORIES. Phys. Lett. B, 120:166–170, 1983.
dc.relation.referencesI. A. Batalin and G. A. Vilkovisky. Quantization of Gauge Theories with Linearly Dependent Generators. Phys. Rev. D, 28:2567–2582, 1983. [Erratum: Phys.Rev.D 30, 508 (1984)].
dc.relation.referencesDaniel Cangemi. Self-dual yang-mills theory and one-loop maximally helicity violating multi-gluon amplitudes. Nuclear Physics B, 484(1–2):521–537, January 1997.
dc.relation.referencesJohn Joseph M. Carrasco. Tasi 2014: Lectures on gauge and gravity amplitude relations. In Journeys Through the Precision Frontier: Amplitudes for Colliders. WORLD SCIENTIFIC, September 2015.
dc.relation.referencesClaude Chevalley and Samuel Eilenberg. Cohomology Theory of Lie Groups and Lie Algebras. Trans. Am. Math. Soc., 63:85–124, 1948
dc.relation.referencesKevin Costello and Owen Gwilliam. Factorization Algebras in Quantum Field Theory. New Mathematical Monographs (41). Cambridge University Press, 9 2021.
dc.relation.referencesDaniel Herrera Correa, Cristhiam Lopez-Arcos, and Alexander Quintero Vélez. Tree and one-loop-level double copy for the (anti)self-dual sectors of Yang-Mills and gravity theories. Phys. Rev. D, 111:065001, Mar 2025.
dc.relation.referencesAlberto S. Cattaneo and Nima Moshayedi. Introduction to the bv-bfv formalism. Reviews in Mathematical Physics, 32(09):2030006, April 2020.
dc.relation.referencesAlberto S. Cattaneo, Pavel Mnev, and Michele Schiavina. Bv quantization. 2023.
dc.relation.referencesMiguel Campiglia and Silvia Nagy. A double copy for asymptotic symmetries in the self-dual sector. Journal of High Energy Physics, 2021(3), March 2021.
dc.relation.referencesP. Deligne, P. Etingof, D. S. Freed, L. C. Jeffrey, D. Kazhdan, J. W. Morgan, D. R. Morrison, and Edward Witten, editors. Quantum fields and strings: A course for mathematicians. Vol. 1, 2. 1999.
dc.relation.referencesP. A. M. DIRAC. The lagrangian in quantum mechanics. Physikalische Zeitschrift der Sowjetunion., pages 64–72, 1932.
dc.relation.referencesG. de Rham. Differentiable Manifolds: Forms, Currents, Harmonic Forms. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Springer-Verlag, 1984.
dc.relation.referencesAna Cannas da Silva. Symplectic geometry, 2005.
dc.relation.referencesA. Einstein. Die Feldgleichungen der Gravitation, page 844–847. 1915.
dc.relation.referencesNathaniel Eldredge. Analysis and probability on infinite-dimensional spaces, 2016.
dc.relation.referencesPavel Etingof. Mathematical ideas and notions of quantum field theory, 2024.
dc.relation.referencesL. D. Faddeev and V. N. Popov. Feynman Diagrams for the Yang-Mills Field. Phys. Lett. B, 25:29–30, 1967.
dc.relation.referencesValentina Guarín Escudero, Cristhiam Lopez-Arcos, and Alexander Quintero Vélez. Homotopy double copy and the kawai–lewellen–tye relations for the non-abelian and tensor navier–stokes equations. Journal of Mathematical Physics, 64(3), March 2023.
dc.relation.referencesHumberto Gomez, Renann Lipinski Jusinskas, Cristhiam Lopez-Arcos, and Alexander Quintero Vélez. One-loop off-shell amplitudes from classical equations of motion. Physical Review Letters, 130(8), February 2023.
dc.relation.referencesMaxim Grigoriev and Dmitry Rudinsky. Notes on the l_∞-approach to local gauge field theories, 2023.
dc.relation.referencesWalter Greiner. Quantum mechanics. Springer - verlog, Berlin, 4th ed. edition, 2004.
dc.relation.referencesMark Hamilton, J. D. Mathematical Gauge Theory: With Applications to the Standard Model of Particle Physics. Universitext. Springer International Publishing, Cham, 2017.
dc.relation.referencesRobin Hartshorne. Algebraic Geometry, volume 52 of Graduate Texts in Mathematics. Springer, 1977.
dc.relation.referencesD. Hilbert. Die grundlagen der physik . (erste mitteilung.). Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1915:395–408, 1915.
dc.relation.referencesNigel J. Hitchin. The Selfduality equations on a Riemann surface. Proc. Lond. Math. Soc., 55:59–131, 1987.
dc.relation.referencesM. Z. Iofa and I. V. Tyutin. Gauge Invariance of Spontaneously Broken Nonabelian Theories in the Bogolyubov-Parasiuk-HEPP-Zimmerman Method. Teor. Mat. Fiz., 27:38–47, 1976.
dc.relation.referencesBranislav Jurco, Tommaso Macrelli, Lorenzo Raspollini, Christian Saemann, and Martin Wolf. l∞-algebras, the bv formalism, and classical fields. 3 2019.
dc.relation.referencesBranislav Jurčo, Tommaso Macrelli, Lorenzo Raspollini, Christian Sämann, and Martin Wolf. ‐algebras, the bv formalism, and classical fields: Lms/epsrc durham symposium on higher structures in m‐theory. Fortschritte der Physik, 67(8–9), June 2019.
dc.relation.referencesBranislav Jurčo, Lorenzo Raspollini, Christian Sämann, and Martin Wolf. L∞‐algebras of classical field theories and the batalin–vilkovisky formalism. Fortschritte der Physik, 67(7), July 2019.
dc.relation.referencesTornike Kadeishvili. Structure of a(∞)-algebra and hochschild and harrison cohomology, 2002.
dc.relation.referencesJ. Kalkman. BRST model for equivariant cohomology and representatives for the equivariant Thom class. Commun. Math. Phys., 153:447–463, 1993.
dc.relation.referencesH. Kawai, D.C. Lewellen, and S.-H.H. Tye. A relation between tree amplitudes of closed and open strings. Nuclear Physics B, 269(1):1–23, 1986.
dc.relation.referencesMaxim Kontsevich. Deformation quantization of poisson manifolds. Letters in Mathematical Physics, 66(3):157–216, December 2003.
dc.relation.referencesAlexei Kotov and Thomas Strobl. Characteristic classes associated to q-bundles, 2007.
dc.relation.referencesCORNELIUS LANCZOS. The Variational Principles of Mechanics. University of Toronto Press, 1962.
dc.relation.referencesCristhiam Lopez-Arcos and Alexander Quintero Vélez. L∞-algebras and the perturbiner expansion. Journal of High Energy Physics, 2019(11), November 2019.
dc.relation.referencesD. A. Leites. Introduction to the theory of supermanifolds. Russ.Math. Surveys, 35(1):1– 64, 1980.
dc.relation.referencesM. Manetti. Lie Methods in Deformation Theory. Springer Monographs in Mathematics. Springer Nature Singapore, 2022.
dc.relation.referencesTim Maudlin. Philosophy of Physics: Quantum Theory, volume 33. Princeton University Press, 2019.
dc.relation.referencesJames Clerk Maxwell. A Treatise on Electricity and Magnetism. Cambridge Library Collection - Physical Sciences. Cambridge University Press, 2010.
dc.relation.referencesEckhard Meinrenken. Clifford Algebras and Lie Theory, volume 58. 01 2013
dc.relation.referencesPavel Mnev. Lectures on Batalin-Vilkovisky formalism and its applications in topological quantum field theory. 7 2017.
dc.relation.referencesRicardo Monteiro and Donal O’Connell. The kinematic algebra from the self-dual sector. Journal of High Energy Physics, 2011(7), July 2011.
dc.relation.referencesD. McDuff and D. Salamon. Introduction to Symplectic Topology. Oxford mathematical monographs. Clarendon Press, 1998.
dc.relation.referencesSebastian Mizera and Barbara Skrzypek. Perturbiner methods for effective field theories and the double copy. Journal of High Energy Physics, 2018(10), October 2018.
dc.relation.referencesTommaso Macrelli, Christian Sämann, and Martin Wolf. Scattering amplitude recursion relations in batalin-vilkovisky–quantizable theories. Physical Review D, 100(4), August 2019.
dc.relation.referencesE. Noether. Invariante variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918:235–257, 1918.
dc.relation.referencesEric Poisson. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge University Press, 2004.
dc.relation.referencesJ. Polchinski. String theory. Vol. 1: An introduction to the bosonic string. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 12 2007.
dc.relation.referencesLorenzo Raspollini. Higher gauge theory, BV formalism and self-dual theories from twistor space. PhD thesis, Surrey U., 2021.
dc.relation.referencesBen Reinhold. L ∞ -algebras and their cohomology. Emergent Scientist, 3:4, 2019.
dc.relation.referencesKatarzyna Rejzner. Batalin-vilkovisky formalism in locally covariant field theory, 2013.
dc.relation.referencesKasia Rejzner. Perturbative Algebraic Quantum Field Theory: An Introduction for Mathematicians. Mathematical Physics Studies. Springer, New York, 2016.
dc.relation.referencesA.A. Rosly and K.G. Selivanov. On amplitudes in the self-dual sector of yang-mills theory. Physics Letters B, 399(1–2):135–140, April 1997.
dc.relation.referencesA. A. Rosly and K. G. Selivanov. What we think about multiparticle amplitudes, 1998.
dc.relation.referencesM. Salmhofer. Renormalization: An Introduction. Theoretical and Mathematical Physics. Springer Berlin Heidelberg, 2013.
dc.relation.referencesAlbert Schwarz. Geometry of batalin-vilkovisky quantization, 1992.
dc.relation.referencesAlbert Schwarz. Semiclassical approximation in batalin-vilkovisky formalism. Communications in Mathematical Physics, 158(2):373–396, November 1993.
dc.relation.referencesK. Selivanov. Self-dual perturbiner in yang-mills theory, 1997.
dc.relation.referencesPavol Severa. Some title containing the words ”homotopy” and ”symplectic”, e.g. this one, 2001.
dc.relation.referencesJim Stasheff. Homological reduction of constrained poisson algebras, 1996.
dc.relation.referencesJim Stasheff. The (secret?) homological algebra of the batalin-vilkovisky approach, 1997.
dc.relation.referencesRichard J. Szabo. Equivariant Cohomology and Localization of Path Integrals, volume 63. 2000.
dc.relation.referencesRoberto Tellez Domínguez. The Severa-Roytenberg correspondence. Master’s thesis, Universidad Autónoma de Madrid, 2020.
dc.relation.referencesIvo Terek. A Guide to Symplectic Geometry, 2021.
dc.relation.referencesTheodore Th. Voronov. Graded geometry, q‐manifolds, and microformal geometry: Lms/epsrc durham symposium on higher structures in m‐theory. Fortschritte der Physik, 67(8–9), May 2019.
dc.relation.referencesCharles A. Weibel. An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1994.
dc.relation.referencesH. Weyl. Quantenmechanik und gruppentheorie. Zeitschrift für Physik, 1:1–46, 1927.
dc.relation.referencesEdward Witten. Notes on supermanifolds and integration, 2016.
dc.relation.referencesC. N. Yang and R. L.Mills. Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev., 96:191–195, Oct 1954.
dc.relation.referencesBarton Zwiebach. Closed string field theory: Quantum action and the batalinvilkovisky master equation. Nuclear Physics B, 390(1):33–152, January 1993.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembFísica matemática
dc.subject.lembPerturbación (Matemáticas)
dc.subject.lembAlgebras lineales
dc.subject.lembAlgebra diferencial
dc.subject.lembVariedades diferenciales
dc.subject.proposalmathematical physics
dc.subject.proposalquantum field theory
dc.subject.proposalBatalin-Vilkovisky formalism
dc.subject.proposalL_infinity algebras
dc.subject.proposalYang-Mills theory
dc.subject.proposalGauge theory
dc.subject.proposalPerturbiner
dc.subject.proposalFormalismo Batalin-Vilkovisky
dc.subject.proposalAlgebra L infinito
dc.subject.proposalTeoría de Yang-Mills
dc.title.translatedTeoría de Yang-Mills y Gravedad auto-duales recursivas a nivel de árbol
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaMatemáticas.Sede Medellín
dc.contributor.orcidHerrera Correa, Daniel [0009-0002-1521-9921]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit