dc.rights.license | Atribución-NoComercial 4.0 Internacional |
dc.contributor.advisor | Pineda Gomez, Posidia |
dc.contributor.author | Fuquen Espinel, Duvan Camilo |
dc.date.accessioned | 2025-04-23T14:23:25Z |
dc.date.available | 2025-04-23T14:23:25Z |
dc.date.issued | 2024 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88093 |
dc.description | fotografías, graficas, ilustraciones, tablas |
dc.description.abstract | Actualmente se producen 7.2 millones de toneladas de aguacate por año a nivel mundial. La semilla representa entre el 11 y 16% del peso de la fruta y es considerada un desecho, sin embargo, al ser rica en almidón puede ser una potencial fuente de este biopolímero. Además, una alternativa para reducir la huella de carbono que genera el plástico es el almidón, un polímero biodegradable con interesantes propiedades fisicoquímicas. Aunque el almidón se ha estudiado por muchos años, y uno de sus usos ha sido en el desarrollo de biopelículas, todavía no se ha trabajado lo suficiente con las nanopartículas de almidón, las cuales podrían ofrecer una mejora en la industria. Por lo tanto, el objetivo de este trabajo fue sintetizar nanopartículas de almidón de la semilla de aguacate Hass con el fin de desarrollar una biopelícula compuesta de manera parcial por el almidón nativo sus nanopartículas y el xiloglucano como aditivo. Para la extracción y limpieza del almidón se usaron métodos físicos y químicos. Extraído el almidón de su fuente, se empleó la hidrólisis ácida y el ultrasonido para la síntesis de las nanopartículas. El almidón y sus nanopartículas se agregaron de manera parcial a la dispersión de almidón-xiloglucano para formar películas las cuales fueron comparadas con las muestras sin xiloglucano. Las técnicas que se usaron para analizar propiedades morfológicas, térmicas, estructurales, composicionales y tamaño de partícula fueron la microscopía electrónica de barrido de alta resolución, calorimetría diferencial de barrido, análisis termogravimétrico, difracción de rayos X y dispersión de luz dinámica, respectivamente. Se lograron sintetizar nanopartículas de almidón por medio de hidrólisis ácida y ultrasonido, luego se usaron, junto con el xiloglucano, como aditivo reforzante para conformar un biopolímero. En las películas se midió el espesor, solubilidad en agua, permeabilidad al vapor de agua, degradabilidad y propiedades mecánicas tales como resistencia a la tracción, alargamiento a la rotura y el módulo elástico; estas películas se destacan por sus propiedades mecánicas y biodegradabilidad (Texto tomado de la fuente). |
dc.description.abstract | Currently, 7.2 million tons of avocado are produced worldwide per year. The seed represents between 11 and 16% of the weight of the fruit and is considered a waste product; however, as it is rich in starch, it can be a potential source of this biopolymer. Furthermore, an alternative to reduce the carbon footprint generated by plastic is starch, a biodegradable polymer with interesting physicochemical properties. Although starch has been studied for many years, and one of its uses has been in the development of biofilms, not enough work has yet been done with starch nanoparticles, which could offer an improvement in the industry. Therefore, the objective of this work was to synthesize starch nanoparticles from Hass avocado seed in order to develop a biofilm partially composed of native starch nanoparticles and xyloglucan as an additive. Physical and chemical methods were used for starch extraction and cleaning. Once the starch was extracted from its source, acid hydrolysis and ultrasound were used to synthesize the nanoparticles. Starch and its nanoparticles were partially added to the starch-xyloglucan dispersion to form films which were compared to samples without xyloglucan. The techniques used to analyze morphological, thermal, structural, compositional and particle size properties were high resolution scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction and dynamic light scattering, respectively. Starch nanoparticles were synthesized by acid hydrolysis and ultrasound, then used together with xyloglucan as a reinforcing additive to form a biopolymer. Thickness, water solubility, water vapor permeability, degradability and mechanical properties such as tensile strength, elongation at break and elastic modulus were measured in the films; these films stand out for their mechanical properties and biodegradability. |
dc.format.extent | xxi, 64 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ |
dc.subject.ddc | 540 - Química y ciencias afines::541 - Química física |
dc.subject.ddc | 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales |
dc.title | Síntesis y caracterización de nanopartículas de almidón de semilla de aguacate Hass para su utilización en el desarrollo de biopelículas |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Manizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física |
dc.contributor.researchgroup | Magnetismo y Materiales Avanzados |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magíster en Ciencias - Física |
dc.description.researcharea | Materiales avanzados |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ciencias Exactas y Naturales |
dc.publisher.place | Manizales, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales |
dc.relation.references | Jobling S. Improving starch for food and industrial applications. Current Opinion in Plant Biology. 2004;7(2): 210–218. https://doi.org/10.1016/j.pbi.2003.12.001. |
dc.relation.references | Jin Z. Functional starch and applications in food. Functional Starch and Applications in Food. 2018. https://doi.org/10.1007/978-981-13-1077-5. |
dc.relation.references | Li H, Qi Y, Zhao Y, Chi J, Cheng S. Starch and its derivatives for paper coatings: A review. Progress in Organic Coatings. 2019;135(April): 213–227. https://doi.org/10.1016/j.porgcoat.2019.05.015. |
dc.relation.references | Kim HY, Park DJ, Kim JY, Lim ST. Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication. Carbohydrate Polymers. 2013;98(1): 295–301. https://doi.org/10.1016/j.carbpol.2013.05.085. |
dc.relation.references | Hernández-Giottonini KY, Quiñones-Rabago JA, Peñuñuri-Miranda O, Rodríguez-Córdova RJ, Zavala-Rivera P, Lucero-Acuña A. Starch nanoparticle preparation by the nanoprecipitation technique: Effects of formulation parameters. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2024;702(July). https://doi.org/10.1016/j.colsurfa.2024.135022. |
dc.relation.references | BeMiller J, Whistler R. Starch. Sustainability (Switzerland). 2019. http://scioteca.caf.com/bitstream/handle/123456789/1091/RED2017-Eng-8ene.pdf?sequence=12&isAllowed=y%0Ahttp://dx.doi.org/10.1016/j.regsciurbeco.2008.06.005%0Ahttps://www.researchgate.net/publication/305320484_SISTEM_PEMBETUNGAN_TERPUSAT_STRATEGI_MELESTARI. |
dc.relation.references | Chel-Guerrero L, Barbosa-Martín E, Martínez-Antonio A, González-Mondragón E, Betancur-Ancona D. Some physicochemical and rheological properties of starch isolated from avocado seeds. International Journal of Biological Macromolecules. 2016;86: 302–308. https://doi.org/10.1016/j.ijbiomac.2016.01.052. |
dc.relation.references | Dufresne A. Crystalline starch based nanoparticles. Current Opinion in Colloid and Interface Science. 2014;19(5): 397–408. https://doi.org/10.1016/j.cocis.2014.06.001. |
dc.relation.references | Duan B, Sun P, Wang X, Yang C. Preparation and properties of starch nanocrystals/carboxymethyl chitosan nanocomposite films. Starch/Staerke. 2011;63(9): 528–535. https://doi.org/10.1002/star.201000136. |
dc.relation.references | Ye F, Miao M, Jiang B, Campanella OH, Jin Z, Zhang T. Elucidation of stabilizing oil-in-water Pickering emulsion with different modified maize starch-based nanoparticles. Food Chemistry. 2017;229: 152–158. https://doi.org/10.1016/j.foodchem.2017.02.062. |
dc.relation.references | Wang X, Chen H, Luo Z, Fu X. Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties. Carbohydrate Polymers. 2016;138: 192–200. https://doi.org/10.1016/j.carbpol.2015.11.006. |
dc.relation.references | Jones NA, Pan LC, Flannagan SE, Jones KA, Lukashova L, Wightman L, et al. Targeted enamel remineralization with mineral-loaded starch particles. JADA Foundational Science. 2024;3: 1–11. https://doi.org/10.1016/j.jfscie.2024.100041. |
dc.relation.references | FRENCH D. Organization of Starch Granules.. Second Edition. Starch: Chemistry and Technology. ACADEMIC PRESS; 1984. https://doi.org/10.1016/b978-0-12-746270-7.50013-6. |
dc.relation.references | Le Corre D, Angellier-Coussy H. Preparation and application of starch nanoparticles for nanocomposites: A review. Reactive and Functional Polymers. 2014;85: 97–120. https://doi.org/10.1016/j.reactfunctpolym.2014.09.020. |
dc.relation.references | OTEY FH, DOANE WM. Chemicals From Starch. Starch: Chemistry and Technology. 1984; 389–416. https://doi.org/10.1016/b978-0-12-746270-7.50017-3. |
dc.relation.references | Kim HY, Park SS, Lim ST. Preparation, characterization and utilization of starch nanoparticles. Colloids and Surfaces B: Biointerfaces. 2015;126: 607–620. https://doi.org/10.1016/j.colsurfb.2014.11.011. |
dc.relation.references | Ahmad AN, Lim SA, Navaranjan N, Hsu YI, Uyama H. Green sago starch nanoparticles as reinforcing material for green composites. Polymer. 2020;202(February): 122646. https://doi.org/10.1016/j.polymer.2020.122646. |
dc.relation.references | Santhosh R, Sarkar P. Jackfruit seed starch/tamarind kernel xyloglucan/zinc oxide nanoparticles-based composite films: Preparation, characterization, and application on tomato (Solanum lycopersicum) fruits. Food Hydrocolloids. 2022;133(April): 107917. https://doi.org/10.1016/j.foodhyd.2022.107917. |
dc.relation.references | Valero-Valdivieso MF, Ortegón Y, Uscategui Y. Biopolímeros: Avances y perspectivas. DYNA (Colombia). 2013;80(181): 171–180. |
dc.relation.references | Genovesi Barcelona V. Caracterización de ZmXTH1, una nueva Xiloglucano endoTransglucosilasa-Hidrolasa en maíz. 2007. |
dc.relation.references | Santhosh R. Películas compuestas a base de nanopartículas de óxido de zinc / xiloglucano de semilla de jaca : preparación , caracterización y aplicación en frutos de tomate ( Solanum lycopersicum ). 2022; 1–30. |
dc.relation.references | Lang W, Watanabe T, Lee C, Tagami T, Li F, Yamamoto T, et al. Fully biosourced amphiphilic block copolymer from tamarind seed xyloglucan and solanesol: synthesis, aqueous self-assembly, and drug encapsulation. Carbohydrate Polymers. 2025;352(September 2024): 123181. https://doi.org/10.1016/j.carbpol.2024.123181. |
dc.relation.references | Cuevas Z. Obtención y caracterización de almidones termoplásticos obtenidos a partir de almidones injertados con poliésteres biodegradables. Centro de Investigación Científica de Yucatán. 2017;(Tesis): 1–110. |
dc.relation.references | Carvalho AJF, Job AE, Alves N, Curvelo AAS, Gandini A. Thermoplastic starch/natural rubber blends. Carbohydrate Polymers. 2003;53(1): 95–99. https://doi.org/10.1016/S0144-8617(03)00005-5. |
dc.relation.references | Otero-Herrera A, Fuentes-Gaviria L, Pérez-Cervera C, Andrade-Pizarro R. Development of edible films based on sweet potato (Ipomoea batatas) starch and their application in candy packaging. International Journal of Biological Macromolecules. 2025;299(January). https://doi.org/10.1016/j.ijbiomac.2025.140031. |
dc.relation.references | Angellier H, Putaux JL, Molina-Boisseau S, Dupeyre D, Dufresne A. Starch nanocrystal fillers in an acrylic polymer matrix. Macromolecular Symposia. 2005;221: 95–104. https://doi.org/10.1002/masy.200550310. |
dc.relation.references | Condés MC, Añón MC, Mauri AN, Dufresne A. Amaranth protein films reinforced with maize starch nanocrystals. Food Hydrocolloids. 2015;47: 146–157. https://doi.org/10.1016/j.foodhyd.2015.01.026. |
dc.relation.references | Dufresne A. Polymer Nanocomposites from Biological Sources. Encyclopedia of Nanoscience and Nanotechnology. 2009;(January 2007): 1–32. |
dc.relation.references | Phiri R, Mavinkere Rangappa S, Siengchin S, Oladijo OP, Dhakal HN. Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review. Advanced Industrial and Engineering Polymer Research. 2023;6(4): 436–450. https://doi.org/10.1016/j.aiepr.2023.04.004. |
dc.relation.references | Shi AM, Li D, Wang LJ, Li BZ, Adhikari B. Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: Influence of various process parameters on particle size and stability. Carbohydrate Polymers. 2011;83(4): 1604–1610. https://doi.org/10.1016/j.carbpol.2010.10.011. |
dc.relation.references | Pineda G�mez P. Efecto de la difusi�n de calcio en las transformaciones fisicoqu�micas en biopol�meros derivados del ma�z, sometidos a tratamientos t�rmicos alcalinos / Effect of the calcium diffusion over the physicochemical transformations in biopolymer of corn submitt. 2012; 125. http://www.bdigital.unal.edu.co/8043/ |
dc.relation.references | Alejandra S, Urrea L. Síntesis y caracterización de nanopartículas de almidón (de mango y maíz) obtenidos por medio de nanoprecipitación para su uso como floculante. 2023; |
dc.relation.references | Mutis González N, Pineda Gómez P, Rodríguez García ME. Effect of the addition of potassium and magnesium ions on the thermal, pasting, and functional properties of plantain starch (Musa paradisiaca). International Journal of Biological Macromolecules. 2019;124: 41–49. https://doi.org/10.1016/j.ijbiomac.2018.11.051. |
dc.relation.references | Guerrero-Florez V, Barbara A, Kodjikian S, Oukacine F, Trens P, Cattoën X. Dynamic light scattering unveils stochastic degradation in large-pore mesoporous silica nanoparticles. Journal of Colloid and Interface Science. 2024;676(April): 1098–1108. https://doi.org/10.1016/j.jcis.2024.07.151. |
dc.relation.references | Rodriguez-Garcia ME, Hernandez-Landaverde MA, Delgado JM, Ramirez-Gutierrez CF, Ramirez-Cardona M, Millan-Malo BM, et al. Crystalline structures of the main components of starch. Current Opinion in Food Science. 2021;37(October 2020): 107–111. https://doi.org/10.1016/j.cofs.2020.10.002. |
dc.relation.references | García NL, Ribba L, Dufresne A, Aranguren M, Goyanes S. Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydrate Polymers. 2011;84(1): 203–210. https://doi.org/10.1016/j.carbpol.2010.11.024. |
dc.relation.references | Mora-Palma RM, Martinez-Munoz PE, Contreras-Padilla M, Feregrino-Perez A, Rodriguez-Garcia ME. Evaluation of water diffusion, water vapor permeability coefficients, physicochemical and antimicrobial properties of thin films of nopal mucilage, orange essential oil, and orange pectin. Journal of Food Engineering. 2024;366(November 2023): 111865. https://doi.org/10.1016/j.jfoodeng.2023.111865. |
dc.relation.references | GONTARD N, DUCHEZ C, CUQ J ‐L, GUILBERT S. Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. International Journal of Food Science & Technology. 1994;29(1): 39–50. https://doi.org/10.1111/j.1365-2621.1994.tb02045.x. |
dc.relation.references | De P, Sintetizado B, De AP, De X, Paola T, Álvarez A, et al. Evaluación De La Biodegradabilidad De Una Película De. 2019. |
dc.relation.references | Pineda-Gomez P, González NM, Contreras-Jimenez B, Rodriguez-Garcia ME. Physicochemical Characterisation of Starches from Six Potato Cultivars Native to the Colombian Andean Region. Potato Research. 2021;64(1): 21–39. https://doi.org/10.1007/s11540-020-09462-0. |
dc.relation.references | Nazir M, Jhan F, Gani A, Gani A. Fabrication of millet starch nanocapsules loaded with beta carotene using acid hydrolysis and ultrasonication: Characterisation, release behaviour and bioactivity retention. Ultrasonics Sonochemistry. 2024;111(September): 107112. https://doi.org/10.1016/j.ultsonch.2024.107112. |
dc.relation.references | Vázquez-Luna A, Santiago M, Rivadeneyra-Domínguez E, Díaz-Sobac R. Películas comestibles a base de almidón nanoestructurado como material de barrera a la humedad. CienciaUAT. 2019;13(2): 152. https://doi.org/10.29059/cienciauat.v13i2.1105. |
dc.relation.references | Ramirez LMF, Rihouey C, Chaubet F, Le Cerf D, Picton L. Characterization of dextran particle size: How frit-inlet asymmetrical flow field-flow fractionation (FI-AF4) coupled online with dynamic light scattering (DLS) leads to enhanced size distribution. Journal of Chromatography A. 2021;1653: 462404. https://doi.org/10.1016/j.chroma.2021.462404. |
dc.relation.references | Chel-Guerrero L, Barbosa-Martín E, Martínez-Antonio A, González-Mondragón E, Betancur-Ancona D. Some physicochemical and rheological properties of starch isolated from avocado seeds. International Journal of Biological Macromolecules. 2016;86: 302–308. https://doi.org/10.1016/j.ijbiomac.2016.01.052. |
dc.relation.references | Araújo RG, Rodríguez-Jasso RM, Ruiz HA, Govea-Salas M, Rosas-Flores W, Aguilar-González MA, et al. Hydrothermal-microwave processing for starch extraction from Mexican avocado seeds: Operational conditions and characterization. Processes. 2020;8(7). https://doi.org/10.3390/pr8070759. |
dc.relation.references | Rivera–González G, Amaya–Guerra CA, de la Rosa–Millán J. Physicochemical characterisation and in vitro Starch digestion of Avocado Seed Flour (Persea americana V. Hass) and its starch and fibrous fractions. International Journal of Food Science and Technology. 2019;54(7): 2447–2457. https://doi.org/10.1111/ijfs.14160. |
dc.relation.references | Susilowati E, Lestari AE. Preparation of chitosan-avocado seed starch (CASS) edible film as jenang dodol packaging. AIP Conference Proceedings. 2019;2194(December). https://doi.org/10.1063/1.5139855. |
dc.relation.references | Mansaray KG, Ghaly AE. Thermogravimetric Analysis of Rice Husks in an Air Atmosphere. Energy Sources. 1998;20(7): 653–663. https://doi.org/10.1080/00908319808970084. |
dc.relation.references | Adair P, Sriprom P, Narkrugsa W, Phumjan L, Manamoongmongkol K, Permana L, et al. Preparation, characterization, and antimicrobial activity of xyloglucan-chitosan film from tamarind (tamarind indica L.) seed kernel. Progress in Organic Coatings. 2023;179(January): 107486. https://doi.org/10.1016/j.porgcoat.2023.107486. |
dc.relation.references | Dutta P, Giri S, Giri TK. Xyloglucan as green renewable biopolymer used in drug delivery and tissue engineering. International Journal of Biological Macromolecules. 2020;160: 55–68. https://doi.org/10.1016/j.ijbiomac.2020.05.148. |
dc.relation.references | Liu C, Jiang S, Zhang S, Xi T, Sun Q, Xiong L. Characterization of edible corn starch nanocomposite films: The effect of self-assembled starch nanoparticles. Starch/Staerke. 2016;68(3–4): 239–248. https://doi.org/10.1002/star.201500252. |
dc.relation.references | Rami G, Limbachiya P, Maradiya M, Acharya G. Next Nanotechnology Hydrophobic starch acetate nanoparticles : A biopolymer-based system for sustained antitubercular drug release. Next Nanotechnology. 2025;7(December 2024): 100120. https://doi.org/10.1016/j.nxnano.2024.100120. |
dc.relation.references | Tester RF, Karkalas J, Qi X. Starch - Composition, fine structure and architecture. Journal of Cereal Science. 2004;39(2): 151–165. https://doi.org/10.1016/j.jcs.2003.12.001. |
dc.relation.references | Pozo C, Rodríguez-Llamazares S, Bouza R, Barral L, Castaño J, Müller N, et al. Study of the structural order of native starch granules using combined FTIR and XRD analysis. Journal of Polymer Research. 2018;25(12). https://doi.org/10.1007/s10965-018-1651-y. |
dc.relation.references | Lin Q, Ji N, Li M, Dai L, Xu X, Xiong L, et al. Fabrication of debranched starch nanoparticles via reverse emulsification for improvement of functional properties of corn starch films. Food Hydrocolloids. 2020;104(February). https://doi.org/10.1016/j.foodhyd.2020.105760. |
dc.relation.references | Saidi L, Wang Y, Wich PR, Selomulya C. Polysaccharide-based edible films — strategies to minimize water vapor permeability. Current Opinion in Food Science. 2025;61: 101258. https://doi.org/10.1016/j.cofs.2024.101258. |
dc.relation.references | Guo Y, Liu M, Chuang R, Zhang H, Li H, Xu L, et al. Mechanistic applications of low-temperature plasma in starch-based biopolymer film : A review. Food Chemistry. 2025;479(February): 143739. https://doi.org/10.1016/j.foodchem.2025.143739. |
dc.relation.references | Thakkar A, Patel B, Sahu SK, Yadav VK, Patel R, Sahoo DK, et al. Potato starch bioplastic films reinforced with organic and inorganic fillers: A sustainable packaging alternative. International Journal of Biological Macromolecules. 2025;306(P2): 141630. https://doi.org/10.1016/j.ijbiomac.2025.141630. |
dc.relation.references | Zhang W, Azizi-Lalabadi M, Jafarzadeh S, Jafari SM. Starch-gelatin blend films: A promising approach for high-performance degradable food packaging. Carbohydrate Polymers. 2023;320(June): 121266. https://doi.org/10.1016/j.carbpol.2023.121266. |
dc.relation.references | Li Y, Wang H, Li Y, Wen H, Huang H, Huang Z, et al. Preparation of nano-Ag-Bi2WO6–TiO2/starch bionanocomposite membranes and mechanism of enhancing visible light degradation of ethylene. Ceramics International. 2023;49(19): 30989–30998. https://doi.org/10.1016/j.ceramint.2023.06.298. |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.proposal | Nanopartículas |
dc.subject.proposal | Almidón |
dc.subject.proposal | Semilla de aguacate |
dc.subject.proposal | Xiloglucano |
dc.subject.proposal | Biopelículas |
dc.subject.proposal | Nanoparticles |
dc.subject.proposal | Starch |
dc.subject.proposal | Avocado seed |
dc.subject.proposal | Xyloglucan |
dc.subject.proposal | Biofilms |
dc.subject.unesco | Nanotecnología |
dc.subject.unesco | Nanotechnology |
dc.subject.unesco | Propiedad química |
dc.subject.unesco | Chemical properties |
dc.subject.unesco | Microscopio |
dc.subject.unesco | Microscopes |
dc.subject.unesco | Rayos X |
dc.subject.unesco | X-rays |
dc.title.translated | Synthesis and characterization of Hass avocado seed starch nanoparticles for use in the development of biofilms |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Bibliotecarios |
dcterms.audience.professionaldevelopment | Estudiantes |
dcterms.audience.professionaldevelopment | Grupos comunitarios |
dcterms.audience.professionaldevelopment | Investigadores |
dcterms.audience.professionaldevelopment | Maestros |
dcterms.audience.professionaldevelopment | Medios de comunicación |
dcterms.audience.professionaldevelopment | Público general |
dc.description.curriculararea | Ciencias Naturales.Sede Manizales |
dc.contributor.orcid | Fuquen Espinel, Duvan Camilo [0000000220025948] |