dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.contributor.advisor | Lopez Arcos, Cristhiam Manuel |
dc.contributor.advisor | Quintero Velez, Alexander |
dc.contributor.author | Herrera Correa, Daniel |
dc.date.accessioned | 2025-04-22T23:02:53Z |
dc.date.available | 2025-04-22T23:02:53Z |
dc.date.issued | 2025 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88079 |
dc.description.abstract | This work studies the quantization of gauge theories in the sense of the Batalin-Vilkovisky (BV) formalism by using the language of dg-manifolds, introduced initially by Schwarz, Kontsevich, et. al., and some mathematical consequences of this language, with an emphasis on the fact that the underlying structure of the quantizable theory is a symplectic dg-manifold called QP-manifold. These structures give rise to homotopy Lie algebras such as L_infinity-algebras so that the classical BV formalism is translated into a Maurer-Cartan theory for a cyclic L_infinity-algebra that already recovers all the information of the associated gauge theory. The advantage of this language when describing the physics of particular models is that the L_infinity-algebra allows one to produce a generating function of tree-level amplitudes by directly implementing the so-called Berends-Giele currents. We tested this approach by explicitly calculating Berends-Giele currents from the L_infinity-structure of different theories, such as Yang-Mills theory, self-dual Yang-Mills, and self-dual Gravity, constructing the last one as the double-copy of self-dual Yang-Mills. (Tomado de la fuente) |
dc.description.abstract | Este trabajo estudia la cuantización de las teorías gauges por medio del formalismo de Batalin-Vilkovisky en el lenguaje de las variedades diferenciales graduadas, introducido inicialmente por Schwarz, Kontsevich, et. al. [AKSZ97], y algunas de las consecuencias matemáticas de este lenguaje, enfatizando el hecho de que la estructura geométrica subyacente a una teoría gauge cuantizable es una variedad simpléctica graduada equipada con un campo vectorial homológico. Estas estructuras inducen álgebras de Lie homotópicas, como las álgebras L_infinito, de manera que el formalismo de Batalin-Vilkovisky clásico puede ser traducido en una teoría de Maurer-Cartan homotópica que codifica la teoría gauge. La ganancia conceptual de este lenguaje en la física que describen es que el álgebra L_infinito permite construir funciones generatrices de amplitudes de dispersión a nivel de árbol, mediante la implementación de las corrientes de Berends-Giele. Probamos esta aproximación calculando las corrientes de Berends-Giele en el álgebra L_infinito de distintas teorías, como la teoría de Yang-Mills, Yang-Mills autodual, y gravedad autodual, construyendo esta última como la doble copia de la previa. |
dc.format.extent | 97 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | eng |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.subject.ddc | 510 - Matemáticas::516 - Geometría |
dc.subject.ddc | 530 - Física::539 - Física moderna |
dc.title | Tree-level recursive self-dual Yang-Mills and self-dual Gravity |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Medellín - Ciencias - Maestría en Ciencias - Matemáticas |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magíster en Ciencias - Matemáticas |
dc.description.researcharea | Física matemática |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ciencias |
dc.publisher.place | Medellín, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín |
dc.relation.indexed | LaReferencia |
dc.relation.references | M. Alexandrov, M. Kontsevich, A. Schwarz, and O. Zaboronsky. The Geometry of the
master equation and topological quantum field theory. Int. J. Mod. Phys. A, 12:1405–
1429, 1997. |
dc.relation.references | Luigi Alfonsi and Charles A. S. Young. Towards non-perturbative bv-theory via derived
differential geometry, 2023. |
dc.relation.references | Zvi Bern. Perturbative quantum gravity and its relation to gauge theory. Living Reviews
in Relativity, 5(1), July 2002 |
dc.relation.references | Frits A. Berends and W. T. Giele. Recursive Calculations for Processes with n Gluons.
Nucl. Phys. B, 306:759–808, 1988. |
dc.relation.references | Rutger H. Boels, Reinke Sven Isermann, Ricardo Monteiro, and Donal O’Connell.
Colour-kinematics duality for one-loop rational amplitudes. Journal of High Energy
Physics, 2013(4), April 2013. |
dc.relation.references | C Becchi, A Rouet, and R Stora. Renormalization of gauge theories. Annals of Physics,
98(2):287–321, 1976. |
dc.relation.references | I. A. Batalin and G. A. Vilkovisky. Gauge Algebra and Quantization. Phys. Lett. B,
102:27–31, 1981. |
dc.relation.references | I. A. Batalin and G. a. Vilkovisky. FEYNMAN RULES FOR REDUCIBLE GAUGE
THEORIES. Phys. Lett. B, 120:166–170, 1983. |
dc.relation.references | I. A. Batalin and G. A. Vilkovisky. Quantization of Gauge Theories with Linearly Dependent Generators. Phys. Rev. D, 28:2567–2582, 1983. [Erratum: Phys.Rev.D 30, 508
(1984)]. |
dc.relation.references | Daniel Cangemi. Self-dual yang-mills theory and one-loop maximally helicity violating
multi-gluon amplitudes. Nuclear Physics B, 484(1–2):521–537, January 1997. |
dc.relation.references | John Joseph M. Carrasco. Tasi 2014: Lectures on gauge and gravity amplitude relations.
In Journeys Through the Precision Frontier: Amplitudes for Colliders. WORLD SCIENTIFIC, September 2015. |
dc.relation.references | Claude Chevalley and Samuel Eilenberg. Cohomology Theory of Lie Groups and Lie
Algebras. Trans. Am. Math. Soc., 63:85–124, 1948 |
dc.relation.references | Kevin Costello and Owen Gwilliam. Factorization Algebras in Quantum Field Theory.
New Mathematical Monographs (41). Cambridge University Press, 9 2021. |
dc.relation.references | Daniel Herrera Correa, Cristhiam Lopez-Arcos, and Alexander Quintero Vélez. Tree and one-loop-level double copy for the (anti)self-dual sectors of Yang-Mills and gravity
theories. Phys. Rev. D, 111:065001, Mar 2025. |
dc.relation.references | Alberto S. Cattaneo and Nima Moshayedi. Introduction to the bv-bfv formalism. Reviews in Mathematical Physics, 32(09):2030006, April 2020. |
dc.relation.references | Alberto S. Cattaneo, Pavel Mnev, and Michele Schiavina. Bv quantization. 2023. |
dc.relation.references | Miguel Campiglia and Silvia Nagy. A double copy for asymptotic symmetries in the
self-dual sector. Journal of High Energy Physics, 2021(3), March 2021. |
dc.relation.references | P. Deligne, P. Etingof, D. S. Freed, L. C. Jeffrey, D. Kazhdan, J. W. Morgan, D. R.
Morrison, and Edward Witten, editors. Quantum fields and strings: A course for mathematicians. Vol. 1, 2. 1999. |
dc.relation.references | P. A. M. DIRAC. The lagrangian in quantum mechanics. Physikalische Zeitschrift der
Sowjetunion., pages 64–72, 1932. |
dc.relation.references | G. de Rham. Differentiable Manifolds: Forms, Currents, Harmonic Forms. Die
Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Springer-Verlag, 1984. |
dc.relation.references | Ana Cannas da Silva. Symplectic geometry, 2005. |
dc.relation.references | A. Einstein. Die Feldgleichungen der Gravitation, page 844–847. 1915. |
dc.relation.references | Nathaniel Eldredge. Analysis and probability on infinite-dimensional spaces, 2016. |
dc.relation.references | Pavel Etingof. Mathematical ideas and notions of quantum field theory, 2024. |
dc.relation.references | L. D. Faddeev and V. N. Popov. Feynman Diagrams for the Yang-Mills Field. Phys. Lett.
B, 25:29–30, 1967. |
dc.relation.references | Valentina Guarín Escudero, Cristhiam Lopez-Arcos, and Alexander Quintero Vélez.
Homotopy double copy and the kawai–lewellen–tye relations for the non-abelian and
tensor navier–stokes equations. Journal of Mathematical Physics, 64(3), March 2023. |
dc.relation.references | Humberto Gomez, Renann Lipinski Jusinskas, Cristhiam Lopez-Arcos, and Alexander Quintero Vélez. One-loop off-shell amplitudes from classical equations of motion.
Physical Review Letters, 130(8), February 2023. |
dc.relation.references | Maxim Grigoriev and Dmitry Rudinsky. Notes on the l_∞-approach to local gauge field
theories, 2023. |
dc.relation.references | Walter Greiner. Quantum mechanics. Springer - verlog, Berlin, 4th ed. edition, 2004. |
dc.relation.references | Mark Hamilton, J. D. Mathematical Gauge Theory: With Applications to the Standard
Model of Particle Physics. Universitext. Springer International Publishing, Cham, 2017. |
dc.relation.references | Robin Hartshorne. Algebraic Geometry, volume 52 of Graduate Texts in Mathematics.
Springer, 1977. |
dc.relation.references | D. Hilbert. Die grundlagen der physik . (erste mitteilung.). Nachrichten von
der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse,
1915:395–408, 1915. |
dc.relation.references | Nigel J. Hitchin. The Selfduality equations on a Riemann surface. Proc. Lond. Math.
Soc., 55:59–131, 1987. |
dc.relation.references | M. Z. Iofa and I. V. Tyutin. Gauge Invariance of Spontaneously Broken Nonabelian
Theories in the Bogolyubov-Parasiuk-HEPP-Zimmerman Method. Teor. Mat. Fiz.,
27:38–47, 1976. |
dc.relation.references | Branislav Jurco, Tommaso Macrelli, Lorenzo Raspollini, Christian Saemann, and Martin Wolf. l∞-algebras, the bv formalism, and classical fields. 3 2019. |
dc.relation.references | Branislav Jurčo, Tommaso Macrelli, Lorenzo Raspollini, Christian Sämann, and Martin Wolf. ‐algebras, the bv formalism, and classical fields: Lms/epsrc durham symposium on higher structures in m‐theory. Fortschritte der Physik, 67(8–9), June 2019. |
dc.relation.references | Branislav Jurčo, Lorenzo Raspollini, Christian Sämann, and Martin Wolf. L∞‐algebras
of classical field theories and the batalin–vilkovisky formalism. Fortschritte der Physik,
67(7), July 2019. |
dc.relation.references | Tornike Kadeishvili. Structure of a(∞)-algebra and hochschild and harrison cohomology, 2002. |
dc.relation.references | J. Kalkman. BRST model for equivariant cohomology and representatives for the equivariant Thom class. Commun. Math. Phys., 153:447–463, 1993. |
dc.relation.references | H. Kawai, D.C. Lewellen, and S.-H.H. Tye. A relation between tree amplitudes of
closed and open strings. Nuclear Physics B, 269(1):1–23, 1986. |
dc.relation.references | Maxim Kontsevich. Deformation quantization of poisson manifolds. Letters in Mathematical Physics, 66(3):157–216, December 2003. |
dc.relation.references | Alexei Kotov and Thomas Strobl. Characteristic classes associated to q-bundles, 2007. |
dc.relation.references | CORNELIUS LANCZOS. The Variational Principles of Mechanics. University of
Toronto Press, 1962. |
dc.relation.references | Cristhiam Lopez-Arcos and Alexander Quintero Vélez. L∞-algebras and the perturbiner expansion. Journal of High Energy Physics, 2019(11), November 2019. |
dc.relation.references | D. A. Leites. Introduction to the theory of supermanifolds. Russ.Math. Surveys, 35(1):1–
64, 1980. |
dc.relation.references | M. Manetti. Lie Methods in Deformation Theory. Springer Monographs in Mathematics. Springer Nature Singapore, 2022. |
dc.relation.references | Tim Maudlin. Philosophy of Physics: Quantum Theory, volume 33. Princeton University
Press, 2019. |
dc.relation.references | James Clerk Maxwell. A Treatise on Electricity and Magnetism. Cambridge Library
Collection - Physical Sciences. Cambridge University Press, 2010. |
dc.relation.references | Eckhard Meinrenken. Clifford Algebras and Lie Theory, volume 58. 01 2013 |
dc.relation.references | Pavel Mnev. Lectures on Batalin-Vilkovisky formalism and its applications in topological quantum field theory. 7 2017. |
dc.relation.references | Ricardo Monteiro and Donal O’Connell. The kinematic algebra from the self-dual
sector. Journal of High Energy Physics, 2011(7), July 2011. |
dc.relation.references | D. McDuff and D. Salamon. Introduction to Symplectic Topology. Oxford mathematical
monographs. Clarendon Press, 1998. |
dc.relation.references | Sebastian Mizera and Barbara Skrzypek. Perturbiner methods for effective field theories
and the double copy. Journal of High Energy Physics, 2018(10), October 2018. |
dc.relation.references | Tommaso Macrelli, Christian Sämann, and Martin Wolf. Scattering amplitude recursion relations in batalin-vilkovisky–quantizable theories. Physical Review D, 100(4),
August 2019. |
dc.relation.references | E. Noether. Invariante variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918:235–257, 1918. |
dc.relation.references | Eric Poisson. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge University Press, 2004. |
dc.relation.references | J. Polchinski. String theory. Vol. 1: An introduction to the bosonic string. Cambridge
Monographs on Mathematical Physics. Cambridge University Press, 12 2007. |
dc.relation.references | Lorenzo Raspollini. Higher gauge theory, BV formalism and self-dual theories from
twistor space. PhD thesis, Surrey U., 2021. |
dc.relation.references | Ben Reinhold. L ∞ -algebras and their cohomology. Emergent Scientist, 3:4, 2019. |
dc.relation.references | Katarzyna Rejzner. Batalin-vilkovisky formalism in locally covariant field theory, 2013. |
dc.relation.references | Kasia Rejzner. Perturbative Algebraic Quantum Field Theory: An Introduction for
Mathematicians. Mathematical Physics Studies. Springer, New York, 2016. |
dc.relation.references | A.A. Rosly and K.G. Selivanov. On amplitudes in the self-dual sector of yang-mills
theory. Physics Letters B, 399(1–2):135–140, April 1997. |
dc.relation.references | A. A. Rosly and K. G. Selivanov. What we think about multiparticle amplitudes, 1998. |
dc.relation.references | M. Salmhofer. Renormalization: An Introduction. Theoretical and Mathematical
Physics. Springer Berlin Heidelberg, 2013. |
dc.relation.references | Albert Schwarz. Geometry of batalin-vilkovisky quantization, 1992. |
dc.relation.references | Albert Schwarz. Semiclassical approximation in batalin-vilkovisky formalism. Communications in Mathematical Physics, 158(2):373–396, November 1993. |
dc.relation.references | K. Selivanov. Self-dual perturbiner in yang-mills theory, 1997. |
dc.relation.references | Pavol Severa. Some title containing the words ”homotopy” and ”symplectic”, e.g. this
one, 2001. |
dc.relation.references | Jim Stasheff. Homological reduction of constrained poisson algebras, 1996. |
dc.relation.references | Jim Stasheff. The (secret?) homological algebra of the batalin-vilkovisky approach,
1997. |
dc.relation.references | Richard J. Szabo. Equivariant Cohomology and Localization of Path Integrals, volume 63. 2000. |
dc.relation.references | Roberto Tellez Domínguez. The Severa-Roytenberg correspondence. Master’s thesis,
Universidad Autónoma de Madrid, 2020. |
dc.relation.references | Ivo Terek. A Guide to Symplectic Geometry, 2021. |
dc.relation.references | Theodore Th. Voronov. Graded geometry, q‐manifolds, and microformal geometry:
Lms/epsrc durham symposium on higher structures in m‐theory. Fortschritte der Physik,
67(8–9), May 2019. |
dc.relation.references | Charles A. Weibel. An Introduction to Homological Algebra. Cambridge Studies in
Advanced Mathematics. Cambridge University Press, 1994. |
dc.relation.references | H. Weyl. Quantenmechanik und gruppentheorie. Zeitschrift für Physik, 1:1–46, 1927. |
dc.relation.references | Edward Witten. Notes on supermanifolds and integration, 2016. |
dc.relation.references | C. N. Yang and R. L.Mills. Conservation of isotopic spin and isotopic gauge invariance.
Phys. Rev., 96:191–195, Oct 1954. |
dc.relation.references | Barton Zwiebach. Closed string field theory: Quantum action and the batalinvilkovisky master equation. Nuclear Physics B, 390(1):33–152, January 1993. |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.lemb | Física matemática |
dc.subject.lemb | Perturbación (Matemáticas) |
dc.subject.lemb | Algebras lineales |
dc.subject.lemb | Algebra diferencial |
dc.subject.lemb | Variedades diferenciales |
dc.subject.proposal | mathematical physics |
dc.subject.proposal | quantum field theory |
dc.subject.proposal | Batalin-Vilkovisky formalism |
dc.subject.proposal | L_infinity algebras |
dc.subject.proposal | Yang-Mills theory |
dc.subject.proposal | Gauge theory |
dc.subject.proposal | Perturbiner |
dc.subject.proposal | Formalismo Batalin-Vilkovisky |
dc.subject.proposal | Algebra L infinito |
dc.subject.proposal | Teoría de Yang-Mills |
dc.title.translated | Teoría de Yang-Mills y Gravedad auto-duales recursivas a nivel de árbol |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Estudiantes |
dcterms.audience.professionaldevelopment | Investigadores |
dc.description.curriculararea | Matemáticas.Sede Medellín |
dc.contributor.orcid | Herrera Correa, Daniel [0009-0002-1521-9921] |