Show simple item record

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorCortés Luna, Jorge Alberto
dc.contributor.advisorBuitrago Gutierrez, Giancarlo
dc.contributor.authorRondon Paz, Claudia Rossana
dc.date.accessioned2025-04-23T00:38:34Z
dc.date.available2025-04-23T00:38:34Z
dc.date.issued2025
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88080
dc.descriptionilustraciones, diagramas
dc.description.abstractLa pandemia por el coronavirus-19 concentró una gran cantidad de recursos de salud pública y la mayor atención de la población en general. Sin embargo, existe una “pandemia silente” ocurriendo paralelamente, a causa de la resistencia a los antimicrobianos. No obstante, aún es limitada la información del impacto de la pandemia por el COVID-19 en el consumo de antimicrobianos y en la resistencia. Se han realizado estudios preliminares que evalúan ambos factores, encontrando un consumo de antimicrobianos relacionado al elevado número de pacientes que han acudido a centros de salud, a las nuevas modalidades de telemedicina, a la automedicación, al uso de equipos de protección personal, a la promoción de prácticas preventivas, como el lavado de manos, el distanciamiento social, entre otros. Se recolectaron datos de resistencia y consumo de antibióticos del periodo 20 febrero 2018 al 20 de febrero 2022 de cuatro hospitales de la red pública y privada de Bogotá para describir las tendencias en consumo de antimicrobianos pre y durante pandemia, así como para describir los cambios en la proporción de resistencia a antimicrobianos clave en bacterias de interés en salud pública y hongos de relevancia clínica, y por último evaluar cuál es la relación entre el consumo y el porcentaje de resistencia de antimicrobianos. Los resultados muestran que, durante la pandemia, hubo un aumento significativo en el consumo de antibióticos como ceftriaxona y meropenem, especialmente durante los picos de hospitalización. Sin embargo, no se encontró una correlación consistente entre el incremento en el consumo de antimicrobianos y los niveles de resistencia bacteriana. Estos resultados sugieren que la resistencia antimicrobiana en los hospitales estudiados puede estar influenciada en mayor medida por la transmisión cruzada y la capacidad de control de infecciones, más que por el consumo de antimicrobianos per se. Se concluye que, aunque la pandemia por COVID-19 tuvo un impacto evidente en los patrones de consumo de antibióticos, su efecto sobre la resistencia antimicrobiana es complejo y multifactorial. (Texto tomado de la fuente).
dc.description.abstractThe coronavirus-19 pandemic required a vast quantity of public health resources and the greatest attention of the general population. However, there is a “silent pandemic” occurring in parallel, due to antimicrobial resistance. However, there are still limited information on how much the impact of the COVID-19 pandemic had on antimicrobial consumption and resistance. Preliminary studies have been carried out that evaluate both factors, finding an antimicrobial consumption related to the high number of patients who have gone to health centers, to new modalities of telemedicine, to self-medication, to the use of personal protective equipment, to the promotion of preventive practices, such as hand washing, social distancing, among others. Antibiotic resistance and consumption data were collected from February 20, 2018 to February 20, 2022 from four public and private hospitals in Bogotá to describe trends in antimicrobial consumption before and during the pandemic, as well as to describe changes in the proportion of resistance to key antimicrobials in bacteria of interest to public health and clinically relevant fungi, and finally to evaluate the relationship between consumption and the percentage of antimicrobial resistance. The results show that, during the pandemic, there was a significant increase in the consumption of antibiotics such as ceftriaxone and meropenem, especially during peak hospitalizations. However, no consistent linear correlation was found between the increase in antimicrobial consumption and levels of bacterial resistance. These results suggest that antimicrobial resistance in the hospitals studied may be influenced to a greater extent by cross-transmission and infection control capacity, rather than by antimicrobial consumption per se. It is concluded that, although the COVID-19 pandemic had an evident impact on antibiotic consumption patterns, its effect on antimicrobial resistance is complex and multifactorial.
dc.format.extent88 páginas + 1 anexo
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéutica
dc.subject.ddc610 - Medicina y salud::613 - Salud y seguridad personal
dc.titleCambio en las tendencias de consumo de antimicrobianos y en el perfil de resistencia antimicrobiana, en algunos hospitales de la red pública y privada de Bogotá, durante la pandemia por COVID-19
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Infecciones y Salud en el Trópico
dc.coverage.cityBogotá
dc.coverage.countryColombia
dc.coverage.regionCundinamarca
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000838
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Infecciones y Salud en el Trópico
dc.description.methodsAnálisis de series de tiempo
dc.description.researchareaResistencia antimicrobiana
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Medicina
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedBireme
dc.relation.references(1) Han SM, Greenfield G, Majeed A, Hayhoe B. Impact of remote consultations on antibiotic prescribing in primary health care: systematic review. J Med Internet Res. 2020 Nov 9;22(11). doi:10.2196/23482.
dc.relation.references(2) D’Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, et al. Antibiotic resistance is ancient. Nature. 2011;477(7365):457–61. doi:10.1038/nature10388.
dc.relation.references(3) Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-55. doi:10.1016/S0140-6736(21)02724-0.
dc.relation.references(4) European Centre for Disease Prevention and Control, European Medicines Agency. ECDC/EMEA joint technical report—the bacterial challenge: time to react [Internet]. Stockholm: ECDC; 2009 [citado el 14 Abr 2022]. Disponible en: http://www.emea.europa.eu/docs/en_GB/document_library/Report/2009/11/WC500008770.pdf.
dc.relation.references(5) Centers for Disease Control and Prevention (CDC). Antibiotic resistance and NARMS surveillance [Internet]. 2019 [citado el 15 Abr 2022]. Disponible en: https://www.cdc.gov/narms/faq.html
dc.relation.references(6) National Academies of Sciences, Engineering, and Medicine. Combating antimicrobial resistance and protecting the miracle of modern medicine [Internet]. Washington, DC National Academies Press; 2021 [citado el 20 Abr 2022]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK574712/pdf/Bookshelf_NBK574712.pdf.
dc.relation.references(7) Denison J, AV P. Accuracy of death certifications and the implications for studying disease burdens. En: Preedy VR, Watson RR, editores. Handbook of disease burdens and quality of life measures. New York: Springer; 2010. p. 329-44.
dc.relation.references(8) Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJL. Global burden of disease and risk factors. Nueva York: The World Bank; Washington (DC): The International Bank for Reconstruction and Development / The World Bank; Nueva York: Oxford University Press; 2006.
dc.relation.references(9) Escudero X, Guarner J, Galindo-Fraga A, Escudero-Salamanca M, Alcocer-Gamba MA, Del Río C. La pandemia de coronavirus SARS-CoV-2 (COVID-19): situación actual e implicaciones para México. Arch Cardiol Méx. 2020 ;90(Suppl 1):7-14. doi:10.24875/acm.m20000064.
dc.relation.references(10) Sanche S, Lin YT, Xu C, Romero-Severson E, Hengartner N, Ke R. High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. 2020 Jul;26(7):1470-7. doi: 10.3201/eid2607.200282.
dc.relation.references(11) Armitage R, Nellums LB. Antibiotic prescribing in general practice during COVID-19. Lancet Infect Dis. 2021 Jun;21(6). doi: 10.1016/S1473-3099(20)30917-8.
dc.relation.references(12) Hussain AZ, Paudyal V, Hadi MA. Impacto de la pandemia de COVID-19 en los patrones de prescripción de antibióticos de primera línea en la atención primaria en Inglaterra: un análisis longitudinal del conjunto de datos de prescripción nacional. Antibiotics. 2021 May;10(5):591. doi: 10.3390/antibiotics10050591.
dc.relation.references(13) Rezel-Potts E, L'Esperance V, Gulliford MC. Antimicrobial stewardship in the UK during the COVID-19 pandemic: a population-based cohort study and interrupted time-series analysis. Br J Gen Pract. 2021;71(706). doi: 10.3399/BJGP.2020.1051.
dc.relation.references(14) Peñalva G, Benavente RS, Pérez-Moreno MA, Pérez-Pacheco MD, Pérez-Milena A, Murcia J, et al. Effect of the coronavirus disease 2019 pandemic on antibiotic use in primary care. Clin Microbiol Infect. 2021;27(7):1058-60. doi: 10.1016/j.cmi.2021.01.021.
dc.relation.references(15) Silva TM, Estrela M, Gomes ER, Piñeiro-Lamas M, Figueiras A, Roque F, et al. The Impact of the COVID-19 Pandemic on Antibiotic Prescribing Trends in Outpatient Care: A Nationwide, QuasiExperimental Approach. Antibiotics. 2021;10(9):1040. doi: 10.3390/antibiotics10091040.
dc.relation.references(16) Castro MG, Ubiergo LI, Vicino M, Cuevas G, Argarana F. An outbreak inside an outbreak: rising incidence of carbapenem-resistant isolates during the COVID-19 pandemic. Report from a tertiary care center in Argentina. Iberoam J Med. 2022;4(2):92-9. doi:10.53986/ibjm.2022.0020.
dc.relation.references(17) Belvisi V, Del Borgo C, Vita S, Redaelli P, Dolce P, Pacella D, IPC Program Working Group. Impact of SARS CoV-2 pandemic on carbapenemase-producing Klebsiella pneumoniae prevention and control programme: convergent or divergent action? J Hosp Infect. 2021 Mar;109:29-31. doi: 10.1016/j.jhin.2020.11.030.
dc.relation.references(18) Gomez-Simmonds A, Annavajhala MK, McConville TH, Dietz DE, Shoucri SM, Laracy JC, Uhlemann AC. Carbapenemase-producing Enterobacterales causing secondary infections during the COVID-19 crisis at a New York City hospital. J Antimicrob Chemother. 2021;76(2):380-4. doi:10.1093/jac/dkaa466.
dc.relation.references(19) Donà D, Di Chiara C, Sharland M. Multi-drug-resistant infections in the COVID-19 era: a framework for considering the potential impact. J Hosp Infect. 2020;106(1):198-9. doi:10.1016/j.jhin.2020.05.020.
dc.relation.references(20) Phua J, Weng L, Ling L, Egi M, Lim CM, Divatia JV, Asian Critical Care Clinical Trials Group. Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations. Lancet Respir Med. 2020;8(5):506-17. doi: 10.1016/S2213-2600(20)30161-2.
dc.relation.references(21) Siegel JD, Rhinehart E, Jackson M, Chiarello L; Healthcare Infection Control Practices Advisory Committee. Management of multidrug-resistant organisms in health care settings, 2006. Am J Infect Control. 2007 Dec;35(10 Suppl 2). doi: 10.1016/j.ajic.2007.10.006.
dc.relation.references(22) Liu Y, Li J, Feng Y. Respuesta de cuidados críticos a un brote hospitalario de infección por 2019-nCoV en Shenzhen, China. Crit Care. 2020;24:56. doi:10.1186/s13054-020-2786-x.
dc.relation.references(23) Kaier K, Mutters NT, Frank U. Bed occupancy rates and hospital-acquired infections – should beds be kept empty? Clin Microbiol Infect. 2012 Oct;18(10):941-5. doi: 10.1111/j.1469-0691.2012.03956.x
dc.relation.references(24) Rawson TM, Moore LSP, Zhu N, Ranganathan N, Skolimowska K, Gilchrist M, et al. Bacterial and fungal co-infection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis. 2020 Dec 3;71(9):2459-68. doi:10.1093/cid/ciaa530.
dc.relation.references(25) Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054-62. doi:10.1016/S0140-6736(20)30566-3.
dc.relation.references(26) Sulis G, Batomen B, Kotwani A, Pai M, Gandra S. Sales of antibiotics and hydroxychloroquine in India during the COVID-19 epidemic: an interrupted time series analysis. PLoS Med. 2021;18(7) doi:10.1371/journal.pmed.1003682.
dc.relation.references(27) Knight GM, Glover RE, McQuaid CF, Olaru ID, Gallandat K, Leclerc QJ, et al. Antimicrobial resistance and COVID-19: intersections and implications. eLife. 2021;10. doi:10.7554/eLife.64139.
dc.relation.references(28) Organización Mundial de la Salud. Antimicrobial resistance [Internet]. Ginebra: Organización Mundial de la Salud; 2021 [citado 2024 Ago 20]. Disponible en: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.
dc.relation.references(29) Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4(3):482-501. doi:10.3934/microbiol.2018.3.482.
dc.relation.references(30) Schwarz S, Loeffler A, Kadlec K. Bacterial resistance to antimicrobial agents and its impact on veterinary and human medicine. Vet Dermatol. 2017;28(1):82-e19. doi:10.1111/vde.12362
dc.relation.references(31) Yelin I, Kishony R. Antibiotic resistance. Cell. 2018 Feb 22;172(5):1136-1136.e1. doi:10.1016/j.cell.2018.02.018.
dc.relation.references(32) Blair J, Webber M, Baylay A, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42-51. doi:10.1038/nrmicro3380.
dc.relation.references(33) Kojima S, Nikaido H. Permeation rates of penicillins indicate that Escherichia coli porins function principally as nonspecific channels. Proc Natl Acad Sci U S A. 2013 Jul 9;110(28). doi: 10.1073/pnas.1310333110.
dc.relation.references(34) Lambert PA. Bacterial resistance to antibiotics: modified target sites. Adv Drug Deliv Rev. 2005 Jul 29;57(10):1471-85. doi: 10.1016/j.addr.2005.04.003.
dc.relation.references(35) Flevari A, Theodorakopoulou M, Velegraki A, Armaganidis A, Dimopoulos G. Treatment of invasive candidiasis in the elderly: a review. Clin Interv Aging. 2013;8:1199-208. doi: 10.2147/CIA.S39120.
dc.relation.references(36) Srinivasan A, Lopez-Ribot JL, Ramasubramanian AK. Overcoming antifungal resistance. Drug Discov Today Technol. 2014 Mar;11:65-71. doi: 10.1016/j.ddtec.2014.02.005.
dc.relation.references(37) Vazquez JA, Miceli MH, Alangaden G. Invasive fungal infections in transplant recipients. Ther Adv Infect Dis. 2013 Jun;1(3):85-105. doi: 10.1177/2049936113491936.
dc.relation.references(38) Collignon P, Beggs JJ, Walsh TR, Gandra S, Laxminarayan R. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. Lancet Planet Health. 2018;2 . doi:10.1016/S2542-5196(18)30186-4.
dc.relation.references(39) Nocua-Báez LC, Uribe-Jerez P, Tarazona-Guaranga L, Robles R, Cortés JA. Azoles de antes y ahora: una revisión. Rev Chil Infectol. 2020;37(3):219-30. doi:10.4067/s0716-10182020000300219.
dc.relation.references(40) Chapman R. It’s time to fix the antibiotic market [Internet]. 2020 [citado el 10 Ago 2022]. Disponible en: https://wellcome.org/what-we-do/our-work/drug-resistant-infections/its-time-fix-broken-antibiotics-market
dc.relation.references(41) Årdal C, Balasegaram M, Laxminarayan R, McAdams D, Outterson K, Rex JH, Sumpradit N. Antibiotic development—economic, regulatory and societal challenges. Nat Rev Microbiol. 2020;18(5):267-74. doi: 10.1038/s41579-019-0293-3.
dc.relation.references(42) McKenna M. The antibiotic paradox: why companies can’t afford to create life-saving drugs. Nature. 2020;584(7821):338-41. doi:10.1038/d41586-020-02418-x.
dc.relation.references(43) Organización Mundial de la Salud. Plan de acción mundial sobre la resistencia a los antimicrobianos [Internet]. Ginebra: Organización Mundial de la Salud; 2016 [citado el 24 Ago 2022]. Disponible en: http://apps.who.int/iris/bitstream/10665/255204/1/9789243509761-spa.pdf
dc.relation.references(44) Cope Z. Value transfer. En: The wealth of (some) nations. Londres, Reino Unido: Pluto Press; 2019. p. 9-21.
dc.relation.references(45) World Health Organization (WHO). Antimicrobial resistance and primary health care. Technical series on primary health care. Geneva: World Health Organization; 2018. 34 p. Disponible en: https://www.who.int/docs/default-source/primary-health-care-conference/amr.pdf
dc.relation.references(46) Auta A, Hadi MA, Oga E, et al. Acceso global a antibióticos sin receta en farmacias comunitarias: una revisión sistemática y metaanálisis. J Infect. 2019;78(1):8-18. doi: 10.1016/j.jinf.2018.07.001.
dc.relation.references(47) CDC. About antibiotic resistance [Internet]. Centers for Disease Control and Prevention; 2020 [citado el 27 Ago 2022]. Disponible en: https://www.cdc.gov/drugresistance/about.html.
dc.relation.references(48) Peters AS, Cabieses B, Ramirez O, et al. A systematic review on the relationship between international migration and antimicrobial resistance. 2020 Jul 2. Preprint disponible en: Research Square. doi:10.21203/rs.3.rs-39567/v1.
dc.relation.references(49) Castelli F, Sulis G. Migration and infectious diseases. Clin Microbiol Infect. 2017;23(5):283-9. doi:10.1016/j.cmi.2017.03.012.
dc.relation.references(50) Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109(7):309-18. doi:10.1179/2047773215Y.0000000030.
dc.relation.references(51) Microbial genomics and infectious disease. En: Harrison’s principles of internal medicine, 20a ed. [Internet]. Mhmedical.com. 2018 [citado el 02 sep 2022]. Disponible en: https://accessmedicine.mhmedical.com/content.aspx?sectionid=192536104&bookid=2129#196903318.
dc.relation.references(52) Leibovici L, Shraga I, Andreassen S. How do you choose antibiotic treatment? BMJ. 1999;318:1614–1616. doi: 10.1136/bmj.318.7198.1614
dc.relation.references(53) National Institute for Health and Care Excellence. Antimicrobial stewardship: systems and processes for effective antimicrobial medicine use [Internet]. 2015 [citado 10 sep 2022]. Disponible en: https://www.nice.org.uk/guidance/ng15.
dc.relation.references(54) Dellit H, Owens RC, McGowan JE, Gerding DN, Weinstein RA, Burke JP, et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis. 2007;44(2):159-77. doi:10.1086/510393.
dc.relation.references(55) CDC. Core elements of hospital antibiotic stewardship programs [Internet]. Atlanta (GA): US Department of Health and Human Services, CDC; 2019 [citado 19 Sep 2022]. Disponible en: https://www.cdc.gov/antibiotic-use/core-elements/hospital.html.
dc.relation.references(56) Gerding DN. The search for good antimicrobial stewardship. Jt Comm J Qual Improv. 2001 Aug;27(8):403-4. doi: 10.1016/s1070-3241(01)27034-5.
dc.relation.references(57) Goebel MC, Trautner BW, Grigoryan L. The five Ds of outpatient antibiotic stewardship for urinary tract infections. Clin Microbiol Rev. 2021;e00003-20. doi:10.1128/CMR.00003-20
dc.relation.references(58) Organización Mundial de la Salud. Programas de optimización de los antimicrobianos en instituciones sanitarias de los países de ingresos bajos y medianos: manual práctico de la OMS [Internet]. Organización Mundial de la Salud; 2020 [citado 22 Sep 2024]. Disponible en: https://apps.who.int/iris/handle/10665/335947.
dc.relation.references(59) WHO Collaborating Centre for Drug Statistics Methodology. Guidelines for ATC classification and DDD assignment 2018. Oslo (Noruega): 2017. Disponible en: https://www.drugsandalcohol.ie/29364/1/WHO%20Collaborating%20Centre%20for%20Drug%20Statistics%20Methodology.pdf
dc.relation.references(60) Morris AM. Antimicrobial stewardship programs: appropriate measures and metrics to study their impact. Curr Treat Options Infect Dis 2014;6(2):101–12. doi: 10.1007/s40506-014-0015-3.
dc.relation.references(61) Polk RE, Fox C, Mahoney A, Letcavage J, MacDougall C. Measurement of adult antibacterial drug use in 130 US hospitals: comparison of defined daily dose and days of therapy. Clin Infect Dis. 2007;44(5):664-70. doi: 10.1086/511640.
dc.relation.references(62) Kullar R, Goff DA, Schulz LT, Fox BC, Rose WE. The "epic" challenge of optimizing antimicrobial stewardship: the role of electronic medical records and technology. Clin Infect Dis. 2013;57(7):1005-13. doi: 10.1093/cid/cit318.
dc.relation.references(63) Moehring RW, Dodds Ashley ES, Ren X, Lokhnygina Y, Baker AW, Jones TM, Lewis SS, Sexton DJ, Anderson DJ; Centers for Disease Control and Prevention Epicenters Program. Denominator matters in estimating antimicrobial use: a comparison of days present and patient days. Infect Control Hosp Epidemiol. 2018;39(5):612-5. doi:10.1017/ice.2018.54.
dc.relation.references(64) Mittal N, Goel P, Goel K, Sharma R, Nath B, Singh S, et al. Awareness regarding antimicrobial resistance and antibiotic prescribing behavior among physicians: results from a nationwide cross-sectional survey in India. Antibiotics (Basel). 2023 Sep 29;12(10):1496. doi: 10.3390/antibiotics12101496.
dc.relation.references(65) World Health Organization. Global antimicrobial resistance and use surveillance system (GLASS) report 2021. Geneva: World Health Organization; 2021. Disponible en: https://www.who.int/publications/i/item/9789240027336
dc.relation.references(66) Vong S, Anciaux A, Hulth A, Stelling J, Thamlikitkul V, Gupta S, et al. Using information technology to improve surveillance of antimicrobial resistance in South East Asia. BMJ. 2017;358. doi: 10.1136/bmj.j3781.
dc.relation.references(67) Minnesota Department of Health. About antibiograms—antimicrobial susceptibilities of selected pathogens [Internet]. Minnesota Department of Health; 2015 [citado 22 Sep 2022]. Disponible en: https://www.health.state.mn.us/diseases/antibioticresistance/abx/antibiograms.pdf
dc.relation.references(68) O'Brien TF, Stelling JM. WHONET: un sistema de información para monitorear la resistencia a los antimicrobianos. Emerg Infect Dis. 1995;1(2):66. doi:10.3201/eid0102.950209.
dc.relation.references(69) Bettin A, et al. Staphylococcus aureus in residents from a nursing-home in Cartagena. Rev Salud Pública (Bogotá) [Internet]. 2008;10(4):650-7 [citado 15 Sep 2022].
dc.relation.references(70) Yaneth-Giovanetti MC, Morales-Parra GI, Armenta-Quintero C. Perfil de resistencia bacteriana en hospitales y clínicas en el departamento del Cesar (Colombia). Med Lab [Internet]. 2017 [citado 26 Sep 2022];23(7-8):387-98. Disponible en: https://docs.bvsalud.org/biblioref/2018/05/883698/resistencia-bacteriana.pdf
dc.relation.references(71) Cortés JA, Jaimes JA, Leal AL. Incidence and prevalence of candidemia in critically ill patients in Colombia. Rev Chilena Infectol. 2013;30(6):599-604. doi:10.4067/S0716-10182013000600004.
dc.relation.references(72) Motoa G, et al. Epidemiología de los aislamientos de Candida en unidades de cuidados intensivos en Colombia de 2010 a 2013. Rev Iberoam Micol. 2016. doi:10.1016/j.riam.2016.02.006.
dc.relation.references(73) Wirtz VJ, Dreser A, Gonzales R. Tendencias en el uso de antibióticos en ocho países de América Latina, 1997-2007. Rev Panam Salud Publica. 2010;27(3):219-25. doi: 10.1590/s1020-49892010000300009.
dc.relation.references(74) Ministerio de Salud y Protección Social (Colombia). Plan nacional de respuesta a la resistencia a los antimicrobianos: plan estratégico. Dirección de Medicamentos y Tecnologías en Salud; [Internet] 2018 Jun. [citado el 12 Oct 2022] Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/MET/plan-respuesta-resistencia-antimicrobianos.pdf
dc.relation.references(75) Ministerio de Salud y Protección Social. Circular 45 de 2012: Implementación de la estrategia de vigilancia en salud pública de infecciones asociadas a la atención en salud –IAAS–, resistencia y consumo de antimicrobianos. 29 de agosto de 2012. [citado el 12 Oct 2022] Disponible en: https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?dt=S&i=49065
dc.relation.references(76) Colombia. Instituto Nacional de Salud. Protocolo de vigilancia en salud pública de resistencia bacteriana a los antimicrobianos en el ámbito hospitalario. Versión 3. [Internet]. 2022. Disponible en: https://doi.org/10.33610/infoeventos.70
dc.relation.references(77) Ministerio de Salud y Protección Social. Resolución número 2471 de 2022: por medio de la cual se adoptan los lineamientos técnicos para los Programas de Prevención, Vigilancia y Control de las Infecciones Asociadas a la Atención en Salud (IAAS) y de Optimización del Uso de Antimicrobianos (PROA) y se dictan disposiciones para su implementación. Bogotá: Ministerio de Salud y Protección Social; 2022.
dc.relation.references(78) Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33. doi: 10.1056/NEJMoa2001017.
dc.relation.references(79) Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020 Apr;5(4):536-44. doi: 10.1038/s41564-020-0695-z.
dc.relation.references(80) Abelenda-Alonso G, Padullés A, Rombauts A, Gudiol C, Pujol M, Alvarez-Pouso C, et al. Antibiotic prescription during the COVID-19 pandemic: A biphasic pattern. Infect Control Hosp Epidemiol. 2020 Nov;41(11):1371-2. doi: 10.1017/ice.2020.381.
dc.relation.references(81) Beović B, Doušak M, Ferreira-Coimbra J, Nadrah K, Rubulotta F, Belliato M, et al. Antibiotic use in patients with COVID-19: a 'snapshot' Infectious Diseases International Research Initiative (ID-IRI) survey. J Antimicrob Chemother. 2020 Nov 1;75(11):3386-90. doi: 10.1093/jac/dkaa326.
dc.relation.references(82) Chedid M, Waked R, Haddad E, Chetata N, Saliba G, Choucair J. Antibiotics in treatment of COVID-19 complications: a review of frequency, indications, and efficacy. J Infect Public Health. 2021;14(5):570-6. doi: 10.1016/j.jiph.2021.02.001.
dc.relation.references(83) Rodríguez-Baño J, Rossolini GM, Schultsz C, Tacconelli E, Murthy S, Ohmagari N, et al. Key considerations on the potential impacts of the COVID-19 pandemic on antimicrobial resistance research and surveillance. Trans R Soc Trop Med Hyg. 2021 Oct;115(10):1122-9. doi:10.1093/trstmh/trab048.
dc.relation.references(84) WHO. Clinical management of severe acute respiratory infection when COVID-19 is suspected. [Internet] 2020. [citado el 14 Oct 2022] Disponible en: https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected
dc.relation.references(85) Viasus D, Paño-Pardo JR, Pachón J, Campins A, López-Medrano F, Villoslada A, et al. Factors associated with severe disease in hospitalized adults with pandemic (H1N1) 2009 in Spain. Clin Microbiol Infect. 2011;17(5):738-46. doi: 10.1111/j.1469-0691.2010.03362.x.
dc.relation.references(86) Mirzaei R, Goodarzi P, Asadi M, Soltani A, Aljanabi HAA, Jeda AS, et al. Bacterial co-infections with SARS-CoV-2. IUBMB Life. 2020 Oct;72(10):2097-2111. doi: 10.1002/iub.2356.
dc.relation.references(87) Zhu N, Aylin P, Rawson T, Gilchrist M, Majeed A, Holmes A. Investigating the impact of COVID-19 on primary care antibiotic prescribing in North West London across two epidemic waves. Clin Microbiol Infect. 2021;27(5):762-8. doi:10.1016/j.cmi.2021.02.007.
dc.relation.references(88) Giacomelli A, Ridolfo AL, Oreni L, Vimercati S, Albrecht M, Cattaneo D, et al. Consumption of antibiotics at an Italian university hospital during the early months of the COVID-19 pandemic: were all antibiotic prescriptions appropriate? Pharmacol Res. 2021 Feb;164:105403. doi: 10.1016/j.phrs.2020.105403.
dc.relation.references(89) Parasher A. COVID-19: current understanding of its pathophysiology, clinical presentation and treatment. Postgrad Med J. 2021 May;97(1147):312-20. doi:10.1136/postgradmedj-2020-138577.
dc.relation.references(90) Fattorini L, Creti R, Palma C, Pantosti A; Unidad de Resistencia a los Antibióticos y Patógenos Especiales; Unidad de Resistencia a los Antibióticos y Patógenos Especiales del Departamento de Enfermedades Infecciosas, Istituto Superiore di Sanità, Roma. Bacterial coinfections in COVID-19: an underestimated adversary. Ann Ist Super Sanita. 2020 Jul-Sep;56(3):359-64. doi:10.4415/ANN_20_03_14.
dc.relation.references(91) WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group, Sterne JAC, Murthy S, Diaz JV, Slutsky AS, Villar J, Angus DC, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA. 2020 Oct 6;324(13):1330-41. doi: 10.1001/jama.2020.17023.
dc.relation.references(92) Williams EJ, Mair L, de Silva TI, Green DJ, House P, Cawthron K, et al. Evaluación de la procalcitonina como contribución a la administración de antimicrobianos en la infección por SARS-CoV-2: un estudio de cohorte retrospectivo. J Hosp Infect. 2021 Apr;110:103-7. doi: 10.1016/j.jhin.2021.01.006.
dc.relation.references(93) Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507-13. doi:10.1016/S0140-6736(20)30211-7.
dc.relation.references(94) Nestler MJ, Godbout E, Lee K, Kim J, Noda AJ, Taylor P, et al. Impact of COVID-19 on pneumonia-focused antibiotic use at an academic medical center. Infect Control Hosp Epidemiol. 2021 Jul;42(7):915-6. doi: 10.1017/ice.2020.362.
dc.relation.references(95) Rawson TM, Moore LSP, Castro-Sanchez E, Charani E, Davies F, Satta G, Ellington MJ, Holmes AH. COVID-19 and the potential long-term impact on antimicrobial resistance. J Antimicrob Chemother. 2020;75(7):1681-4. doi:10.1093/jac/dkaa194.
dc.relation.references(96) World Health Organization—Europe. Preventing the COVID-19 pandemic from causing an antibiotic resistance catastrophe [Internet]. 2020 [citado el 15 Oct 2022]. Disponible en: https://www.euro.who.int/en/health-topics/disease-prevention/antimicrobial-resistance/news/news/2020/11/preventing-the-covid-19-pandemic-from-causing-an-antibiotic-resistance-catastrophe.
dc.relation.references(97) Ohannessian R, Duong TA, Odone A. Global Telemedicine Implementation and Integration Within Health Systems to Fight the COVID-19 Pandemic: A Call to Action. JMIR Public Health Surveill. 2020;6(2). doi: 10.2196/18810.
dc.relation.references(98) Han SM, Greenfield G, Majeed A, Hayhoe B. Impact of remote consultations on antibiotic prescribing in primary health care: systematic review. J Med Internet Res. 2020;22(11). doi:10.2196/23482.
dc.relation.references(99) Harris E. WHO declares end of COVID-19 global health emergency. JAMA. 2023;329(21):1817. doi:10.1001/jama.2023.8656.
dc.relation.references(100) Cataño-Correa JC, Cardona-Arias JA, Porras Mancilla JP, García MT. Bacterial superinfection in adults with COVID-19 hospitalized in two clinics in Medellín-Colombia, 2020. PLoS One. 2021;16(7). doi: 10.1371/journal.pone.0254671.
dc.relation.references(101) Gras JA, editor. Diseños de series temporales: técnicas de análisis. Vol. 46. Barcelona: Edicions Universitat Barcelona; 2001.
dc.relation.references(102) Monnet DL, López-Lozano JM, Campillos P, Burgos A, Yagüe A, Gonzalo N, et al. Making sense of antimicrobial use and resistance surveillance data: application of ARIMA and transfer function models. Clin Microbiol Infect. 2001;7 Suppl 5:29-36. doi: 10.1046/j.1469-0691.2001.00071.x.
dc.relation.references(103) Box GEP, Tiao GC. Intervention analysis with applications to economic and environmental problems. J Am Stat Assoc. 1975;70(349):70-9. doi:10.2307/2285379.
dc.relation.references(104) López-Lozano JM, Monnet DL, Yagüe A, Burgos A, Gonzalo N, Campillos P, Saez M. Modelling and forecasting antimicrobial resistance and its dynamic relationship to antimicrobial use: a time series analysis. Int J Antimicrob Agents. 2000 Feb;14(1):21-31. doi: 10.1016/s0924-8579(99)00135-1.
dc.relation.references(105) Wagner AK, Soumerai SB, Zhang F, Ross-Degnan D. Segmented regression analysis of interrupted time series studies in medication use research. J Clin Pharm Ther. 2002;27(4):299-309. doi:10.1046/j.1365-2710.2002.00430.x.
dc.relation.references(106) Fan E, Laupacis A, Pronovost PJ, Guyatt GH, Needham DM. How to use an article about quality improvement. JAMA. 2010 Nov;304(20):2279-87. doi: 10.1001/jama.2010.1692.
dc.relation.references(107) Penfold RB, Zhang F. Use of interrupted time series analysis in evaluating health care quality improvements. Acad Pediatr. 2013 Nov-Dec;13(6 Suppl):S38-44. doi: 10.1016/j.acap.2013.08.002.
dc.relation.references(108) Glass GV, Willson V, Gottman JM. Time-series experiments and the investigation of causal claims. En: Design and analysis of time-series experiments. Boulder: Colorado Associated University Press; 2008. p. 1-18.
dc.relation.references(109) Fasugba O, Mitchell BG, Mnatzaganian G, Das A, Collignon P, Gardner A. Five-year antimicrobial resistance patterns of urinary Escherichia coli at an Australian tertiary hospital: time series analyses of prevalence data. PLoS One. 2016 Oct 6;11(10) . doi:10.1371/journal.pone.0164306.
dc.relation.references(110) Peragine C, Walker SAN, Simor A, Walker SE, Kiss A, Leis JA. Impact of a comprehensive antimicrobial stewardship program on institutional burden of antimicrobial resistance: a 14-year controlled interrupted time-series study. Clin Infect Dis. 2020 Dec 31;71(11):2897-904. doi: 10.1093/cid/ciz1183.
dc.relation.references(111) Eliopoulos GM, Shardell M, Harris AD, El-Kamary SS, Furuno JP, Miller RR, et al. Statistical analysis and application of quasi experiments to antimicrobial resistance intervention studies. Clin Infect Dis. 2007;45(7):901-7. doi:10.1086/521255.
dc.relation.references(112) WHO Collaborating Centre for Drug Statistics Methodology. WHOCC - ATC/DDD Index [Internet]. 2022. Disponible en: https://www.whocc.no/atc_ddd_index/
dc.relation.references(113) Ministerio de Salud. Boletín de Prensa No. 900 de 2021: Audio de María Belén Jaimes, directora encargada de Epidemiología y Demografía [Internet]. 2021. Disponible en: https://www.minsalud.gov.co/Paginas/Colombia-tiene-46-por-ciento-de-disponibilidad-de-camas-UCI.aspx
dc.relation.references(114) Velasco N, Castaño F, Burbano A, Ramírez A, González Uribe C, Pinzón Ortiz JD, et al. ¿Con qué se le hace frente al Covid-19? Capacidad hospitalaria instalada en Bogotá. Bogotá: Universidad de los Andes, Pontificia Universidad Javeriana seccional Cali; 2020. Disponible en: https://www.javerianacali.edu.co/sites/default/files/2020-05/capacidad-hospital-bogota-covid-19.pdf
dc.relation.references(115) Baker MA, Sands KE, Huang SS, Kleinman K, Septimus EJ, Varma N, et al. The impact of coronavirus disease 2019 (COVID-19) on healthcare-associated infections. Clin Infect Dis. 2022;74(10):1748-54. doi:10.1093/cid/ciab688.
dc.relation.references(116) Hernández FLC, Virguez JV, Vesga JFG, et al. Effect of COVID-19 on infections associated with medical devices in critical care. BMC Infect Dis. 2024;24(1):110. doi:10.1186/s12879-023-08934-1.
dc.relation.references(117) Reyes LF, Rodriguez A, Fuentes YV, Duque S, García-Gallo E, Bastidas A, et al. Risk factors for developing ventilator-associated lower respiratory tract infection in patients with severe COVID-19: a multinational, multicentre, prospective, observational study. Sci Rep. 2023;13(1):6553. doi:10.1038/s41598-023-32265-5.
dc.relation.references(118) Cortes JA, Valderrama-Rios MC, Nocua-Báez LC, Quitián LM, Lozada FA, Buitrago G. Effect of bloodstream infection on survival in COVID-19 patients admitted to an intensive care unit in Colombia: a matched cohort analysis. Infect Prev Pract. 2023;5(2):100283. doi:10.1016/j.infpip.2023.100283.
dc.relation.references(119) Muñoz Angulo Natalia, Arsanios Martín Daniel, Cubides Díaz Diego Alejandro. Nicho terapéutico de ceftazidima-avibactam frente a bacterias gramnegativas resistentes a carbapenémicos en Colombia. Univ. Med. [Internet]. 2021 Junio ; 62( 2 ): e31930. Epub May 15, 2021. https://doi.org/10.11144/javeriana.umed62-2.nich
dc.relation.references(120) Shoji T, Hirai Y, Osawa M, Totsuka K. Cefazolin therapy for methicillin-susceptible Staphylococcus aureus bacteremia in Japan. J Infect Chemother. 2014;20:175–80. doi: 10.1016/j.jiac.2013.09.008.
dc.relation.references(121) González Del Castillo J, Julián-Jiménez A, Candel FJ. Neumonía comunitaria: selección del tratamiento empírico y terapia secuencial. Implicaciones del SARS-CoV-2. Rev Esp Quimioter. 2021;34(6):599-609. doi:10.37201/req/144.2021.
dc.relation.references(122) Antuori, A., Giménez, M., Linares, G. et al. Characterization of respiratory bacterial co-infection and assessment of empirical antibiotic treatment in patients with COVID-19 at hospital admission. Sci Rep 13, 19302 (2023). doi:10.1038/s41598-023-46692-x
dc.relation.references(123) Liu Y, Ling L, Wong SH, Wang MH, Fitzgerald JR, Zou X, et al. Outcomes of respiratory viral-bacterial co-infection in adult hospitalized patients. EClinicalMedicine. 2021;37:100955. doi:10.1016/j.eclinm.2021.100955.
dc.relation.references(124) Lansbury L, Lim B, Baskaran V, Lim WS. Co-infections in people with COVID-19: a systematic review and meta-analysis. J Infect. 2020;81:266-75. doi:10.1016/j.jinf.2020.05.046.
dc.relation.references(125) Collignon P, Beggs JJ. CON: COVID-19 will not result in increased antimicrobial resistance prevalence. JAC Antimicrob Resist. 2020 Sep;2(3):dlaa051. doi: 10.1093/jacamr/dlaa051
dc.relation.references(126) Jonas D, Meyer E, Schwab F, Grundmann H. Genodiversity of Resistant Pseudomonas aeruginosa Isolates in Relation to Antimicrobial Usage Density and Resistance Rates in Intensive Care Units. Infection Control & Hospital Epidemiology. 2008;29(4):350-357. doi:10.1086/528811
dc.relation.references(127) Monnet DL, Harbarth S. Will coronavirus disease (COVID19) have an impact on antimicrobial resistance? Euro Surveill [Internet]. 2020;25(45):1–6. doi: 10.2807/1560-7917. ES.2020.25.45.2001886
dc.relation.references(128) Colombia, Instituto Nacional de Salud. Consumo de antibióticos 2021. Bogotá: INS; 2022.
dc.relation.references(129) National Center for Emerging and Zoonotic Infectious Diseases (US), Division of Healthcare Quality Promotion. COVID-19: US impact on antimicrobial resistance, special report 2022 [Internet]. 2022. doi: 10.15620/cdc:117915
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsFarmacorresistencia Microbiana
dc.subject.decsDrug Resistance, Microbial
dc.subject.decsCOVID-19
dc.subject.decsCOVID-19
dc.subject.decsHospitales
dc.subject.decsHospitals
dc.subject.proposalFarmacorresistencia microbiana
dc.subject.proposalCOVID-19
dc.subject.proposalSeries de tiempo
dc.subject.proposalDrug resistance
dc.subject.proposalTime series
dc.title.translatedChanges in antimicrobial consumption trends and antimicrobial resistance profiles in some public and private hospitals in Bogotá during the COVID-19 pandemic
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001995385


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit