Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGiraldo Gomez, Norman Diego
dc.contributor.authorMoreno Cossio, Camilo
dc.date.accessioned2025-04-28T15:42:38Z
dc.date.available2025-04-28T15:42:38Z
dc.date.issued2024-12
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88127
dc.descriptionIlustraciones, gráficos
dc.description.abstractEn los sistemas eléctricos de potencia, las perturbaciones ocasionadas por fallas pueden comprometer la estabilidad y eficiencia del suministro de energía. Estas perturbaciones generan variaciones abruptas en las variables eléctricas, las cuales deben ser detectadas con el fin de poder determinar la causa y la magnitud del impacto en el sistema, permitiendo identificar áreas donde se requiera realizar propuestas de expansión que garanticen la estabilidad ante este tipo de eventos. En este contexto, la detección de cambios estructurales en series temporales de estas variables es una herramienta esencial para identificar eventos que puedan poner en riesgo la integridad del sistema eléctrico. En la actualidad existen distintas metodologías que logran realizar la detección de estos eventos, pero se requiere contar con una alta tasa de muestreo de las variables y datos de cada una de las fases de los elementos del sistema. El enfoque de este estudio es la aplicación de metodologías a datos recolectados con una periodicidad de, al menos cada 4 segundos de acuerdo con la regulación colombiana actual y, de al menos una de las fases de cada elemento del sistema. El presente estudio explora y adapta diferentes técnicas de detección de cambios, tales como la metodología de Changepoint, Strucchange y FastCPD, para su aplicación series de tiempo de las variables eléctricas. (Tomado de la fuente)
dc.description.abstractIn power systems, disturbances caused by faults can compromise the stability and efficiency of the energy supply. These disturbances generate abrupt variations in the electrical variables, which must be detected in order to determine the cause and magnitude of the impact on the system, allowing the identification of areas where expansion proposals are required to guarantee stability in the face of this type of event. In this context, the detection of structural changes in time series of these variables is an essential tool to identify events that may put the integrity of the electrical system at risk. In the current study, there are different methodologies that can detect these events, but a high sampling rate of the variables and data of each of the phases of the system elements is required. The focus of this study is the application of methodologies to data collected at a frequency of at least every 4 seconds in accordance with current Colombian regulations and at least one of the phases of each element of the system. This study explores and adapts different change detection techniques, such as Changepoint, Strucchange and FastCPD methodology, for their application to time series of electrical variables.
dc.format.extent111 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energía
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
dc.titleDetección de eventos en variables eléctricas de sistemas eléctricos de potencia
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Estadística
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Estadística
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesAdhikari, S.; Schoene, J.; Gurung, N. & Mogilevsky, A.: , 2019; Fault induced delayed voltage recovery (fidvr): Modeling and guidelines; en 2019 IEEE Power & Energy Society General Meeting (PESGM); IEEE; págs. 1--5.
dc.relation.referencesAndrews, D. W.: , 1993; Tests for parameter instability and structural change with unknown change point; Econometrica: Journal of the Econometric Society: 821--856.
dc.relation.referencesAndrews, D. W. & Ploberger, W.: , 1994; Optimal tests when a nuisance parameter is present only under the alternative; Econometrica: Journal of the Econometric Society: 1383--1414.
dc.relation.referencesAOKI, A. R.; FERNANDES, T. S. P.; TEIXEIRA, M. D.; PAREDE, V. T.; BARRETO, N. E. M.; GRANDO, F. L.; SILVA, V. A. D.; GUERRA, F. A.; RAMOS, M. P.; ALMEIDA, R. R. D.; RODRIGUES, R.; MÜLLER JR, V. F. & SANTOS, A. K. D.: , 2023; DetecÇÃo e identificaÇÃo de operaÇÃo anÔmala em sistemas elÉtricos de grande porte baseada em mediÇÃo fasorial sincronizada e machine learning; en XIX ERIAC DÉCIMO NONO ENCONTRO REGIONAL IBERO-AMERICANO DO CIGRE; CIGRE, Brazil.
dc.relation.referencesBack, K.: , 1991; Asset pricing for general processes; Journal of Mathematical Economics; 20 (4): 371--395.
dc.relation.referencesBai, J.: , 1994; Least squares estimation of a shift in linear processes; Journal of Time Series Analysis; 15 (5): 453--472.
dc.relation.referencesBai, J.: , 1997; Estimation of a change point in multiple regression models; Review of Economics and Statistics; 79 (4): 551--563.
dc.relation.referencesBai, J. & Perron, P.: , 2003; Computation and analysis of multiple structural change models; Journal of applied econometrics; 18 (1): 1--22.
dc.relation.referencesBarndorff-Nielsen, O. E. & Shephard, N.: , 2006; Econometrics of testing for jumps in financial economics using bipower variation; Journal of financial Econometrics; 4 (1): 1--30.
dc.relation.referencesBollen, M.: , 2003; What is power quality?; Electric Power Systems Research; 66 (1): 5--14; doi:https://doi.org/10.1016/S0378-7796(03) 00067-1; URL https://www.sciencedirect.com/science/article/pii/S0378779603000671; power Quality.
dc.relation.referencesBravo, R. & Robles, S.: , 2013; 2013 fidvr events analysis on valley distribution circuits; Report by DER Laboratory at Southern California Edison.
dc.relation.referencesBravo, R.; Yinger, R.; Chassin, D.; Huang, H.; Lu, N.; Hiskens, I. & Venkataramanan, G.: , 2010; Final project report load modeling transmission research; Lawrence Berkeley National Laboratory (LBNL).
dc.relation.referencesBreiman, L.: , 2001; Random forests; Machine learning; 45 (1): 5--32.
dc.relation.referencesCaicedo, J. E.; Agudelo-Martínez, D.; Rivas-Trujillo, E. & Meyer, J.: , 2023; A systematic review of real-time detection and classification of power quality disturbances; Protection and Control of Modern Power Systems; 8 (1): 3.
dc.relation.referencesCelsia: , 2022; Historia en colombia; URL https://www.celsia.com/wp-content/uploads/2021/02/Documento-de-trabajo-sobre-el-Sistema-Interconectado-Nacional.pdf.
dc.relation.referencesChen, J.; Gupta, A. K. & Gupta, A.: , 2000; Parametric statistical change point analysis; Springer.
dc.relation.referencesCohen, J.: , 2013; Statistical power analysis for the behavioral sciences; routledge.
dc.relation.referencesCongreso de Colombia: , 1994a; Ley 142 de 1994, servicios pÚblicos domiciliarios.
dc.relation.referencesCongreso de Colombia: , 1994b; Ley 143 de 1994, por la cual se establece el régimen para la generación, interconexión, transmisión, distribución y comercialización de electricidad en el territorio nacional, se conceden unas autorizaciones y se dictan otras disposiciones en materia energética.
dc.relation.referencesCREG: , 1995; CÓdigo de redes, cÓdigo de operaciÓn; URL https://gestornormativo.creg.gov.co/PUBLICAC.NSF/Indice01/Codigos-1995-RES.025-1995.COD..REDES.-.COD.02ec-2.html?OpenDocument.
dc.relation.referencesCREG: , 1999; ResoluciÓn 80 de 1999; URL https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_creg_0080_1999.htm.
dc.relation.referencesCREG: , 2013; Historia en colombia; URL https://creg.gov.co/publicaciones/7818/historia-en-colombia/.
dc.relation.referencesCREG: , 2018; Resolución 015 de 2018; URL https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_creg_0015_2018.htm#3.
dc.relation.referencesCREG: , 2019; Resolución creg 060 de 2019.
dc.relation.referencesDaneels, A. & Salter, W.: , 1999; What is scada?
dc.relation.referencesDe Castro Korgi, R.: , 2010; El Universo LaTeX; Universidad Nacional de Colombia, Bogota DC; 2a edición; ISBN 958701060-4.
dc.relation.referencesElectrical4U: , 2024; Electrical power system: What is it? (power system basics); URL https://www.electrical4u.com/power-system/.
dc.relation.referencesEster, M.; Kriegel, H.-P.; Sander, J.; Xu, X. et al.: , 1996; A density-based algorithm for discovering clusters in large spatial databases with noise; en kdd, tomo 96; págs. 226--231.
dc.relation.referencesGhotbi-Maleki, M.; Mohammadi, R. & Javadi, H.: , 2023; Load shedding method aimed fast voltage recovery to prevent interference of fidvr with uv relays; IET Generation, Transmission & Distribution; 17 (11): 2667--2686.
dc.relation.referencesGraebner, R. W.: , 1999; Estimating power with monte carlo methods; en SUGI 24 Proceedings; Miami Beach, Florida; URL https://support.sas.com/resources/papers/proceedings/proceedings/sugi24/Posters/p236-24.pdf.
dc.relation.referencesGüting, R. H.: , 1994; An introduction to spatial database systems; the VLDB Journal; 3: 357--399.
dc.relation.referencesHawkins, D. M.: , 1977; Testing a sequence of observations for a shift in location; Journal of the American Statistical Association; 72 (357): 180--186.
dc.relation.referencesHogg, R. V.; McKean, J. W.; Craig, A. T. et al.: , 2013; Introduction to mathematical statistics; Pearson Education India.
dc.relation.referencesHorváth, L.: , 1993; The maximum likelihood method for testing changes in the parameters of normal observations; The Annals of statistics: 671--680.
dc.relation.referencesIEC: , 2021; Iec 61000-4-30:2015+amd1:2021 csv | iec webstore; URL https://webstore.iec.ch/publication/68642.
dc.relation.referencesInternational Energy Agency: , 2019; https://www.iea.org/regions/europe.
dc.relation.referencesJ JMesserly, S.: , n.d.; Magnetismo - generador eléctrico; URL https://commons.wikimedia.org/w/index.php?curid=5607023.
dc.relation.referencesKhaledian, E.; Pandey, S.; Kundu, P. & Srivastava, A. K.: , 2020; Real-time synchrophasor data anomaly detection and classification using isolation forest, kmeans, and loop; IEEE Transactions on Smart Grid; 12 (3): 2378--2388.
dc.relation.referencesKillick, R. & Eckley, I. A.: , 2014; changepoint: An r package for changepoint analysis; Journal of statistical software; 58: 1--19.
dc.relation.referencesLee, S. S. & Mykland, P. A.: , 2008; Jumps in financial markets: A new nonparametric test and jump dynamics; The Review of Financial Studies; 21 (6): 2535--2563.
dc.relation.referencesLehmann, E. L.; Romano, J. P. & Casella, G.: , 1986; Testing statistical hypotheses; tomo 3; Springer.
dc.relation.referencesLi, X. & Zhang, X.: , 2024a; fastcpd: Fast change point detection in r; doi:10.48550/arXiv.2404.05933.
dc.relation.referencesLi, X. & Zhang, X.: , 2024b; fastcpd: Fast change point detection in r; arXiv preprint arXiv:2404.05933.
dc.relation.referencesLiaw, A. & Wiener, M.: , 2002; Classification and regression by randomforest; R News; 2 (3): 18--22; URL https://CRAN.R-project.org/doc/Rnews/.
dc.relation.referencesLiu, J.; Yang, D.; Zhang, K.; Gao, H. & Li, J.: , 2023; Anomaly and change point detection for time series with concept drift; World Wide Web; 26 (5): 3229--3252.
dc.relation.referencesMcGonigle, E. T. & Cho, H.: , 2024; Package ‘cptnonpar’.
dc.relation.referencesMoreno, C.: , 2024; Repositorio detección de eventos; URL https://github.com/RanCMC/TDG_Estadistica.git; repositorio en GitHub.
dc.relation.referencesNegi, S. S.; Kishor, N.; Uhlen, K. & Negi, R.: , 2017; Event detection and its signal characterization in pmu data stream; IEEE Transactions on Industrial Informatics; 13 (6): 3108--3118.
dc.relation.referencesPage, E.: , 1955; A test for a change in a parameter occurring at an unknown point; Biometrika; 42 (3/4): 523--527.
dc.relation.referencesPage, E. S.: , 1954; Continuous inspection schemes; Biometrika; 41 (1/2): 100--115.
dc.relation.referencesQazi, S.: , 2017; Photovoltaics for disaster relief and remote areas; Standalone photovoltaic (PV) systems for disaster relief and remote areas; (1): 1--30.
dc.relation.referencesSchmidl, S.; Wenig, P. & Papenbrock, T.: , 2022; Anomaly detection in time series: a comprehensive evaluation; Proceedings of the VLDB Endowment; 15 (9): 1779--1797.
dc.relation.referencesSchneider: , 2024; Power transformers: Understanding its types, working principles & features; URL https://eshop.se.com/in/blog/post/power-transformers-understanding-its-types-working-principles-features.html?srsltid=AfmBOorJ-hRTLPkreTith9NbpBQ3Ts0CsR12sy0RP4Q6LCHs_wEpJepw.
dc.relation.referencesSingh, S. N.: , 2008; Electric power generation: transmission and distribution; PHI Learning Pvt. Ltd.
dc.relation.referencesSoner, H. M.: , 2007; Chapter 6 - stochastic representations for nonlinear parabolic pdes; North-Holland; págs. 477--526; doi:https://doi.org/10.1016/S1874-5717(07)80009-0; URL https://www.sciencedirect.com/science/article/pii/S1874571707800090.
dc.relation.referencesTeresa Martín Blas, A. S. F.: , n.d.; Magnetismo - generador eléctrico; URL https://www2.montes.upm.es/dptos/digfa/cfisica/magnet/generador.html; acceso: 16/07/2024.
dc.relation.referencesTleis, N. D.: , 2008; Power systems modelling and fault analysis: theory and practice; Newnes.
dc.relation.referencesTruong, C.; Oudre, L. & Vayatis, N.: , 2020; Selective review of offline change point detection methods; Signal Processing; 167:107299.
dc.relation.referencesUPME: , 2021a; Proyección demanda energía eléctrica y gas natural 2021-2039.
dc.relation.referencesUPME: , 2021b; Plan de expansiÓn de referencia generaciÓn - transmisiÓn 2020 – 2034; URL https://www1.upme.gov.co/siel/Pages/Planes-expansion-generacion-transmision.aspx#Default=%7B%22k%22%3A%22%22%2C%22r%22%3A%5B%7B%22n%22%3A%22PAAnioPlanExpansion%22%2C%22t%22%3A%5B%22%5C%22%C7%82%C7%8232303230%5C%22%22%5D%2C%22o%22%3A%22and%22%2C%22k%22%3Afalse% 2C%22m%22%3Anull%7D%5D%2C%22l%22%3A9226%7D.
dc.relation.referencesUPME: , 2023; Plan indicativo de expansión de la generación 2023 - 2037; URL https://www1.upme.gov.co/siel/Plan_expansin_generacion_transmision/Plan_de_Expansion_Generacion_2023-2037_a_comentarios.pdf.
dc.relation.referencesUPME: , 2024; ProyecciÓn de la demandade energÍa elÉctrica, potencia mÁxima y gas natural 2023 - 2037; URL https://www1.upme.gov.co/DemandayEficiencia/Documents/Proyecciones_de_Demanda_Final_v_31_01_2024.pdf.
dc.relation.referencesVan den Burg, G. J. & Williams, C. K.: , 2020; An evaluation of change point detection algorithms; arXiv preprint arXiv:2003.06222.
dc.relation.referencesWidrow, B. & Hoff, M. E.: , 1960; Adaptive switching circuits; Informe técnico; Stanford Univ Ca Stanford Electronics Labs.
dc.relation.referencesWilliams, B. R.; Schmus, W. R. & Dawson, D. C.: , 1992; Transmission voltage recovery delayed by stalled air conditioner compressors; IEEE Transactions on Power Systems; 7 (3): 1173--1181.
dc.relation.referencesWorsley, K. J.: , 1979; On the likelihood ratio test for a shift in location of normal populations; Journal of the American Statistical Association; 74 (366a): 365--367.
dc.relation.referencesXM: , 2021; https://www.xm.com.co/Paginas/Home.aspx.
dc.relation.referencesXM: , 2024a; Informe de planeamiento operativo eléctrico de mediano plazo Trimestre 1 de 2024; URL https://www.xm.com.co/planeaci%C3%B3n/planeaci%C3%B3n-mediano-plazo/informe-de-planeami-ento-operativo-electrico-del-mediano-plazo.
dc.relation.referencesXM: , 2024b; Operación del sin; URL https://www.xm.com.co/nuestra-empresa/nosotros/que-hacemos.
dc.relation.referencesYadav, G. & Paul, K.: , 2021; Architecture and security of scada systems: A review; International Journal of Critical Infrastructure Protection; 34: 100433.
dc.relation.referencesZeileis, A.; Leisch, F.; Hornik, K. & Kleiber, C.: , 2002; strucchange: An r package for testing for structural change in linear regression models; Journal of statistical software; 7: 1--38.
dc.relation.referencesZhang, X. & Dawn, T.: , 2023; Sequential gradient descent and quasi-newton’s method for change-point analysis; en International Conference on Artificial Intelligence and Statistics; PMLR; págs. 1129--1143.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembSistemas eléctricos
dc.subject.lembLocalización de fallas eléctricas
dc.subject.lembCentrales de energía
dc.subject.lembTransmisión de potencia
dc.subject.lembAnálisis de series de tiempo
dc.subject.lembGeneración de energía eléctrica
dc.subject.proposalDetección
dc.subject.proposalSistema eléctrico de potencia
dc.subject.proposalPuntos de cambio
dc.subject.proposalVariables eléctricas
dc.subject.proposalPruebasde hipótesis
dc.subject.proposalDetection
dc.subject.proposalElectrical power system
dc.subject.proposalChange points
dc.subject.proposalElectrical variables
dc.subject.proposalHypothesis testing
dc.title.translatedEvent detection in electrical variables of electrical power systems
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.description.curricularareaEstadística.Sede Medellín


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit