dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.contributor.advisor | Sandoval Rojas, Andrea del Pilar |
dc.contributor.author | Malaver Amaya, Daniela |
dc.date.accessioned | 2025-04-23T15:24:33Z |
dc.date.available | 2025-04-23T15:24:33Z |
dc.date.issued | 2024 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88096 |
dc.description | ilustraciones, fotografías, gráficas, imágenes, tablas |
dc.description.abstract | El glifosato es el herbicida más utilizado a nivel mundial, pero su uso genera preocupaciones debido a sus efectos adversos en el medio ambiente y la salud humana. Este estudio presenta un método de detección basado en técnicas electroquímicas, valoradas por su rapidez y rentabilidad en comparación con otras técnicas analíticas.
El método se fundamenta en la capacidad del glifosato para formar complejos con cobre, detectables mediante técnicas electroquímicas. Se utilizó un electrodo de carbono vítreo modificado con poli(3,4-etilendioxitiofeno) (PEDOT). Sobre esta superficie se redujo cobre electroquímicamente en una disolución reguladora de fosfatos con pH 7,4 y 1,4 M de cloruros.
La detección indirecta del glifosato se realizó mediante voltamperometría diferencial de pulso (VDP), que permite distinguir la corriente generada por la oxidación del cobre de las corrientes capacitivas. Se obtuvieron señales de oxidación asociadas al proceso de Cu(0) a Cu(I). La cuantificación del glifosato se realizó midiendo la diferencia de corriente entre los voltamperogramas de la disolución con glifosato y el blanco, utilizando parámetros optimizados: amplitud de pulso de 200 mV, tiempo de pulso de 50 ms y periodo de 0,8 s.
Se establecieron dos intervalos lineales, para concentraciones altas entre 6 y 500 mg kg-1 y para concentraciones bajas entre 0,02-0,10 mg kg-1. Los límites de detección y cuantificación encontrados fueron de 0,010 mg kg-1 y 0,029 mg kg-1, respectivamente. (Texto tomado de la fuente) |
dc.description.abstract | Glyphosate is the most widely used herbicide worldwide, but its use raises concerns due to its adverse effects on the environment and human health. This study presents a detection method based on electrochemical techniques, valued for their speed and cost-effectiveness compared to other analytical techniques.
The method is based on glyphosate's ability to form complexes with copper, which are detectable through electrochemical techniques. A glassy carbon electrode modified with poly(3,4-ethylenedioxythiophene) (PEDOT) was employed. Copper was electrodeposited onto the modified electrode in a phosphate buffer solution (pH 7.4) containing 1.4 M chloride ions.
Glyphosate indirect detection was carried out using differential pulse voltammetry (DPV), which allows distinguishing the current generated by copper oxidation from capacitive currents. Oxidation signals associated with the Cu(0) to Cu(I) transition were obtained. Glyphosate quantification was achieved by measuring the current difference between the voltammograms of a solution containing glyphosate and a blank solution, with optimized parameters: 200 mV pulse amplitude, 50 ms pulse time, and 0.8 s period.
Two linear intervals were established: one for high concentrations (6–500 mg kg-1) and another for low concentrations (0.02–0.10 mg kg-1), with detection and quantification limits of 0.010 mg kg-1 and 0.029 mg kg-1, respectively. |
dc.format.extent | xviii, 120 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights | Derechos reservados al autor, 2024 |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.subject.ddc | 540 - Química y ciencias afines::543 - Química analítica |
dc.subject.ddc | 540 - Química y ciencias afines::541 - Química física |
dc.title | Determinación electroquímica de glifosato con electrodos de carbono vítreo modificados con PEDOT/Cu |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.contributor.researchgroup | Electroquímica y Termodinámica Computacional |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magíster en Ciencias - Química |
dc.description.researcharea | Electroquímica analítica |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ciencias |
dc.publisher.place | Bogotá, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Abdullah, M. P., Daud, J., Hong, K. S., & Yew, C. H. (1995). Improved method for the determination of glyphosate in water. Journal of Chromatography A, 697(1-2), 363-369. |
dc.relation.references | Allison, P. D. (1999). Multiple regression: A primer. Pine Forge Press. |
dc.relation.references | Alza-Camacho, W. R., García-Colmenares, J. M., & Chaparro-Acuña, S. P. (2016). Determinación voltamétrica de paraquat y glifosato en aguas superficiales. Ciencia y Tecnología Agropecuaria, 17(3), 331-345. |
dc.relation.references | Aoki, K., Tokuda, K., & Matsuda, H. (1984). Theory of differential pulse voltammetry at stationary planar electrodes. Journal of electroanalytical chemistry and interfacial electrochemistry, 175(1-2), 1-13. |
dc.relation.references | Aristov, N., & Habekost, A. (2015). Cyclic voltammetry-A versatile electrochemical method investigating electron transfer processes. World J. Chem. Educ, 3(5), 115-119. |
dc.relation.references | Armbruster, D. A., & Pry, T. (2008). Limit of blank, limit of detection and limit of quantitation. The clinical biochemist reviews, 29(Suppl 1), S49. |
dc.relation.references | Bai, S. H., & Ogbourne, S. M. (2016). Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination. Environmental Science and Pollution Research, 23, 18988-19001. |
dc.relation.references | Barbosa, P. F. P., Vieira, E. G., Cumba, L. R., Paim, L. L., Nakamura, A. P. R., Andrade, R. D. A., & do Carmo, D. R. (2019). Voltammetric techniques for pesticides and herbicides detection-an overview. International Journal of Electrochemical Science, 14(4), 3418-3433. |
dc.relation.references | Bard, A. L. (2001). Electrochemical Methods Fundamentals and Applications (2nd ed.). John Wiley & Sons. |
dc.relation.references | Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe, 28(1), 1-15. |
dc.relation.references | Bensalah, N. (2012). Pitting corrosion. InTech. |
dc.relation.references | Bernal, E., & Guo, X. (2014). Limit of detection and limit of quantification determination in gas chromatography. Advances in gas chromatography, 3(1), 57-63. |
dc.relation.references | Bianchi, G., & Longhi, P. (1973). Copper in sea-water, potential-pH diagrams. Corrosion Science, 13(11), 853-864. |
dc.relation.references | Bohórquez Vivas, D. J. (2020) Métodos analíticos para la determinación de Glifosato en matrices ambientales. |
dc.relation.references | Brønstad, J. O., & Friestad, H. O. (1976). Method for determination of glyphosate residues in natural waters based on polarography of the N-nitroso derivative. Analyst, 101(1207), 820-824. |
dc.relation.references | Çağlar, S., & Kolankaya, D. (2008). The effect of sub-acute and sub-chronic exposure of rats to the glyphosate-based herbicide Roundup. Environmental toxicology and pharmacology, 25(1), 57-62. |
dc.relation.references | Cahuantzi‐Muñoz, S. L., González‐Fuentes, M. A., Ortiz‐Frade, L. A., Torres, E., Ţălu, Ş., Trejo, G., & Méndez‐Albores, A. (2019). Electrochemical biosensor for sensitive quantification of glyphosate in maize kernels. Electroanalysis, 31(5), 927-935. |
dc.relation.references | Cao, Y., Wang, L., Shen, C., Wang, C., Hu, X., & Wang, G. (2019). An electrochemical sensor on the hierarchically porous Cu-BTC MOF platform for glyphosate determination. Sensors and Actuators B: Chemical, 283, 487-494. |
dc.relation.references | Chen, K., & Xue, D. (2014). Reaction route to the crystallization of copper oxides. Applied Science and Convergence Technology, 23(1), 14-26. |
dc.relation.references | Cho, S. H., & Park, S. M. (2006). Electrochemistry of conductive polymers 39. Contacts between conducting polymers and noble metal nanoparticles studied by current-sensing atomic force microscopy. The Journal of Physical Chemistry B, 110(51), 25656-25664. |
dc.relation.references | Coutinho, C. F. B., Silva, M. O., Machado, S. A. S., & Mazo, L. H. (2007). Influence of glyphosate on the copper dissolution in phosphate buffer. Applied surface science, 253(6), 3270-3275. |
dc.relation.references | Coutinho, C. F., & Mazo, L. H. (2005). Complexos metálicos com o herbicida glifosato: revisão. Química Nova, 28, 1038-1045. |
dc.relation.references | Coutinho, C. F., Coutinho, L. F., & Mazo, L. H. (2009). Estudo do comportamento eletroquímico de substâncias complexantes utilizando eletrodo de cobre. Química Nova, 32, 228-233. |
dc.relation.references | Cox, J. A., & Cheng, K. H. (1974). Determination of phosphate by cathodic stripping voltammetry at a glassy carbon electrode. Analytical Letters, 7(10), 659-670. |
dc.relation.references | Currie, L. A. (1995). Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Pure and applied chemistry, 67(10), 1699-1723. |
dc.relation.references | Cysewska, K., Karczewski, J., & Jasiński, P. (2015). Influence of electropolymerization conditions on the morphological and electrical properties of PEDOT film. Electrochimica Acta, 176, 156-161. |
dc.relation.references | Daniele, P. G., De Stefano, C., Prenesti, E., & Sammartano, S. (1997). Copper (II) complexes of N-(phosphonomethyl) glycine in aqueous solution: a thermodynamic and spectrophotometric study. Talanta, 45(2), 425-431. |
dc.relation.references | Dantzig, G. B. (1990). Origins of the simplex method. In A history of scientific computing (pp. 141-151).
Davis, J. R. (2001). Copper and copper alloys. ASM international. |
dc.relation.references | Dekanski, A., Stevanović, J., Stevanović, R., Nikolić, B. Ž., & Jovanović, V. M. (2001). Glassy carbon electrodes. Carbon, 39(8), 1195–1205. doi:10.1016/s0008-6223(00)00228-1 |
dc.relation.references | del Carmen Aguirre, M., Urreta, S. E., & Gomez, C. G. (2019). A Cu2+-Cu/glassy carbon system for glyphosate determination. Sensors and Actuators B: Chemical, 284, 675-683. |
dc.relation.references | Dhamu, V. N., Poudyal, D. C., Muthukumar, S., & Prasad, S. (2021). A highly sensitive electrochemical sensor system to detect and distinguish between glyphosate and glufosinate. Journal of The Electrochemical Society, 168(5), 057531. |
dc.relation.references | Ding, J., Guo, H., Liu, W. W., Zhang, W. W., & Wang, J. W. (2015). Current progress on the detection of glyphosate in environmental samples. J. Sci. Appl. Biomed, 3(06), 88-95. |
dc.relation.references | dos Santos, S. C., Galli, A., Felsner, M. L., & Justi, K. C. (2014). Desenvolvimento de Metodologia Eletroanalítica para a Determinação do Pesticida Glifosato em Amostras Ambientais. Revista Virtual de Química, 6(4), 866-883. |
dc.relation.references | Du, X., & Wang, Z. (2003). Effects of polymerization potential on the properties of electrosynthesized PEDOT films. Electrochimica Acta, 48(12), 1713-1717. |
dc.relation.references | Duke, S. O. (2018). The history and current status of glyphosate. Pest management science, 74(5), 1027-1034. |
dc.relation.references | Duke, S. O., & Powles, S. B. (2008). Glyphosate: a once‐in‐a‐century herbicide. Pest Management Science: formerly Pesticide Science, 64(4), 319-325. |
dc.relation.references | Duke, S. O., Baerson, S. R., & Rimando, A. M. (2003). Glyphosate. Encyclopedia of Agrochemicals. |
dc.relation.references | Dumanlı, O., & Onar, A. N. (2009). Activation of glassy carbon electrodes by photocatalytic pretreatment. Electrochimica acta, 54(26), 6438-6444. |
dc.relation.references | Engstrom, R. C., & Strasser, V. A. (1984). Characterization of electrochemically pretreated glassy carbon electrodes. Analytical Chemistry, 56(2), 136-141. |
dc.relation.references | Fagan, D. T., Hu, I. F., & Kuwana, T. (1985). Vacuum heat-treatment for activation of glassy carbon electrodes. Analytical chemistry, 57(14), 2759-2763. |
dc.relation.references | Ficken, F. A. (2015). The simplex method of linear programming. Courier Dover Publications. |
dc.relation.references | Gasnier, C., Dumont, C., Benachour, N., Clair, E., Chagnon, M. C., & Séralini, G. E. (2009). Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology, 262(3), 184-191. |
dc.relation.references | Gholivand, M. B., Akbari, A., & Norouzi, L. (2018). Development of a novel hollow fiber-pencil graphite modified electrochemical sensor for the ultra-trace analysis of glyphosate. Sensors and Actuators B: Chemical, 272, 415-424. |
dc.relation.references | Gill, J. P. K., Sethi, N., & Mohan, A. (2017). Analysis of the glyphosate herbicide in water, soil and food using derivatising agents. Environmental Chemistry Letters, 15, 85-100. |
dc.relation.references | Girault, H. H. (2004). Analytical and physical electrochemistry (1st ed.). Marcel Dekker. |
dc.relation.references | González Basto, M. C. Validation of the square wave anodic stripping voltammetry methodology for cadmium quantification in Theobroma cacao L. beans (Doctoral dissertation, Universidad Nacional de Colombia). |
dc.relation.references | Gourier, D., & Tourillon, G. (1986). Production of highly ordered organic conducting polymers (poly-(3-methylthiophene)) under electrochemical inclusion of copper (2+) ions: an ESR study. The Journal of Physical Chemistry, 90(22), 5561-5565. |
dc.relation.references | Guziejewski, D., Stojanov, L., Gulaboski, R., & Mirceski, V. (2022). Reversible and quasireversible electron transfer under conditions of differential square-wave voltammetry. The Journal of Physical Chemistry C, 126(12), 5584-5591. |
dc.relation.references | Harris, D. C. (2003). Análisis químico cuantitativo. Argentina: Reverté. |
dc.relation.references | Horth, H., & Blackmore, K. (2009). Survey of glyphosate and AMPA in groundwaters and surface waters in Europe. WRC report no. UC8073, 2. |
dc.relation.references | Hu, F., Karweik, D. H., & Kuwana, T. (1985). Activation and deactivation of glassy carbon electrodes. Journal of electroanalytical chemistry and interfacial electrochemistry, 188(1-2), 59-72. |
dc.relation.references | Huhn, C. (2018). More and enhanced glyphosate analysis is needed. Analytical and bioanalytical chemistry, 410, 3041-3045. |
dc.relation.references | Ilieva, M., & Tsakova, V. (2004). Copper modified poly (3, 4-ethylenedioxythiophene): Part I: Potentiostatic experiments. Synthetic metals, 141(3), 287-292. |
dc.relation.references | Ilieva, M., & Tsakova, V. (2004). Copper modified poly (3, 4-ethylenedioxythiophene): Part II: Potentiostatic experiments. Synthetic metals, 141(3), 287-292. |
dc.relation.references | Ilieva, M., & Tsakova, V. (2005). Copper electrocrystallization in PEDOT in presence and absence of copper–polymer-stabilized species. Electrochimica acta, 50(7-8), 1669-1674 |
dc.relation.references | Inesi, A. (1986). Instrumental Methods in Electrochemistry.: R. Greef, R. Peat, LM Peter, D. Pletcher and J. Robinson (Editors). Ellis Horwood, New York, Chichester, Brisbane, Toronto, 1985, 443 pp., 49-50 |
dc.relation.references | International Association of Environmental Analytical Chemistry (IAEAC); (1994). Sample Handling of Pesticides in Water; Barcelona, España. |
dc.relation.references | Jámbor, A., & Molnár-Perl, I. (2009). Amino acid analysis by high-performance liquid chromatography after derivatization with 9-fluorenylmethyloxycarbonyl chloride: Literature overview and further study. Journal of Chromatography A, 1216(15), 3064-3077. |
dc.relation.references | Jin, J., Takahashi, F., Kaneko, T., & Nakamura, T. (2010). Characterization of electrochemiluminescence of tris (2, 2′-bipyridine) ruthenium (II) with glyphosate as coreactant in aqueous solution. Electrochimica acta, 55(20), 5532-5537. |
dc.relation.references | Kamau, G. N. (1988). Surface preparation of glassy carbon electrodes. Analytica Chimica Acta, 207, 1–16. doi:10.1016/s0003-2670(00)80777-1 |
dc.relation.references | Kamau, G. N., Willis, W. S., & Rusling, J. F. (1985). Electrochemical and Electron Spectroscopic Studies of Highly Polished Glassy Carbon Electrodes. Analytical Chemistry, 57(2), 545–551. doi:10.1021/ac50001a049 |
dc.relation.references | Khenifi, A., Derriche, Z., Forano, C., Prevot, V., Mousty, C., Scavetta, E., ... & Tonelli, D. (2009). Glyphosate and glufosinate detection at electrogenerated NiAl-LDH thin films. Analytica Chimica Acta, 654(2), 97-102. |
dc.relation.references | Kiema, G. K., Aktay, M., & McDermott, M. T. (2003). Preparation of reproducible glassy carbon electrodes by removal of polishing impurities. Journal of Electroanalytical Chemistry, 540, 7-15. |
dc.relation.references | King, F., & Kolar, M. (2000). The copper container corrosion model used in AECL’s second case study. Ontario Power Generation report. |
dc.relation.references | Kissinger, P. T., & Heineman, W. R. (1983). Cyclic voltammetry. Journal of Chemical Education, 60(9), 702. |
dc.relation.references | Klingler, R. J., & Kochi, J. K. (1981). Electron-transfer kinetics from cyclic voltammetry. Quantitative description of electrochemical reversibility. The Journal of Physical Chemistry, 85(12), 1731-1741. |
dc.relation.references | Laguarda-Miro, N., Ferreira, F. W., García-Breijo, E., Ibáñez-Civera, J., Gil-Sánchez, L., & Garrigues-Baixauli, J. (2012). Glyphosate detection by voltammetric techniques. A comparison between statistical methods and an artificial neural network. Sensors and Actuators B: Chemical, 171, 528-536. |
dc.relation.references | Melo Martínez, O, López Pérez, L y Melo Martínez, S. (2020). Diseño de experimentos: métodos y aplicaciones. Universidad Nacional de Colombia. |
dc.relation.references | Mensink, H., & Janssen, P. (1994). Glyphosate (No. 159). World Health Organization. |
dc.relation.references | Merck KGaA, Darmstadt, Alemania y/o sus filiales. (n.d.). 10X Phosphate-Buffered Saline (PBS) for Western Blotting. 10x phosphate-buffered saline (PBS) for western blotting. https://www.sigmaaldrich.com/CO/es/support/calculators-and-apps/10x-phosphate-buffered-saline |
dc.relation.references | Miller, J. N., & Miller, J. C. (2002). Estadística y quimiometría para química analítica (No. 543.062: 519.23 MIL). |
dc.relation.references | Ministerio de la Protección Social. (22 de agosto de 2007) Resolución Número 2906 de 2007. Por la cual se establecen los Límites Máximos de Residuos de Plaguicidas – LMR en alimentos para consumo humano y en piensos o forrajes. DO 46735. https://www.mincit.gov.co/temas-interes/reglamentos-tecnicos/rt-conjuntos/resolucion-2906-del-22-de-agosto-de-2007-1.aspx |
dc.relation.references | Mocak, J., Bond, A. M., Mitchell, S., & Scollary, G. (1997). A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques (technical report). Pure and Applied Chemistry, 69(2), 297-32 |
dc.relation.references | Molina Osorio, A. F. (2014). Estudio de la reacción de reducción electroquímica de CO2 sobre electrodos sólidos modificados con Poli-(3, 4-etilendioxitiofeno)(PEDOT) Poli-(3, 4-etilendioxitiofeno)(PEDOT) (Doctoral dissertation). |
dc.relation.references | Monge Romero, I. C. (2013). Estudio electro catalítico de la reacción de reducción de oxígeno sobre películas ultra delgadas de polianilina (PANI). Sintetizadas vía electroquímica sobre electrodos de carbón vítreo, platino y oro modificados con películas de poli-(3, 4-etilendioxitiofeno)(PEDOT). |
dc.relation.references | Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons. |
dc.relation.references | Moore, D. S. (2009). Introduction to the Practice of Statistics. WH Freeman and company. |
dc.relation.references | Moraes, F. C., Mascaro, L. H., Machado, S. A., & Brett, C. M. (2010). Direct electrochemical determination of glyphosate at copper phthalocyanine/multiwalled carbon nanotube film electrodes. Electroanalysis, 22(14), 1586-1591. |
dc.relation.references | Moreno-Piza, O. J., & Suarez-Herrera, M. F. (2022). Electrochemical study of the redox processes of elemental sulfur in organic solvents using poly (3, 4-ethylene-dioxy-thiophene) modified glassy carbon electrodes as working electrodes and ionic liquids as electrolytes. Electrochimica Acta, 436, 141442. |
dc.relation.references | Muneer, M., & Boxall, C. (2008). Photocatalyzed degradation of a pesticide derivative glyphosate in aqueous suspensions of titanium dioxide. International Journal of Photoenergy, 2008. |
dc.relation.references | National Health and Medical Research Council (NHMRC); (2011). Australian drinking water guidelines 6, Commonwealth of Australia; Canberra, Australia. |
dc.relation.references | Nedelkoska, T. V., & Low, G. C. (2004). High-performance liquid chromatographic determination of glyphosate in water and plant material after pre-column derivatisation with 9-fluorenylmethyl chloroformate. Analytica Chimica Acta, 511(1), 145-153. |
dc.relation.references | Okada, E., Coggan, T., Anumol, T., Clarke, B., & Allinson, G. (2019). A simple and rapid direct injection method for the determination of glyphosate and AMPA in environmental water samples. Analytical and bioanalytical chemistry, 411, 715-724. |
dc.relation.references | Oliveira, G. C., Moccelini, S. K., Castilho, M., Terezo, A. J., Possavatz, J., Magalhães, M. R., & Dores, E. F. (2012). Biosensor based on atemoya peroxidase immobilised on modified nanoclay for glyphosate biomonitoring. Talanta, 98, 130-136 |
dc.relation.references | Oliveira, P. C., Maximiano, E. M., Oliveira, P. A., Camargo, J. S., Fiorucci, A. R., & Arruda, G. J. (2018). Direct electrochemical detection of glyphosate at carbon paste electrode and its determination in samples of milk, orange juice, and agricultural formulation. Journal of Environmental Science and Health, Part B, 53(12), 817-823. |
dc.relation.references | O'Mahony, A. M., Compton, R. G. (2011). "The use of single pulse chronopotentiometry to explore electrode kinetics: A review." Electrochimica Acta, 56(25), 9194-9207. M., Compton, R. G. (2011). "The use of single pulse chronopotentiometry to explore electrode kinetics: A review." Electrochimica Acta, 56(25), 9194-9207 |
dc.relation.references | Ott, R. L., & Longnecker, M. T. (2015). An introduction to statistical methods and data analysis. Cengage Learning. |
dc.relation.references | Padilla Alonso, D. J. (2014). Estudio de líquidos iónicos como solventes de extracción en el análisis de glifosato en agua. |
dc.relation.references | Parry, E. P., & Osteryoung, R. A. (1965). Evaluation of analytical pulse polarography. Analytical Chemistry, 37(13), 1634-1637. |
dc.relation.references | Pelzer, J., Scholz, F., Henrion, G., & Nitschke, L. (1989). Optimization of parameters for differential pulse voltammetry at the hanging mercury drop electrode. Electroanalysis, 1(5), 437-440. |
dc.relation.references | Pourbaix, M. (1966). Atlas of electrochemical equilibria in aqueous solutions. NACE. |
dc.relation.references | Poverenov, E., Li, M., Bitler, A., & Bendikov, M. (2010). Major effect of electropolymerization solvent on morphology and electrochromic properties of PEDOT films. Chemistry of Materials, 22(13), 4019-4025. |
dc.relation.references | Reddy, K. J., Wang, L., & Gloss, S. P. (1995). Solubility and mobility of copper, zinc and lead in acidic environments. Plant and Soil, 171, 53-58. |
dc.relation.references | Regiart, M., Kumar, A., Gonçalves, J. M., Silva Junior, G. J., Masini, J. C., Angnes, L., & Bertotti, M. (2020). An electrochemically synthesized nanoporous copper microsensor for highly sensitive and selective determination of glyphosate. ChemElectroChem, 7(7), 1558-1566. |
dc.relation.references | Ren, M., Zhou, H., & Zhai, H. J. (2021). Obvious enhancement in electrochemical capacitive properties for poly (3, 4-ethylenedioxythiophene) electrodes prepared under optimized conditions. Journal of Materials Science: Materials in Electronics, 32, 10078-10088. |
dc.relation.references | Rice, R. J., Pontikos, N. M., & McCreery, R. L. (1990). AME" CHEMICAL SOCIETY. J. Am. Chem. SOC, 112(12). 0002-7863/90/1512-4617$02.50/0 |
dc.relation.references | Rieger, P. H. (1994). Electrochemistry (2nd ed.). Chapman & Hall. |
dc.relation.references | Riveros, G., León, M., & Ramírez, D. (2016). Effect of chloride ions on the structural, optical, morphological, and electrochemical properties of Cu2O films electrodeposited on Fluorine-doped tin Oxide substrate from a DMSO solution. Journal of the Chilean Chemical Society, 61(4), 3219-3223. |
dc.relation.references | Rodríguez Jaume, M. J., & Mora Catalá, R. (2001). Estadística informática: casos y ejemplos con el SPSS. Publicaciones de la Universidad de Alicante. |
dc.relation.references | Rojano Delgado, A. M. (2012). Plataformas analíticas en metabolómica y su aplicación para el estudio de la resistencia-sensibilidad a herbicidas. |
dc.relation.references | Sandoval, A. P., Feliu, J. M., Torresi, R. M., & Suárez-Herrera, M. F. (2014). Electrochemical properties of poly (3, 4-ethylenedioxythiophene) grown on Pt (111) in imidazolium ionic liquids. Rsc Advances, 4(7), 3383-3391. |
dc.relation.references | Sanz de Paz, D. (2015). Comportamiento electroquímico del ion Ag (I) sobre electrodo de Pt en Cloruro de 1-Butil-3 Metil-Imidazolio (BMIMCl) entre 343-363 K. |
dc.relation.references | Scharifker, B., & Hills, G. (1983). Theoretical and experimental studies of multiple nucleation. Electrochimica acta, 28(7), 879-889. |
dc.relation.references | Scholz, F. (2015). Voltammetric techniques of analysis: the essentials. ChemTexts, 1(4), 17. |
dc.relation.references | Shrivastava, S., Kumar, A., Verma, N., Chen, B. Y., & Chang, C. T. (2021). Voltammetric detection of aqueous glyphosate on a copper and poly (pyrrole)‐electromodified activated carbon fiber. Electroanalysis, 33(4), 916-924. |
dc.relation.references | Sierra, E. V., Méndez, M. A., Sarria, V. M., & Cortés, M. T. (2008). Electrooxidación de glifosato sobre electrodos de níquel y cobre. Química Nova, 31, 220-226. |
dc.relation.references | Simoes, F. R., Mattoso, L. H. C., & Vaz, C. M. P. (2006). Conducting polymers as sensor materials for the electrochemical detection of pesticides. Sensor Letters, 4(3), 319-324. |
dc.relation.references | Singh, S., Kumar, V., Gill, J. P., Datta, S., Singh, S., Dhaka, V., Kapoor, D., Wani, A. B., Dhanjal, D. S., Kumar, M., Harikumar, S. L., & Singh, J. (2020). Herbicide glyphosate: Toxicity and microbial degradation. International Journal of Environmental Research and Public Health, 17(20), 7519. |
dc.relation.references | Sivakumar, C., & Berchmans, S. (2018). Methanol electro-oxidation by nanostructured Pt/Cu bimetallic on poly 3, 4 ethylenedioxythiophene (PEDOT). Electrochimica Acta, 282, 163-170. |
dc.relation.references | Songa, E. A., Arotiba, O. A., Owino, J. H., Jahed, N., Baker, P. G., & Iwuoha, E. I. (2009 - I). Electrochemical detection of glyphosate herbicide using horseradish peroxidase immobilized on sulfonated polymer matrix. Bioelectrochemistry, 75(2), 117-123. |
dc.relation.references | Songa, E. A., Somerset, V. S., Waryo, T., Baker, P. G., & Iwuoha, E. I. (2009 - II). Amperometric nanobiosensor for quantitative determination of glyphosate and glufosinate residues in corn samples. Pure and Applied Chemistry, 81(1), 123-139. |
dc.relation.references | Štulík, K., Pacáková, V., Le, K., & Hennisen, B. (1988). Amperometric flow detection with a copper working electrode—response mechanism and application to various compounds. Talanta, 35(6), 455-460. |
dc.relation.references | Suárez Herrera, M. F. (2011). Electroquímica física e interfacial: una aproximación teórica. Universidad Nacional de Colombia. Facultad de Ciencias. |
dc.relation.references | Subramaniam, V., & Hoggard, P. E. (1988). Metal complexes of glyphosate. Journal of agricultural and food chemistry, 36(6), 1326-1329. |
dc.relation.references | Teague, M., Li, S., & Cong, H. (2018). Interfacial Corrosion of Copper and the Formation of Copper Hydroxychloride. |
dc.relation.references | Teófilo, R. F., Reis, E. L., Reis, C., Silva, G. A. D., & Kubota, L. T. (2004). Experimental design employed to square wave voltammetry response optimization for the glyphosate determination. Journal of the Brazilian Chemical Society, 15, 865-871. |
dc.relation.references | Toss, V., Leito, I., Yurchenko, S., Freiberg, R., & Kruve, A. (2017). Determination of glyphosate in surface water with high organic matter content. Environmental Science and Pollution Research, 24, 7880-7888. |
dc.relation.references | Tsui, T. K. (2002). Aquatic toxicity and environmental fate of glyphosate-based herbicides (Doctoral dissertation, Chinese University of Hong Kong). |
dc.relation.references | Tu, M., Hurd, C., & Randall, J. M. (2001). Weed control methods handbook: tools & techniques for use in natural areas. |
dc.relation.references | United Nations Office on Drugs, Crime. Laboratory, & Scientific Section. (2009). Guidance for the Validation of Analytical Methodology and Calibration of Equipment Used for Testing of Illicit Drugs in Seized Materials and Biological Specimens: A Commitment to Quality and Continuous Improvement. United Nations Publications. |
dc.relation.references | United States Environmental Protection Agency (US EPA); (2009). EPA 816-F-09-004, National Primary Drinking Water Regulation; Washington D.C., United States of America. |
dc.relation.references | Valle, A. L., Mello, F. C. C., Alves-Balvedi, R. P., Rodrigues, L. P., & Goulart, L. R. (2019). Glyphosate detection: methods, needs and challenges. Environmental chemistry letters, 17, 291-317. |
dc.relation.references | Van der Linden, W. E., & Dieker, J. W. (1980). Glassy carbon as electrode material in electro- analytical chemistry. Analytica Chimica Acta, 119(1), 1–24. doi:10.1016/s0003-2670(00)00025-8 |
dc.relation.references | Varona, M., Henao, G. L., Díaz, S., Lancheros, A., Murcia, Á., Rodríguez, N., & Álvarez, V. H. (2009). Evaluación de los efectos del glifosato y otros plaguicidas en la salud humana en zonas objeto del programa de erradicación de cultivos ilícitos. Biomédica, 29(3), 456-475. |
dc.relation.references | Vashist, S. K., & Luong, J. H. (2018). Bioanalytical requirements and regulatory guidelines for immunoassays. In Handbook of immunoassay technologies (pp. 81-95). Academic Press |
dc.relation.references | Vidal, E., Negro, A., Cassano, A., & Zalazar, C. (2015). Simplified reaction kinetics, models and experiments for glyphosate degradation in water by the UV/H2O2 process. Photochemical & Photobiological Sciences, 14(2), 366-377. |
dc.relation.references | Wang, J. (2006). Analytical Electrochemistry (3rd ed.). John Wiley & Sons. |
dc.relation.references | Walters, F. H. (1991). Sequential simplex optimization: a technique for improving quality and productivity in research, development, and manufacturing. |
dc.relation.references | Wang, S., Liu, B., Yuan, D., & Ma, J. (2016). A simple method for the determination of glyphosate and aminomethylphosphonic acid in seawater matrix with high performance liquid chromatography and fluorescence detection. Talanta, 161, 700-706. |
dc.relation.references | Wang, S., Yao, Y., Zhao, J., Han, X., Chai, C., & Dai, P. (2022). A novel electrochemical sensor for glyphosate detection based on Ti 3 C 2 T x/Cu-BTC nanocomposite. RSC advances, 12(9), 5164-5172. |
dc.relation.references | Winfield, T. W., Bashe, W. J., & Baker, T. V. (1990). Method 547 Determination of Glyphosate in Drinking Water by Direct-Aqueous-Injection Hplc, Post-Column Derivatization, and Fluorescence Detection. Technol. Appl, 1, 1-16. |
dc.relation.references | Xia, Y. M., Zhang, W., Li, M. Y., Xia, M., Zou, L. J., & Gao, W. W. (2019). Effective electrochemical determination of chloramphenicol and florfenicol based on graphene/copper phthalocyanine nanocomposites modified glassy carbon electrode. Journal of The Electrochemical Society, 166(8), B654. |
dc.relation.references | Zainudin, B. H., Salleh, S., Mohamed, R., Yap, K. C., & Muhamad, H. (2015). Development, validation and determination of multiclass pesticide residues in cocoa beans using gas chromatography and liquid chromatography tandem mass spectrometry. Food chemistry, 172, 585-595. |
dc.relation.references | Zambrano-Intriago, L. A., Amorim, C. G., Rodríguez-Díaz, J. M., Araújo, A. N., & Montenegro, M. C. (2021). Challenges in the design of electrochemical sensor for glyphosate-based on new materials and biological recognition. Science of the Total Environment, 793, 148496. |
dc.relation.references | Zhang, C., She, Y., Li, T., Zhao, F., Jin, M., Guo, Y., ... & Wang, J. (2017). A highly selective electrochemical sensor based on molecularly imprinted polypyrrole-modified gold electrode for the determination of glyphosate in cucumber and tap water. Analytical and bioanalytical chemistry, 409, 7133-7144. |
dc.relation.references | Zhu, Y., Zhang, F., Tong, C., & Liu, W. (1999). Determination of glyphosate by ion chromatography. Journal of chromatography A, 850(1-2), 297-301. |
dc.relation.references | Zittel, H. E., & Miller, F. J. (1965). A Glassy-Carbon Electrode for Voltammetry. Analytical Chemistry, 37(2), 200–203. doi:10.1021/ac60221a006 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.lemb | Análisis electroquímico |
dc.subject.lemb | Electrochemical analysis |
dc.subject.proposal | Voltamperometría de pulso diferencial |
dc.subject.proposal | PEDOT |
dc.subject.proposal | Cobre |
dc.subject.proposal | Glifosato |
dc.subject.proposal | Differential Pulse Voltammetry |
dc.subject.proposal | PEDOT |
dc.subject.proposal | Copper |
dc.subject.proposal | Glyphosate |
dc.title.translated | Electrochemical determination of glyphosate with PEDOT/Cu-modified glassy carbon electrodes |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
oaire.awardtitle | Proyecto 53469 “Dispositivos Electroquímicos En Papel Para La Determinación De Glifosato” |
oaire.fundername | Facultad de Ciencias de la Universidad Nacional de Colombia |
dcterms.audience.professionaldevelopment | Administradores |
dcterms.audience.professionaldevelopment | Bibliotecarios |
dcterms.audience.professionaldevelopment | Estudiantes |
dcterms.audience.professionaldevelopment | Investigadores |
dcterms.audience.professionaldevelopment | Maestros |
dcterms.audience.professionaldevelopment | Medios de comunicación |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar |
dcterms.audience.professionaldevelopment | Proveedores de ayuda financiera para estudiantes |
dcterms.audience.professionaldevelopment | Público general |
dc.subject.wikidata | herbicida |
dc.subject.wikidata | herbicide |