dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.contributor.advisor | García Romero, Ibonne Aydee |
dc.contributor.advisor | Cuellas Cuestas, Carolina Isabel |
dc.contributor.author | Torres Galvis, Tatiana Andrea |
dc.date.accessioned | 2025-04-23T14:13:29Z |
dc.date.available | 2025-04-23T14:13:29Z |
dc.date.issued | 2024-10 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88092 |
dc.description | ilustraciones, diagramas, fotografías |
dc.description.abstract | El cultivo de arroz es de gran importancia a nivel mundial y nacional, por su elevado consumo en la alimentación humana. Este cereal es afectado por varias enfermedades, como las causadas por el género Fusarium spp, que inducen marchitamiento, pudriciones en la raíz, vaneamiento, manchado y deformación de los granos, entre otros síntomas; asimismo, producen micotoxinas, deteriorando la inocuidad del grano. En los últimos años en Colombia se han obtenido aislamientos de Fusarium spp. a partir de plantas de arroz con lesiones, por lo cual esta investigación buscó identificar las especies presentes en 54 aislamientos provenientes de diferentes regiones del país, por medio de análisis de secuencia de los genes TEF1-α y HIS3, y huellas genómicas por IGS-RFLP. Asimismo, establecer la relación entre las especies fúngicas identificadas con la inhibición de la germinación in vitro de plantas de arroz, la expresión de síntomas en invernadero y la producción de micotoxinas in vitro detectada por HPLC, para asociarlas a la presencia de genes implicados en la síntesis de fumonisinas. La identificación molecular determinó que 31 aislamientos correspondieron a la especie F. proliferatum y 12 a F. verticillioides, las cuales se incluyen en el complejo Fusarium fujikuroi, consideradas como las principales especies implicadas en enfermedades en arroz. Estas especies presentaron los genes asociados a la biosíntesis de fumonisinas FUM1 y FUM21 y fueron capaces de producir in vitro micotoxinas del tipo FB1 y FB2. Las dos especies inhibieron la germinación de las semillas in vitro entre el 10 y el 60% y causaron síntomas asociados a la enfermedad Mancha café. Los resultados evidenciaron la relación de este género fúngico con el cultivo del arroz en Colombia y aportaron un precedente en el país frente a la patogenia y producción de toxinas que genera para así realizar su seguimiento y control (Texto tomado de la fuente) |
dc.description.abstract | Rice cultivation is of great importance both globally and nationally due to its high consumption in human diets. This cereal is affected by several diseases, including those caused by the genus Fusarium spp., which induce wilting, root rots, blight, grain staining and deformation, among other symptoms. Additionally, these fungi produce mycotoxins, compromising the safety of the grain.
In recent years in Colombia, isolates of Fusarium spp. have been obtained from rice plants with lesions, which prompted this research to identify the species present in 54 isolates from different regions of the country, using sequence analysis of the TEF1-α and HIS3 genes, as well as genomic fingerprinting by IGS-RFLP.
The study also aimed to establish the relationship between the identified fungal species and the inhibition of in vitro germination of rice plants, the expression of symptoms in greenhouse conditions, and the in vitro production of mycotoxins detected by HPLC, in order to associate these traits with the presence of genes involved in fumonisin biosynthesis.
Molecular identification determined that 31 isolates corresponded to the species F. proliferatum and 12 to F. verticillioides, both of which are part of the Fusarium fujikuroi species complex, recognized as major pathogens of rice. These species carried the fumonisin biosynthetic genes FUM1 and FUM21, and were capable of producing FB1 and FB2 type mycotoxins in vitro. Both species inhibited seed germination in vitro by 10 to 60% and caused symptoms associated with the disease known as brown spot.
The results demonstrated the association of this fungal genus with rice cultivation in Colombia and provided a precedent in the country regarding its pathogenicity and mycotoxin production, highlighting the need for monitoring and control. |
dc.format.extent | 117 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.subject.ddc | 580 - Plantas::584 - Monocotiledóneas, angiospermas basales, clorantales, magnolias |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales |
dc.title | Caracterización patogénica y toxigénica de especies de Fusarium identificadas a partir de una colección de aislamientos obtenidos de lesiones en plantas de arroz (Oryza sativa) en Colombia. |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Microbiología |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magister en Ciencias Microbiología |
dc.description.researcharea | Biotecnología agrícola |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ciencias |
dc.publisher.place | Bogotá, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Abdel-Azeem, A. M., Abdel-Azeem, M. A., Darwish, A. G., Nafady, N. A., & Ibrahim, N. A. (2019). Fusarium: Biodiversity, ecological significances, and industrial applications. En A. N. Yadav, S. Mishra, S. Singh, & A. Gupta (Eds.), Recent Advancement in White Biotechnology Through Fungi: Volume 1: Diversity and Enzymes Perspectives (pp. 201-261). Springer International Publishing. https://doi.org/10.1007/978-3-030-10480-1_6 |
dc.relation.references | Amatulli, M. T., Spadaro, D., Gullino, M. L., & Garibaldi, A. (2012). Conventional and real-time PCR for the identification of Fusarium fujikuroi and Fusarium proliferatum from diseased rice tissues and seeds. European Journal of Plant Pathology, 134(2), 401-408. https://doi.org/10.1007/s10658-012-9998-0 |
dc.relation.references | Anfossi, L., Giovannoli, C., & Baggiani, C. (2016). Mycotoxin detection. Current Opinion in Biotechnology, 37, 120-126. https://doi.org/10.1016/j.copbio.2015.11.005 |
dc.relation.references | Asibi, A. E., Chai, Q., & Coulter, J. A. (2019). Rice blast: A disease with implications for global food security. Agronomy, 9(8), 451. https://doi.org/10.3390/agronomy9080451 |
dc.relation.references | Avila, C. F., Moreira, G. M., Nicolli, C. P., Gomes, L. B., Abreu, L. M., Pfenning, L. H., Haidukowski, M., Moretti, A., Logrieco, A., & Del Ponte, E. M. (2019). Fusarium incarnatum-equiseti species complex associated with Brazilian rice: Phylogeny, morphology and toxigenic potential. International Journal of Food Microbiology, 306, 108267. https://doi.org/10.1016/j.ijfoodmicro.2019.108267 |
dc.relation.references | Bashyal, Bishnu Maya. «Etiology of an Emerging Disease: Bakanae of Rice». Indian Phytopathology, vol. 71, n.o 4, diciembre de 2018, pp. 485-94. Springer Link, https://doi.org/10.1007/s42360-018-0091-2. |
dc.relation.references | Bertero, A., Moretti, A., Spicer, L. J., & Caloni, F. (2018). Fusarium molds and mycotoxins: Potential species-specific effects. Toxins, 10(6), 244. https://doi.org/10.3390/toxins10060244 |
dc.relation.references | Bhunjun, C. S., Phillips, A. J. L., Jayawardena, R. S., Promputtha, I., & Hyde, K. D. (2021). Importance of molecular data to identify fungal plant pathogens and guidelines for pathogenicity testing based on Koch’s postulates. Pathogens, 10(9), 1096. https://doi.org/10.3390/pathogens10091096 |
dc.relation.references | Bigirimana, V. de P., Hua, G. K. H., Nyamangyoku, O. I., & Höfte, M. (2015). Rice sheath rot: An emerging ubiquitous destructive disease complex. Frontiers in Plant Science, 6. https://www.frontiersin.org/articles/10.3389/fpls.2015.01066 |
dc.relation.references | Chaibub, A. A., Sousa, T. P. de, Araújo, L. G. de, & Filippi, M. C. C. de. (2020). Molecular and morphological characterization of rice phylloplane fungi and determination of the antagonistic activity against rice pathogens. Microbiological Research, 231, 126353. https://doi.org/10.1016/j.micres.2019.126353 |
dc.relation.references | Chandravarnan, P., Agyei, D., & Ali, A. (2022). Green and sustainable technologies for the decontamination of fungi and mycotoxins in rice: A review. Trends in Food Science & Technology, 124, 278-295. https://doi.org/10.1016/j.tifs.2022.04.020 |
dc.relation.references | Chang, X., Dai, H., Wang, D., Zhou, H., He, W., Fu, Y., Ibrahim, F., Zhou, Y., Gong, G., Shang, J., Yang, J., Wu, X., Yong, T., Song, C., & Yang, W. (2018). Identification of Fusarium species associated with soybean root rot in Sichuan Province, China. European Journal of Plant Pathology, 151(3), 563-577. https://doi.org/10.1007/s10658-017-1410-7 |
dc.relation.references | Chauhan, R., Singh, J., Sachdev, T., Basu, T., & Malhotra, B. D. (2016). Recent advances in mycotoxins detection. Biosensors and Bioelectronics, 81, 532-545. https://doi.org/10.1016/j.bios.2016.03.004 |
dc.relation.references | Choi, H.-W., Hong, S. K., Lee, Y. K., Kim, W. G., & Chun, S. (2018). Taxonomy of Fusarium fujikuroi species complex associated with bakanae on rice in Korea. Australasian Plant Pathology, 47(1), 23-34. https://doi.org/10.1007/s13313-017-0536-6 |
dc.relation.references | Chung, Chia-Lin, et al. «Detecting Bakanae Disease in Rice Seedlings by Machine Vision». Computers and Electronics in Agriculture, vol. 121, febrero de 2016, pp. 404-11. ScienceDirect, https://doi.org/10.1016/j.compag.2016.01.008 |
dc.relation.references | Crous, P. W., Lombard, L., Sandoval-Denis, M., Seifert, K. A., Schroers, H.-J., Chaverri, P., Gené, J., Guarro, J., Hirooka, Y., Bensch, K., Kema, G. H. J., Lamprecht, S. C., Cai, L., Rossman, A. Y., Stadler, M., Summerbell, R. C., Taylor, J. W., Ploch, S., Visagie, C. M., … Thines, M. (2021). Fusarium: More than a node or a foot-shaped basal cell. Studies in Mycology, 98, 100116. https://doi.org/10.1016/j.simyco.2021.100116 |
dc.relation.references | Colombia Rice Area, Yield and Production. https://ipad.fas.usda.gov/countrysummary/Default.aspx?id=CO&crop=Rice. Accedido 20 de mayo de 2024. |
dc.relation.references | Deepa, N., & Sreenivasa, M. Y. (2019). Molecular methods and key genes targeted for the detection of fumonisin producing Fusarium verticillioides – An updated review. Food Bioscience, 32, 100473. https://doi.org/10.1016/j.fbio.2019.100473 |
dc.relation.references | Dita, M., Barquero, M., Heck, D. W., Mizubuti, E. S. G., & Staver, C. (2018). Fusarium Wilt of Banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.01468 |
dc.relation.references | Dong, F., Zhang, X., Xu, J. H., Shi, J. R., Lee, Y.-W., Chen, X. Y., Li, Y. P., Mokoena, M. P., & Olaniran, A. O. (2020). Analysis of fusarium graminearum species complex from freshly harvested rice in jiangsu province(China). Plant Disease, 104(8), 2138-2143. https://doi.org/10.1094/PDIS-01-20-0084-RE |
dc.relation.references | Dong, F., Xu, J., Zhang, X., Wang, S., Xing, Y., Mokoena, M. P., Olaniran, A. O., & Shi, J. (2020). Gramineous weeds near paddy fields are alternative hosts for the Fusarium graminearum species complex that causes fusarium head blight in rice. Plant Pathology, 69(3), 433-441. https://doi.org/10.1111/ppa.13143 |
dc.relation.references | Dweba, C. C., Figlan, S., Shimelis, H. A., Motaung, T. E., Sydenham, S., Mwadzingeni, L., & Tsilo, T. J. (2017). Fusarium head blight of wheat: Pathogenesis and control strategies. Crop Protection, 91, 114-122. https://doi.org/10.1016/j.cropro.2016.10.002 |
dc.relation.references | Edel-Hermann, V., Gautheron, N., Mounier, A., & Steinberg, C. (2015). Fusarium diversity in soil using a specific molecular approach and a cultural approach. Journal of Microbiological Methods, 111, 64-71. https://doi.org/10.1016/j.mimet.2015.01.026 |
dc.relation.references | FAO. 2021. Food and agriculture organization of the United Nations. Obtenido de https://www.fao.org/faostat/en/#data/ QCL/visualize |
dc.relation.references | Ferre, F. S. (2016). Worldwide occurrence of mycotoxins in rice. Food Control, 62, 291-298. https://doi.org/10.1016/j.foodcont.2015.10.051 |
dc.relation.references | Gimeno, A., & Martins, M. L. (2011). Micotoxinas y micotoxicosis en animales y humanos. Special Nutrients, Florida, 50-53. |
dc.relation.references | Giorni, P., Rolla, U., Romani, M., Mulazzi, A., & Bertuzzi, T. (2019). Efficacy of azoxystrobin on mycotoxins and related fungi in italian paddy rice. Toxins, 11(6), 310. https://doi.org/10.3390/toxins11060310 |
dc.relation.references | Giraldo-Arias, J., Celis-Zapata, S., Franco-Sierra, N. D., Arroyave-Toro, J. J., Jaramillo-Mazo, C., Alvarez, J. C., Giraldo-Arias, J., Celis-Zapata, S., Franco-Sierra, N. D., Arroyave-Toro, J. J., Jaramillo-Mazo, C., & Alvarez, J. C. (2018). Identification of fusarium cf. Verticillioides as the causal agent of pokka boheng disease in sugarcane in the department of antioquia, colombia. Ingeniería y Ciencia, 14(28), 113-134. https://doi.org/10.17230/ingciencia.14.28.5 |
dc.relation.references | Gomes, L. B., Ward, T. J., Badiale-Furlong, E., & Del Ponte, E. M. (2015). Species composition, toxigenic potential and pathogenicity of Fusarium graminearum species complex isolates from southern Brazilian rice. Plant Pathology, 64(4), 980-987. https://doi.org/10.1111/ppa.12332 |
dc.relation.references | Hanan Aref, H. (2020). Biology and integrated control of tomato wilt caused by fusarium oxysporum lycopersici: A comprehensive review under the light of recent advancements. Journal of Botany Research, 3(1). https://doi.org/10.36959/771/565 |
dc.relation.references | He, J., Zhou, T., Young, J. C., Boland, G. J., & Scott, P. (2010). Chemical and Biological Transformations for detoxification of trichothecene mycotoxins in human and animal food chains: a review. Trends in Food Science and Technology, 21(2), 67-76. https://doi.org/10.1016/j.tifs.2009.08.002 |
dc.relation.references | Huang, D., Cui, L., Sajid, A., Zainab, F., Wu, Q., Wang, X., & Yuan, Z. (2019). The epigenetic mechanisms in Fusarium mycotoxins induced toxicities. Food and Chemical Toxicology, 123, 595-601. https://doi.org/10.1016/j.fct.2018.10.059 |
dc.relation.references | Husna, Asmaul, et al. «Fusarium Commune Associated with Wilt and Root Rot Disease in Rice». Plant Pathology, vol. 70, n.o 1, enero de 2021, pp. 123-32. DOI.org (Crossref), https://doi.org/10.1111/ppa.13270. |
dc.relation.references | Iqbal, S. Z. (2021). Mycotoxins in food, recent development in food analysis and future challenges; a review. Current Opinion in Food Science, 42, 237-247. https://doi.org/10.1016/j.cofs.2021.07.003 |
dc.relation.references | Ji, F., He, D., Olaniran, A. O., Mokoena, M. P., Xu, J., & Shi, J. (2019). Occurrence, toxicity, production and detection of Fusarium mycotoxin: A review. Food Production, Processing and Nutrition, 1(1), 6. https://doi.org/10.1186/s43014-019-0007-2 |
dc.relation.references | Kamle, M., Mahato, D. K., Devi, S., Lee, J. Y., Kang, S. G., & Kumar, P. (2019). Fumonisins: Impact on agriculture, food, and Human Health and their management Strategies. Toxins, 11(6), 328. https://doi.org/10.3390/toxins11060328 |
dc.relation.references | Karlsson, Ida, et al. «Genus-Specific Primers for Study of Fusarium Communities in Field Samples». Applied and Environmental Microbiology, vol. 82, n.o 2, enero de 2016, pp. 491-501. PubMed Central, https://doi.org/10.1128/AEM.02748-15 |
dc.relation.references | Kaul, N., Kashyap, P. L., Kumar, S., Singh, D., & Singh, G. P. (2022). Genetic diversity and population structure of head blight disease causing fungus fusarium graminearum in northern wheat belt of india. Journal of Fungi, 8(8), 820. https://doi.org/10.3390/jof8080820 |
dc.relation.references | Kim, Y., Kang, I. J., Shin, D. B., Roh, J. H., Heu, S., & Shim, H. K. (2018). Timing of fusarium head blight infection in rice by heading stage. Mycobiology, 46(3), 283-286. https://doi.org/10.1080/12298093.2018.1496637 |
dc.relation.references | Khodaei, D., Javanmardi, F., & Khaneghah, A. M. (2021). The global overview of the occurrence of mycotoxins in cereals: A three-year survey. Current Opinion in Food Science, 39, 36-42. https://doi.org/10.1016/j.cofs.2020.12.012 |
dc.relation.references | Kumar, S. (2021). Molecular taxonomy, diversity, and potential applications of genus Fusarium. In Industrially Important Fungi for Sustainable Development (pp. 277-293). Springer, Cham. |
dc.relation.references | Quintero-Domínguez, L. A., Ríos Rodríguez, L. R., Quintana Sánchez, D., León Ávila, B. Y., Quintero-Domínguez, L. A., Ríos Rodríguez, L. R., Quintana Sánchez, D., & León Ávila, B. Y. (2019). Sistema Experto para el diagnóstico presuntivo de enfermedades fúngicas en los cultivos. Revista Cubana de Ciencias Informáticas, 13(1), 61-75. http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S2227-18992019000100061&lng=es&nrm=iso&tlng=pt |
dc.relation.references | Lei, S., Wang, L., Liu, L., Hou, Y., Xu, Y., Liang, M., Gao, J., Li, Q., & Huang, S. (2019). Infection and colonization of pathogenic fungus fusarium proliferatum in rice spikelet rot disease. Rice Science, 26(1), 60-68. https://doi.org/10.1016/j.rsci.2018.08.0057 |
dc.relation.references | Leslie, J.F. and Summerell, B.A. (2006) The Fusarium Laboratory Manual. Blackwell Publishing, Hoboken, 1-2. https://doi.org/10.1002/9780470278376 |
dc.relation.references | Ma L.-J., Geiser, D. M., Proctor, R. H., Rooney, A. P., O’Donnell, K., Trail, F., Gardiner, D. M., Manners, J. M., & Kazan, K. (2013). Fusarium pathogenomics. Annual Review of Microbiology, 67(1), 399-416. https://doi.org/10.1146/annurev-micro-092412-155650 |
dc.relation.references | McCormick, SP, Stanley, AM, Stover, NA y Alexander, Nueva Jersey (2011). Tricotecenos: de micotoxinas simples a complejas. Toxinas , 3 (7), 802–814. MDPI AG. Obtenido de http://dx.doi.org/10.3390/toxins3070802 |
dc.relation.references | Murugan, L., Krishnan, N., Venkataravanappa, V., Saha, S., Mishra, A. K., Sharma, B. K., & Rai, A. B. (2020). Molecular characterization and race identification of Fusarium oxysporum f.Sp. Lycopersici infecting tomato in India. 3 Biotech, 10(11), 486. https://doi.org/10.1007/s13205-020-02475-z |
dc.relation.references | Mutiga, S. K., Mutuku, J. M., Koskei, V., Gitau, J. K., Ng’ang’a, F., Musyoka, J., Chemining’wa, G. N., & Murori, R. (2021). Multiple mycotoxins in kenyan rice. Toxins, 13(3), 203. https://doi.org/10.3390/toxins13030203 |
dc.relation.references | Nahle, S., El Khoury, A., & Atoui, A. (2021). Current status on the molecular biology of zearalenone: Its biosynthesis and molecular detection of zearalenone producing Fusarium species. European Journal of Plant Pathology, 159(2), 247-258. https://doi.org/10.1007/s10658-020-02173-9 |
dc.relation.references | Nganga, E. M., Kyallo, M., Orwa, P., Rotich, F., Gichuhi, E., Kimani, J. M., Mwongera, D., Waweru, B., Sikuku, P., Musyimi, D. M., Mutiga, S. K., Ziyomo, C., Murori, R., Wasilwa, L., Correll, J. C., & Talbot, N. J. (2022). Foliar diseases and the associated fungi in rice cultivated in kenya. Plants, 11(9), 1264. https://doi.org/10.3390/plants11091264 |
dc.relation.references | O’Donnell, K., Whitaker, B. K., Laraba, I., Proctor, R. H., Brown, D. W., Broders, K., . . . Geiser, D. M. (2022). DNA sequence-based identification of fusarium: A work in progress. Plant Disease, 106(6), 1597-1609. doi:10.1094/PDIS-09-21-2035-SR |
dc.relation.references | Pessôa, M. G., Paulino, B. N., Mano, M. C. R., Neri-Numa, I. A., Molina, G., & Pastore, G. M. (2017). Fusarium species—A promising tool box for industrial biotechnology. Applied Microbiology and Biotechnology, 101(9), 3493-3511. https://doi.org/10.1007/s00253-017-8255-z |
dc.relation.references | Pinton, P., & Oswald, I. P. (2014). Effect of deoxynivalenol and other type B trichothecenes on the intestine: a review. Toxins, 6(5), 1615-1643. https://doi.org/10.3390/toxins6051615 |
dc.relation.references | Piombo, Edoardo, et al. «Sequencing of Non-Virulent Strains of Fusarium Fujikuroi Reveals Genes Putatively Involved in Bakanae Disease of Rice». Fungal Genetics and Biology,vol. 156, noviembre de 2021, p. 103622. ScienceDirect, https://doi.org/10.1016/j.fgb.2021.103622. |
dc.relation.references | Pollard, A. T., & Okubara, P. A. (2019). Real-time PCR quantification of Fusarium avenaceum in soil and seeds. Journal of Microbiological Methods, 157, 21-30. https://doi.org/10.1016/j.mimet.2018.12.009 |
dc.relation.references | Prabhukarthikeyan, S. R., et al. «First Report of Fusarium proliferatum Causing Sheath Rot Disease of Rice in Eastern India». Plant Disease, vol. 105, n.o 3, marzo de 2021, pp. 704-704. apsjournals.apsnet.org (Atypon), https://doi.org/10.1094/PDIS-08-20-1846-PDN. |
dc.relation.references | Pramunadipta, S., Widiastuti, A., Wibowo, A., Suga, H., & Priyatmojo, A. (2022). Identification and pathogenicity of Fusarium spp. Associated with the sheath rot disease of rice (Oryza sativa) in Indonesia. Journal of Plant Pathology, 104(1), 251-267. https://doi.org/10.1007/s42161-021-00988-x |
dc.relation.references | Rampersad, S. N. (2020). Pathogenomics and management of fusarium diseases in plants. Pathogens, 9(5), 340. https://doi.org/10.3390/pathogens9050340 |
dc.relation.references | Rivera, M. V., & Gómez, L. C. (2012). Identificación y patogenicidad de Fusarium spp y Rhizoctonia solani en cultivos de arroz del Cesar. Revista Colombiana de Microbiología Tropical. Vol, 2(1) |
dc.relation.references | Rong, Zhenyang, et al. «Rapid Diagnosis of Rice Bakanae Caused by Fusarium Fujikuroi and F. Proliferatum Using Loop-Mediated Isothermal Amplification Assays». Journal of Phytopathology, vol. 166, n.o 4, abril de 2018, pp. 283-90. DOI.org (Crossref), https://doi.org/10.1111/jph.12685 |
dc.relation.references | Ropejko, K., & Twarużek, M. (2021). Zearalenone and its Metabolites—General Overview, Occurrence, and Toxicity. Toxins, 13(1), 35. https://doi.org/10.3390/toxins13010035 |
dc.relation.references | Sadia Nadir, Sehroon Khan, Qian Zhu, Doku Henry, Li Wei, Dong Sun Lee, LiJuan Chen, Una descripción general del aislamiento reproductivo en el complejo Oryza sativa , AoB PLANTS , volumen 10, número 6, diciembre de 2018, ply060, https:// doi.org/10.1093/aobpla/ply060 |
dc.relation.references | Samiksha, & Kumar, S. (2021). Molecular taxonomy, diversity, and potential applications of genus fusarium. En A. M. Abdel-Azeem, A. N. Yadav, N. Yadav, & Z. Usmani (Eds.), Industrially Important Fungi for Sustainable Development: Volume 1: Biodiversity and Ecological Perspectives (pp. 277-293). Springer International Publishing. https://doi.org/10.1007/978-3-030-67561-5_8 |
dc.relation.references | Sampaio, A. M., Araújo, S. de S., Rubiales, D., & Vaz Patto, M. C. (2020). Fusarium wilt management in legume crops. Agronomy, 10(8), 1073. https://doi.org/10.3390/agronomy10081073 |
dc.relation.references | Sethy, P. K., Barpanda, N. K., Rath, A. K., & Behera, S. K. (2020). Image processing techniques for diagnosing rice plant disease: A survey. Procedia Computer Science, 167, 516-530. https://doi.org/10.1016/j.procs.2020.03.308 |
dc.relation.references | Sharma, L., & Marques, G. (2018). Fusarium, an entomopathogen—A myth or reality? Pathogens, 7(4), 93. https://doi.org/10.3390/pathogens7040093 |
dc.relation.references | Sifou, A., Meca, G., Serrano, A. B., Mahnine, N., El Abidi, A., Mañes, J., El Azzouzi, M., & Zinedine, A. (2011). First report on the presence of emerging Fusarium mycotoxins enniatins (A, a1, b, b1), beauvericin and fusaproliferin in rice on the Moroccan retail markets. Food Control, 22(12), 1826-1830. https://doi.org/10.1016/j.foodcont.2011.04.019 |
dc.relation.references | Singha, Irom Manoj, et al. «Identification and Characterization of Fusarium Sp. Using ITS and RAPD Causing Fusarium Wilt of Tomato Isolated from Assam, North East India». Journal of Genetic Engineering and Biotechnology, vol. 14, n.o 1, junio de 2016, pp. 99-105. ScienceDirect, https://doi.org/10.1016/j.jgeb.2016.07.001. |
dc.relation.references | Summerell, B. A. (2019). Resolving Fusarium: Current Status of the Genus. Annual Review of Phytopathology, 57(1). doi:10.1146/annurev-phyto-082718-100204 |
dc.relation.references | Thomas, B., Contet Audonneau, N., Machouart, M., & Debourgogne, A. (2019). Molecular identification of Fusarium species complexes: Which gene and which database to choose in clinical practice? Journal de Mycologie Médicale, 29(1), 56-58. https://doi.org/10.1016/j.mycmed.2019.01.003 |
dc.relation.references | Topi, D., Babič, J., Pavšič-Vrtač, K., Tavčar-Kalcher, G., & Jakovac-Strajn, B. (2021). Incidence of fusarium mycotoxins in wheat and maize from albania. Molecules, 26(1), 172. https://doi.org/10.3390/molecules26010172 |
dc.relation.references | Van Diepeningen, A. D., Al-Hatmi, A. M. S., Brankovics, B., & De Hoog, G. S. (2014). Taxonomy and Clinical Spectra of Fusarium Species: Where Do We Stand in 2014? Current Clinical Microbiology Reports, 1(1-2), 10-18. https://doi.org/10.1007/s40588-014-0003-x |
dc.relation.references | Vorob’eva, I., & Toropova, E. (2020). Fungi ecological niches of the genus Fusarium Link. BIO Web of Conferences, 24, 00095. https://doi.org/10.1051/bioconf/20202400095 |
dc.relation.references | Voss, K. A., Smith, G. W., & Haschek, W. M. (2007). Fumonisins: Toxicokinetics, mechanism of action and toxicity. Animal Feed Science and Technology, 137(3-4), 299-325. https://doi.org/10.1016/j.anifeedsci.2007.06.007 |
dc.relation.references | Yazar, S., & Omurtag, G. Z. (2008). Fumonisins, trichothecenes and zearalenone in cereals. International Journal of Molecular Sciences, 9(11), 2062-2090. https://doi.org/10.3390/ijms9112062 |
dc.relation.references | Zinedine, A., Del Castillo, J. M. S., Moltó, J., & Mañes, J. (2007). Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food and Chemical Toxicology, 45(1), 1-18. https://doi.org/10.1016/j.fct.2006.07.030 |
dc.relation.references | Williamson-Benavides, B. A., & Dhingra, A. (2021). Understanding root rot disease in agricultural crops. Horticulturae, 7(2), 33. https://doi.org/10.3390/horticulturae7020033 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.agrovoc | Fumonisina |
dc.subject.lemb | Arroz |
dc.subject.proposal | Fusarium proliferatum, arroz (Oryza sativa), PCR, IGS-RFLP, fumonisinas, FUM 1 Y FUM 21, patogenicidad. |
dc.subject.proposal | Rice crop, Fusarium spp., Grain discoloration, Pathogenicity, Molecular identification, Mycotoxins |
dc.title.translated | Pathogenic and toxigenic characterization of Fusarium species identified from a collection of isolates obtained from lesions on rice (Oryza sativa) plants in Colombia. |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Bibliotecarios |
dcterms.audience.professionaldevelopment | Estudiantes |
dcterms.audience.professionaldevelopment | Investigadores |
dcterms.audience.professionaldevelopment | Maestros |
dcterms.audience.professionaldevelopment | Padres y familias |
dcterms.audience.professionaldevelopment | Público general |
dc.contributor.orcid | 0000000265302056 |
dc.subject.wikidata | Patogenicidad |