dc.rights.license | Reconocimiento 4.0 Internacional |
dc.contributor.advisor | Mora Huertas, Claudia Elizabeth |
dc.contributor.author | Quevedo Salazar, Valentina |
dc.date.accessioned | 2025-04-25T13:17:24Z |
dc.date.available | 2025-04-25T13:17:24Z |
dc.date.issued | 2024 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88119 |
dc.description | ilustraciones, diagramas |
dc.description.abstract | La actividad de agua ha sido ampliamente utilizada en las industrias farmacéutica y cosmética para disminuir el riesgo de contaminación microbiológica de sus productos; sin embargo, son pocas sus aplicaciones en el control de la degradación química de los ingredientes activos. Como una contribución en este sentido, la presente investigación explora el uso de diferentes categorías funcionales de excipientes como estrategias para disminuir la degradación oxidativa del ácido ascórbico, una vitamina valorada por sus propiedades antioxidantes. Con este propósito, soluciones acuosas de sales (NaCl y CaCl 2), viscosantes (hipromelosa y goma xantana), edulcorantes (sacarosa y sorbitol) y cosolventes (glicerina y polietilenglicol 200) son caracterizadas respecto a su comportamiento de actividad de agua. NaCl, sorbitol y glicerina son los excipientes que permiten cambios importantes de la actividad de agua en función de su concentración y por ello son investigados como alternativas para favorecer la estabilidad del ácido ascórbico. Como resultado, es claro que NaCl y glicerina presentan desempeños prometedores que pueden ser de interés para el desarrollo racional de medicamentos y cosméticos. (Texto tomado de la fuente). |
dc.description.abstract | Water activity has been widely used in the pharmaceutical and cosmetic industries to reduce the risk of microbial contamination of their products; nonetheless, applications for controlling the chemical degradation of active molecules are scarce. As a contribution to this respect, this research work investigates how excipients with different functionalities could reduce the oxidative degradation of ascorbic acid, a vitamin valued because of its antioxidant properties. To this end, aqueous solutions of salts (NaCl and CaCl 2 ), viscosity-increasing agents (hypromellose and xanthan gum), sweetening agents (sucrose and sorbitol), and solvents (glycerol and polyethylene glycol 200) are characterized regarding their water activity behaviors. NaCl, sorbitol, and glycerol allow drastic changes in water activity as a function of their concentration. Therefore, they are investigated as alternatives to favor the stability of the ascorbic acid. NaCl and glycerol show promising performances that can greatly interest the rational development of drug products and cosmetics. |
dc.format.extent | xiv, 74 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ |
dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica |
dc.title | Investigación de estrategias basadas en la actividad de agua para la estabilización de ácido ascórbico en solución acuosa |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias Farmacéuticas |
dc.contributor.researchgroup | Desarrollo y Calidad de Productos Farmacéuticos y Cosméticos |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magíster en Ciencias Farmacéuticas |
dc.description.researcharea | Farmacotecnia |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ciencias |
dc.publisher.place | Bogotá, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.indexed | Bireme |
dc.relation.references | Ahmad, I., Ali Sheraz, M., Ahmed, S., Shad, Z., Vaid, F.H.M., 2012. Photostabilization of ascorbic acid with citric acid, tartaric acid and boric acid in cream formulations. Int J Cosmet Sci 34, 240–245. https://doi.org/10.1111/j.1468-2494.2012.00708.x |
dc.relation.references | Ahmad, I., Sheraz, M.A., Ahmed, S., Bano, R., Vaid, F.H.M., 2012. Photochemical interaction of ascorbic acid with riboflavin, nicotinamide and alpha-tocopherol in cream formulations. Int J Cosmet Sci 34, 123–131. https://doi.org/10.1111/j.1468-2494.2011.00690.x |
dc.relation.references | Ahmad, I., Sheraz, M.A., Ahmed, S., Shaikh, R.H., Vaid, F.H.M., Khattak, S.R., Ansari, S.A.,
2011. Photostability and interaction of ascorbic acid in cream formulations. AAPS
PharmSciTech 12, 917–923. https://doi.org/10.1208/s12249-011-9659-1 |
dc.relation.references | Ali, M., Khan, F., Ahmed, S., Hafeez, S., Ahmad, I., 2015. Stability and stabilization of ascorbic acid. H&PC Today - Household and Personal Care Today 10, 22–25. |
dc.relation.references | Bandelin, F.J., Tuschhoff, J.V., 1954. The stability of ascorbic acid in various liquid media. J Am Pharm Assoc 44, 241–244. https://doi.org/https://doi.org/10.1002/jps.3030440419 |
dc.relation.references | Cortés, G., Prieto, G., Rozo, W., 2015. Caracterización bromatológica y fisicoquímica de la
uchuva (Physalis peruviana L.) y su posible aplicación como alimento nutracéutico. Revista Ciencia en Desarrollo 6, 87-97. ISSN: 0121-7488. |
dc.relation.references | Moura, T., Gaudy, D., Jacob, M., Cassanas, G., 1994. pH influence on the stability of ascorbic acid spray-drying solutions. Pharm Acta Helv 69, 77–80. https://doi.org/10.1016/0031-6865(94)90004-3 |
dc.relation.references | Oey, I., Verlinde, P., Hendrickx, M., Van Loey, A., 2006. Temperature and pressure stability of Lascorbic acid and/or [6s] 5-methyltetrahydrofolic acid: A kinetic study. European Food Research and Technology 5 223, 71–77. https://doi.org/https://doi.org/10.1007/s00217-005-0123-x |
dc.relation.references | Oyetade, O., Oyeleke, G., Adegoke, B., Akintunde, A., 2012. Stability studies on ascorbic acid (Vitamin C) from different sources. IOSR Journal of Applied Chemistry (IOSR-JAC) 2, 20-24. ISSN: 2278-5736. |
dc.relation.references | Programa Safe+ Organización de las naciones unidas para el desarrollo industrial (ONUDI),Instituto nacional de vigilancia de medicamentos y alimentos (INVIMA), 2018.
Recomendaciones para el desarrollo de estudios de estabilidad de productos cosméticos.
ISBN: 978-958-59851-3-1. |
dc.relation.references | Rojas, A.M., Gerschenson, L.N., 1996. Ascorbic acid destruction in sweet aqueous model
systems. Lebensm.-Wiss. u.-Technol., 30, 567–572. https://doi.org/10.1006/fstl.1996.0225 |
dc.relation.references | Secretaría General de la Comunidad Andina, 2012. Resolución 1482: Modificación de la
resolución 1418 - Límites de contenido microbiológico de productos cosméticos. |
dc.relation.references | Sheraz, M.A., Khan, M.F., Ahmed, S., Kazi, S.H., Khattak, S.R., Ahmad, I., 2014. Factors
affecting formulation characteristics and stability of ascorbic acid in water-in-oil creams. Int J Cosmet Sci 36, 494–504. https://doi.org/10.1111/ics.12152 |
dc.relation.references | Tapia, S., 2020. Contribución al concepto de Actividad del Agua (aw) y su aplicación en la ciencia y tecnología de alimentos en lationamerica y Venezuela. Boletín de la Academia de
Ciencias Físicas, Matemáticas y Naturales 80, 18–40. |
dc.relation.references | United States Pharmacopeial Convention, 2024. USP-NF ⟨1112⟩ Determinación de actividad de agua en productos farmacéuticos no estériles PF 30 (5).
https://doi.org/10.31003/USPNF_M402_01_02 |
dc.relation.references | Van Gestel, C., Van Belleghem, F., Van den Brink, N., Hamers, T., Droge, S.T.J., Hermens,
J.L.M., Kraak, M.H.S., Löhr, A.J., Parsons, J.R., Ragas, A.M.J., Van Straalen, N.M., Vijver,
M.G., 2022. Enviromental Toxicology , 1st ed. LibreText, Netherlands.
https://chem.libretexts.org/@go/page/294534.(Consultado el 17 de octubre de 2024). |
dc.relation.references | Ahlneck, C., Zografi, G., 1990. The molecular basis of moisture effects on the physical and
chemical stability of drugs in the solid state. Int J Pharm 62, 87–95.
https://doi.org/10.1016/0378-5173(90)90221-O |
dc.relation.references | Atkins, P., Jones, L., Laverman, L., 2016. J Acids and bases. (Eds.), Chemical principles the
quest for insight., W. H. Freeman and Company., New York., F72–F76., ISBN-13: 978-1-
4641-8395-9 |
dc.relation.references | Bell, L.N., Hageman, M.J., 1994. Differentiating between the effects of water activity and glass transition dependent mobility on a solid State chemical reaction: aspartame degradation. J Agric Food Chem 42, 2398–2401. https://doi.org/10.1021/jf00047a007 |
dc.relation.references | Chen, C.S., 1989. Water activity: concentration models for solutions of sugars, salts and acids. J Food Sci 54, 1318–1321. https://doi.org/10.1111/j.1365-2621.1989.tb05982.x |
dc.relation.references | Connors, K., Amido, G., Stella, V., 1986. Chemical stability of pharmaceuticals a handbook for pharmacist, 2nd ed. A Wiley-Intersciene Publication Jhon Wiley & Songs, Nueva York. |
dc.relation.references | Fennema, O.R., 2000. Química de los alimentos , 2nd ed. Editorial Acribia, S.A.; 1er edición |
dc.relation.references | Florey, K., 1982. Analytical Profiles of Drug Substances. Academic Press, New York. |
dc.relation.references | Kerdudo, A., Fontaine-Vive, F., Dingas, A., Faure, C., Fernandez, X., 2015. Optimization of cosmetic preservation: water activity reduction. Int J Cosmet Sci 37, 31–40. https://doi.org/10.1111/ics.12164 |
dc.relation.references | Lai, M.C., Hageman, M.J., Schowen, R.L., Borchardt, R.T., Topp, E.M., 1999. 1. Effect of water on peptide deamidation in poly(vinyl alcohol) and poly(vinyl pyrrolidone) matrixes. (Eds.), Chemical stability of peptides in polymers. J Pharm Sci 88, 1073–1080.
https://doi.org/10.1021/js980227g |
dc.relation.references | Lai, M.C., Topp, E.M., 1999. Solid-state chemical stability of proteins and peptides. J Pharm Sci 88, 489–500. https://doi.org/10.1021/js980374e |
dc.relation.references | Lally, M., 2022. Introduction to USP <922>: General Chapter for Water Activity Measurement. (Eds.), Water activity testing provides critical quality data for pharmaceutical products. Lighthouse The Science of Pharmaceutical Manufacturing, 2-7 |
dc.relation.references | Mathlouthi, M., 2001. Water content, water activity, water structure and the stability of foodstuffs. Food Control 12, 409–417. https://doi.org/10.1016/S0956-7135(01)00032-9 |
dc.relation.references | Murillo, A., Avilés, M., 2005. Estudio analítico de un principio activo farmacéutico en un proceso industrial. Escola Universitaria de Ingeinyeria, Barcelona, 19-24. |
dc.relation.references | Onuki, Y., Higashi, K., Moribe, K., Yamamoto, K., 2009. Improved chemical stability of ascorbic acid and thiamine nitrate in L-HPC granules. Advanced Powder Technology 20, 576–581.
https://doi.org/10.1016/j.apt.2009.09.003 |
dc.relation.references | Programa Safe+ Organización de las Naciones Unidas para el Desarrollo Industrial (ONUDI), Instituto Nacional de Vigilancia de Medicamentos y Alimentos (INVIMA), 2018. Recomendaciones para el desarrollo de estudios de estabilidad de productos cosméticos.
ISBN: 978-958-59851-3-1. |
dc.relation.references | Roa, V., Tapia, M.S., 2006. Estimating water activity in systems containing multiple solutes based on solute properties. J Food Sci 63, 559–563. https://doi.org/10.1111/j.1365-2621.1998.tb15785.x |
dc.relation.references | Rojas, A.M., 1995. Destrucción de vitamina C en sistemas modelo de actividad acuosa reducida. Universidad de Buenos Aires, Buenos Aires. https://doi.org/http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_2771_Rojas.pdf. (consultado el 17 de octubre de 2024). |
dc.relation.references | Rowe, R.C., Sheskey, P.J., Quinn, M.E., 2009. Handbook of Pharmaceutical Excipients. Pharmaceutical Press, Washington . ISBN 978 1 58212 135 2 |
dc.relation.references | Samapundo, S., Anthierens, T., Xhaferi, R., Devlieghere, F., 2010. Development of a validated model to describe the individual and combined water activity depressing effects of water soluble salt, sugar and fat replacers. J Food Eng 96, 433–439.
https://doi.org/10.1016/j.jfoodeng.2009.08.022 |
dc.relation.references | Serra, H.M., Cafaro, T.A., 2007. Ácido ascórbico: desde la química hasta su crucial función protectiva en ojo. Acta Bioquímica Clínica Latinoamericana 41, 525-32. ISSN: 0325-2957. |
dc.relation.references | Slade, L., Levine, H., Reid, D.S., 1991. Beyond water activity: Recent advances based on an alternative approach to the assessment of food quality and safety. Crit Rev Food Sci Nutr 30, 115–360. https://doi.org/10.1080/10408399109527543 |
dc.relation.references | Taube, H., 1965. Mechanisms of oxidation with oxygen. J Gen Physiol 49, 29–50. https://doi.org/10.1085/jgp.49.1.29 |
dc.relation.references | United States Pharmacopeial Convention, 2024. 1191 Consideraciones sobre estabilidad en la práctica de dispensación. https://doi.org/https://doi.org/10.31003/USPNF_M99910_03_02 |
dc.relation.references | Valko, M., Izakovic, M., Mazur, M., Rhodes, C.J., Telser, J., 2004. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266, 37–56.
https://doi.org/10.1023/B:MCBI.0000049134.69131.89 |
dc.relation.references | Van Gestel, C., Van Belleghem, F., Van den Brink, N., Hamers, T., Droge, S.T.J., Hermens, J.L.M., Kraak, M.H.S., Löhr, A.J., Parsons, J.R., Ragas, A.M.J., Van Straalen, N.M., Vijver, M.G., 2022. Enviromental Toxicology , 1st ed. LibreText, Netherlands.
https://chem.libretexts.org/@go/page/294534.(Consultado el 17 de octubre de 2024). |
dc.relation.references | Almásy, L., Artykulnyi, O.P., Petrenko, V.I., Ivankov, O.I., Bulavin, L.A., Yan, M., Haramus, V.M., 2022. Structure and intermolecular interactions in aqueous solutions of polyethylene glycol.
Molecules 27, 2573. https://doi.org/10.3390/molecules27082573 |
dc.relation.references | Banipal, P.K., Banipal, T.S., Lark, B.S., Ahluwalia, J.C., 1997. Partial molar heat capacities and volumes of some mono-, di- and tri-saccharides in water at 298.15, 308.15 and 318.15 K. Journal of the Chemical Society, Faraday Transactions 93, 81–87.
https://doi.org/10.1039/a604656h |
dc.relation.references | Barbosa-Cánovas, G. V., Fontana Jr, A.J., Schmidt, S.J., Labuza, T.P., 2020. Water Activity in Foods. Wiley. https://doi.org/10.1002/9781118765982 |
dc.relation.references | Bensouissi, A., Roge, B., Mathlouthi, M., 2010. Effect of conformation and water interactions of sucrose, maltitol, mannitol and xylitol on their metastable zone width and ease of nucleation. Food Chem 122, 443–446. https://doi.org/10.1016/j.foodchem.2009.03.075 |
dc.relation.references | Billmeyer, F.W., 2020. Ciencia de los Polímeros. Editorial Reverté, Segunda edición, 16. ISBN 978-84-291-9162-2 |
dc.relation.references | Brunchi, C.E., Bercea, M., Morariu, S., Avadanei, M., 2016. Investigations on the interactions between xanthan gum and poly(vinyl alcohol) in solid state and aqueous solutions. Eur Polym J 84, 161–172. https://doi.org/10.1016/j.eurpolymj.2016.09.006 |
dc.relation.references | Cazier, J.-B., Gekas, V., 2001. Water activity and its prediction: A review. Int J Food Prop 4, 35–43. https://doi.org/10.1081/JFP-100002187 |
dc.relation.references | Degrève, L., da Silva, F.L.B., 1999. Structure of concentrated aqueous NaCl solution: A Monte Carlo study. J Chem Phys 110, 3070–3078. https://doi.org/10.1063/1.477903 |
dc.relation.references | Egorov, A. V., Lyubartsev, A.P., Laaksonen, A., 2011. Molecular dynamics simulation study of glycerol–water liquid mixtures. J Phys Chem B 115, 14572–14581. https://doi.org/10.1021/jp208758r |
dc.relation.references | Engelsen, S.B., Pérez, S., 1996. The hydratation of sucrose. Carbohydr Res 292, 21–38. https://doi.org/10.1016/S0008-6215(96)91019-8 |
dc.relation.references | Galema, S.A., Hoeiland, H., 1991. Stereochemical aspects of hydration of carbohydrates in aqueous solutions. 3. Density and ultrasound measurements. J Phys Chem 95, 5321–5326. https://doi.org/10.1021/j100166a073 |
dc.relation.references | Gekas, V., Gonzalez, C., Sereno, A., Chiralt, A., Fito, P., 1998. Mass transfer properties of osmotic solutions. I. Water activity and osmotic pressure. Int J Food Prop 1, 95–112.
https://doi.org/10.1080/10942919809524570 |
dc.relation.references | Gillespie, R.J., 1990. Chemestry. Editorial Reverté, 579-613. ISBN 9788429171884 |
dc.relation.references | Grigera, J.R., 1988. Conformation of polyols in water. Molecular-dynamics simulation of mannitol and sorbitol. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 84, 2603. https://doi.org/10.1039/f19888402603 |
dc.relation.references | Ji, P., Feng, W., Tan, T., Zheng, D., 2007. Modeling of water activity, oxygen solubility and density of sugar and sugar alcohol solutions. Food Chem 104, 551–558.
https://doi.org/10.1016/j.foodchem.2006.12.004 |
dc.relation.references | Karim, O.A., McCommon, J.A., 1986. Dynamics of a sodium chloride Ion pair in water. American Chemical Society 108, 1762–1766. |
dc.relation.references | Katzbauer, B., 1998. Properties and applications of xanthan gum. Polym Degrad Stab 59, 81–84. https://doi.org/10.1016/S0141-3910(97)00180-8 |
dc.relation.references | Maneffa, A.J., Stenner, R., Matharu, A.S., Clark, J.H., Matubayasi, N., Shimizu, S., 2017. Water activity in liquid food systems: A molecular scale interpretation. Food Chem 237, 1133–1138. https://doi.org/10.1016/j.foodchem.2017.06.046 |
dc.relation.references | Marcus, Y., 2009. Effect of ions on the structure of water: structure making and breaking. Chem Rev 109, 1346–1370. https://doi.org/10.1021/cr8003828 |
dc.relation.references | Mathlouthi, M., Hutteau, F., Angiboust, J.F., 1996. Physicochemical properties and vibrational spectra of small carbohydrates in aqueous solution and the role of water in their sweet taste. Food Chem 56, 215–221. https://doi.org/10.1016/0308-8146(96)00017-9 |
dc.relation.references | Megyes, T., Bakó, I., Bálint, S., Grósz, T., Radnai, T., 2006. Ion pairing in aqueous calcium chloride solution: Molecular dynamics simulation and diffraction studies. J Mol Liq 129, 63–74. https://doi.org/10.1016/j.molliq.2006.08.013 |
dc.relation.references | Petersen, C.P., Gordon, M.S., 1999. Solvation of Sodium Chloride: An effective fragment study of NaCl(H2O)n. J Phys Chem A 103, 4162–4166. https://doi.org/10.1021/jp984806l |
dc.relation.references | Prausnitz, J.M., Lichtenthaler, R.N., Gomes de Azevedo, E., 2000. Termodinámica molecular de los equilibrios de fases, Tercera edición. ed. Prentice Hall, Madrid. |
dc.relation.references | Probst, M.M., Radnai, T., Heinzinger, K., Bopp, P., Rode, B.M., 1985. Molecular dynamics and x-ray investigation of an aqueous calcium chloride solution. J Phys Chem 89, 753–759.
https://doi.org/10.1021/j100251a007 |
dc.relation.references | Shafiur, R., 1995. Food Propierties Handbook. CRC Press LCC. |
dc.relation.references | Shimizu, S., 2013. Sucrose–water mixture: From thermodynamics to solution structure. Chem Phys Lett 582, 129–133. https://doi.org/10.1016/j.cplett.2013.07.009 |
dc.relation.references | Tirosh, O., Barenholz, Y., Katzhendler, J., Priev, A., 1998. Hydration of polyethylene glycolgrafted liposomes. Biophys J 74, 1371–1379. https://doi.org/10.1016/S0006-3495(98)77849-X |
dc.relation.references | Todorova, T., Hünenberger, P.H., Hutter, J., 2008. Car-parrinello molecular dynamics simulations of CaCl2 aqueous solutions. J Chem Theory Comput 4, 779–789. https://doi.org/10.1021/ct700302m |
dc.relation.references | Towey, J.J., Dougan, L., 2012. Structural examination of the impact of glycerol on water structure. Journal of Physical Chemistry B 116, 1633–1641.https://doi.org/10.1021/jp2093862 |
dc.relation.references | Van Krevelen, D.W., Te Nijenhuis, K., 2009. Properties of polymers; their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, Cuarta edición. ed. Elsevier. |
dc.relation.references | Li, Y., Buckin, V., 2019. State of oxygen molecules in aqueous supersaturated solutions. J Phys Chem B 123, 4025–4043. https://doi.org/10.1021/acs.jpcb.9b01057 |
dc.relation.references | Rojas, A.M., Gerschenson, L.N., 1996. Ascorbic acid destruction in sweet aqueous model systems. Buenos Aires. |
dc.relation.references | Sato, T., Hamada, Y., Sumikawa, M., Araki, S., Yamamoto, H., 2014. Solubility of oxygen in organic solvents and calculation of the Hansen solubility parameters of oxygen. Ind Eng Chem Res 53, 19331–19337. https://doi.org/10.1021/ie502386t |
dc.relation.references | Van Krevelen, D.W., Te Nijenhuis, K., 2009. Properties of polymers; their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, Cuarta edición. ed. Elsevier. |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.decs | Ácido Ascórbico/farmacología |
dc.subject.decs | Ascorbic Acid/pharmacology |
dc.subject.decs | Excipientes |
dc.subject.decs | Excipients |
dc.subject.proposal | Actividad de agua (aw) |
dc.subject.proposal | Excipientes |
dc.subject.proposal | Ácido ascórbico |
dc.subject.proposal | Oxidación |
dc.subject.proposal | Estabilidad química |
dc.subject.proposal | Water activity |
dc.subject.proposal | Excipients |
dc.subject.proposal | Ascorbic acid |
dc.subject.proposal | Oxidation |
dc.subject.proposal | Chemical stability |
dc.title.translated | Research on water activity-based strategies for the stabilization of ascorbic acid in aqueous solution |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Estudiantes |
dcterms.audience.professionaldevelopment | Investigadores |
dcterms.audience.professionaldevelopment | Maestros |
dc.subject.wikidata | disolución acuosa |
dc.subject.wikidata | aqueous solution |