dc.rights.license | Atribución-NoComercial 4.0 Internacional |
dc.contributor.advisor | Mora Huertas, Claudia Elizabeth |
dc.contributor.author | Martínez Muñoz, Oscar Iván |
dc.date.accessioned | 2025-04-29T13:03:10Z |
dc.date.available | 2025-04-29T13:03:10Z |
dc.date.issued | 2024 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88134 |
dc.description | ilustraciones, diagramas |
dc.description.abstract | Las nanopartículas híbridas polímero – lípido (HPLNP) son sistemas transportadores de sustancias activas que han demostrado resultados prometedores en el ámbito farmacéutico gracias a su tamaño y composición. Como un aporte a la investigación en este campo la presente investigación aborda dos estrategias para la preparación de HPLNP empleando la técnica de nanoprecipitación, en las que se incorpora furoato de mometasona, un corticosteroide útil para el tratamiento de patologías cutáneas como la dermatitis alérgica de contacto.
La primera estrategia para la preparación de las HPLNP es a partir de un polímero y un lípido; en la segunda estrategia, se trabaja con un polímero y un fosfolípido modificado. En los dos casos se obtienen partículas con tamaños entre 150 y 250 nm, PDI menores a 0.2, potenciales Z entre -10 y - 40 mV y eficiencias de encapsulación superiores al 95 %. La liberación del activo ocurre a los 15 min en un medio adicionado de un agente solubilizante y las dispersiones acuosas mantienen su estabilidad física durante 60 días de almacenamiento en condiciones de envejecimiento natural y 30 días en envejecimiento acelerado según las condiciones para la zona IVb estipuladas por la OMS.
Los sistemas nanoparticulados se caracterizan por FTIR, DSC, XRD y TEM observándose que las HPLNP presentan una estructura predominantemente amorfa sin que se detecten incompatibilidades físicas o químicas relevantes. En conjunto, los resultados de esta investigación constituyen la fase preliminar para el desarrollo de nanopartículas que aporten valor agregado a los productos de administración tópica actualmente disponibles en el mercado a base de furoato de mometasona para los que se han evidenciado dificultades en la adherencia a la terapia debido a la necesidad de reaplicaciones y a la generación de eventos adversos (Texto tomado de la fuente). |
dc.description.abstract | Hybrid polymer-lipid nanoparticles (HPLNP) are promising drug carriers due to their size and composition. As a contribution in this field, this work addresses two strategies to prepare this kind of particles using the nanoprecipitation technique, wherein mometasone furoate is incorporated. This is a corticosteroid useful to treat skin pathologies such as allergic contact dermatitis.
The first strategy to preparing HPLNP is by using a polymer and a lipid; in the second one, a polymer and a modified phospholipid are employed. In both cases, particles with sizes ranging between 150 and 250 nm, PDI less than 0.2, Z potentials between -10 and - 40 mV, and encapsulation efficiencies greater than 95 % are obtained. The release of the active ingredient occurs after 15 min in an aqueous medium added with a solubilizing agent. The nanoparticle dispersions keep stable for 60 days of storage under natural aging conditions and 30 days under accelerated aging.
The nanoparticulate systems are characterized by FTIR, DSC, XRD and TEM. Overall, the obtained results are a preliminary phase to the develop nanoparticles providing added value to the topical products currently available on the market based on mometasone furoate, which evidence difficulties in the therapy adherence because of re-application is needed and adverse events are generated. |
dc.description.sponsorship | “Investigación Desarrollo, innovación y transferencia de conocimiento para el procesamiento de la semilla de Sacha Inchi en productos de valor agregado, como estrategia para mejorar la productividad del sector agroindustrial de la Región Cundinamarca”. BPIN 2020000100169. Regalías. Código Hermes: 45756" |
dc.format.extent | xxiv, 230 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ |
dc.subject.ddc | 540 - Química y ciencias afines |
dc.subject.ddc | 620 - Ingeniería y operaciones afines |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades |
dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica |
dc.title | Desarrollo de nanopartículas híbridas polímero – lípido con potencial aplicación en el tratamiento de la dermatitis alérgica de contacto |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias Farmacéuticas |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magíster en Ciencias Farmacéuticas |
dc.description.researcharea | Farmacotecnia |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ciencias |
dc.publisher.place | Bogotá, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Abdali, S., Yu, J. 2021. Occupational dermatoses related to personal protective equipment used during the COVID-19 pandemic. Dermatol. Clin. 39, 555-568. doi:10.1016/j.det.2021.05.009 |
dc.relation.references | Aerts, O., Dendooven, E., Foubert, K., Stappers, S., Ulicki, M., Lambert, J. 2020. Surgical mask dermatitis caused by formaldehyde (releasers) during the COVID ‐19 pandemic. Contact Derm. 83, 172-173. doi:10.1111/cod.13626 |
dc.relation.references | Babino, G., Argenziano, G., Balato, A. 2022. Impact in contact dermatitis during and after SARS‐CoV2 pandemic. Curr. Treat. Options Allergy. 9, 19-26. doi:10.1007/s40521-022- 00298-2 |
dc.relation.references | Bothra, A., Das, S., Singh, M., Pawar, M., Maheswari, A. 2020. Retroauricular dermatitis with vehement use of ear loop face masks during COVID19 pandemic. J. Eur. Acad. Dermatol. Venereol. 34, e549-e552. doi:10.1111/jdv.16692 |
dc.relation.references | Coondoo, A., Phiske, M., Verma, S., Lahiri, K. 2014. Side-effects of topical steroids: A long overdue revisit. Indian Dermatol. Online J. 5, 416. doi:10.4103/2229-5178.142483 |
dc.relation.references | Guillet, G., Guillet, M.H., Dagregorio, G. 2005. Allergic contact dermatitis from natural rubber latex in atopic dermatitis and the risk of later Type I allergy. Contact Dermatitis. 53, 46-51. doi:10.1111/j.0105-1873.2005.00634.x |
dc.relation.references | Gottlöber, P., Gall, H., Uwe-Peter, R. 2001. Allergic contact dermatitis from natural latex. Am. J. of Contact Dermat. 12, 135-138. doi:10.1053/ajcd.2001.20114 |
dc.relation.references | Jensen, L. B., Magnussson, E., Gunnarsson, L., Vermehren, C., Nielsen, H. M., Petersson,
K. 2010. Corticosteroid solubility and lipid polarity control release from solid lipid nanoparticles. Int. J. Pharm. 390, 53-60. doi:10.1016/j.ijpharm.2009.10.022 |
dc.relation.references | Johansen, J.D., Mahler, V., Lepoittevin, J-P., Frosch, P.J. (Eds). Contact dermatitis. 2021. Sixth ed. Springer. Switzerland, pp. 13-78. |
dc.relation.references | Kao, J.S., Fluhr, J.W., Man, MQ., Fowler, A.J., Hachem, J.P., Crumrine, D., Ahn, S.K., Brown, B.E., Elias, P.M., Feingold, K.R. 2003. Short-term glucocorticoid treatment compromises both permeability barrier homeostasis and stratum corneum integrity: Inhibition of epidermal lipid synthesis accounts for functional abnormalities. J. Invest. Dermatol. 120, 456-464. doi:10.1046/j.1523-1747.2003.12053 |
dc.relation.references | Lázaro, A., Moreno-García, F. 2010. Corticosteroides tópicos. Inf. Ter. Sist. Nac. Salud. 34; 83-88. |
dc.relation.references | Long, H., Zhao, H., Chen, A., Yao, Z., Cheng, B., Lu, Q. 2020. Protecting medical staff from skin injury/disease caused by personal protective equipment during epidemic period of COVID‐19: experience from China. J. Eur. Acad. Dermatol. Venereol. 34, 919-921. doi:10.1111/jdv.16388 |
dc.relation.references | Martínez-Muñoz, O.I., Ospina-Giraldo, L.F., Mora-Huertas, C.E., 2020. Nanoprecipitation: Applications for entrapping active molecules of interest in pharmaceutics, in: Abu-Thabit, N. (Ed.). Nano- and Microencapsulation techniques and applications. IntechOpen. London, pp. 101-135. doi:10.5772/ intechopen.93338 |
dc.relation.references | Nassau, S., Fonacier, L. 2019. Allergic contact dermatitis. Med. Clin. North Am. 104, 61-
76. doi:10.1016/j.mcna.2019.08.012 |
dc.relation.references | Patel, N.U., D’Ambra, V., Feldman, S.R. 2017. Increasing adherence with topical agents for atopic dermatitis. Am. J. Clin. Dermatol. 18, 323-332. doi:10.1007/s40257-017-0261-5 |
dc.relation.references | Schoepe, S., Schacke, H., May, E., Asadullah, K. 2006. Glucocorticoid therapy-induced skin atrophy. Exp. Dermatol. 15, 406-420. doi:10.1111/j.0906-6705.2006.00435 |
dc.relation.references | Tier, H.L., Balogh, E.A., Bashyam, A.M., Fleischer, A.B., Spergel, J.M., Masicampo, E.J., Kammrath, L.K., Strowd, L.C., Feldman, S.R. 2021. Tolerability of and adherence to topical treatments in atopic dermatitis: A narrative Review. Dermatol Ther. 11, 415-431. doi:10.1007/s13555-021-00500-4 |
dc.relation.references | Xie, Z., Yang, Y., Zhang, H. 2020. Mask‐induced contact dermatitis in handling COVID ‐19 outbreak. Contact Derm. 83, 166-167. doi:10.1111/cod.13599 |
dc.relation.references | Abd, E., Roberts, M.S., Grice, J.E. 2016. A comparison of the penetration and permeation of caffeine into and through human epidermis after application in various vesicle formulations. Skin Pharmacol. Physiol. 29, 24-30. doi:10.1159/000441040 |
dc.relation.references | Abdo, J.M., Sopko, N.A., Milner, S.M. 2020. The applied anatomy of human skin: A model for regeneration. Wound Med. 28, 100179. doi:10.1016/j.wndm.2020.100179 |
dc.relation.references | Afshar, Z.M., Babazadeh A., Hasanpour, A., Barary, M., Sayad, B., Janbakhsh, A., Aryanian, Z., Ebrahimpour, S. 2021. Dermatological manifestations associated with COVID-19: A comprehensive review of the current knowledge. J. Med. Virol. 93, 5756- 5767. doi: 10.1002/jmv.27187 |
dc.relation.references | Ahmaditabar, P., Momtazi-Borojeni, A.A., Rezayan, A.H., Mahmoodi, M., Sahebkar, A., Mellat, M. 2017. Enhanced entrapment and improved in vitro controlled release of N-Acetyl Cysteine in hybrid PLGA/lecithin nanoparticles prepared using a nanoprecipitation/self- assembly method. J. Cell. Biochem. 118, 4203-4209. doi:10.1002/jcb.26070 |
dc.relation.references | Álvarez-Román, R., Naik, A., Kalia, Y.N., Guy, R.H., Fessi, H. 2004. Enhancement of topical delivery from biodegradable nanoparticles. Pharm. Res. 21, 1818-1825. doi:10.1023/b:pham.0000045235.86197 |
dc.relation.references | Beck-Broichsitter, M. 2016. Stability-limit “Ouzo region” boundaries for poly (lactide- co - glycolide) nanoparticles prepared by nanoprecipitation. Int. J. Pharm. 511, 262-266. doi:10.1016/j.ijpharm.2016.07.010 |
dc.relation.references | Beiu, C., Mihai, M., Popa, L., Cima, L., Popescu, M.N. 2020. Frequent hand washing for COVID‐19 prevention can cause hand dermatitis: Management tips. Cureus. 12, e7506. doi: 10.7759/cureus.7506 |
dc.relation.references | Benson, H.A.E., Watkinson, A.C. (Eds.). 2012. Transdermal and Topical Drug Delivery. Principles and Practice. Wiley. New Jersey, pp. 3-22. |
dc.relation.references | Brar, K.K. 2020. A review of contact dermatitis. Ann. Allergy Asthma Immunol. 126, 32-39. doi:10.1016/j.anai.2020.10.003 |
dc.relation.references | Caniga, M., Cabal, A., Mehta, K., Ross, D.S., Gil, M.A., Woodhouse, J.D., Eckman, J., Naber, J.R., Callahan, M.K., Goncalves, L., Hill, S.E., Mcleod, R.L., McIntosh, F., Freke, M.C., Visser, S.A.G., Johnson, N., Salmon, M., Cicmil, M. 2016. Preclinical experimental and mathematical approaches for assessing effective doses of inhaled drugs, using mometasone to support human dose predictions. J. Aerosol. Med. Pulm. Drug Deliv. 29, 362-377. doi:10.1089/jamp.2015.1253 |
dc.relation.references | Chambers, E.S., Vukmanovic‐Stejic, M. 2019. Skin barrier immunity and ageing. immunology. 160, 116-125. doi:10.1111/imm.13152 |
dc.relation.references | Chen, X., Carillo, M., Haltiwanger, R.C., Bradley, P. 2005. Solid state characterization of mometasone furoate anhydrous and monohydrate forms. J. Pharm. Sci. 94, 2496-2509. doi:10.1002/jps.20470 |
dc.relation.references | Crim, C. 2001. A review of the pharmacology and pharmacokinetics of inhaled fluticasone propionate and mometasone furoate. Clin. Ther. 23, 1339-1354. doi:10.1016/s0149- 2918(01)80113-2 |
dc.relation.references | D’Addio, S.M., Prud’homme, R.K. 2011. Controlling drug nanoparticle formation by rapid precipitation. Adv. Drug Deliv. Rev, 63, 417-426. doi:10.1016/j.addr.2011.04.005 |
dc.relation.references | Das, L., Kaurav, M., Pandey, R.S. 2019. Phospholipid-polymer hybrid nanoparticles mediated transfollicular delivery of Quercetin: prospective implement for the treatment of androgenic alopecia. Drug Dev. Ind. Pharm. 45, 1654-1663.
doi:10.1080/03639045.2019.1652635 |
dc.relation.references | Davea, V., Taka, K., Sohgauraa, A., Guptaa, A., Sadhub, V. Reddy, K.R. 2019. Lipid- polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. J. Microbiol. Methods. 160, 130-142. doi:10.1016/j.mimet.2019.03.017 |
dc.relation.references | Du, M., Ouyang, Y., Meng, F., Zhang, X., Ma, Q., Zhuang, Y., Liu, H., Pang, M., Cai, T., Cai, Y. 2019. Polymer-lipid hybrid nanoparticles: A novel drug delivery system for enhancing the activity of Psoralen against breast cancer. Int. J. Pharm. 561, 274-282. doi:10.1016/j.ijpharm.2019.03.006 |
dc.relation.references | Eroğlu, İ., Azizoğlu, E., Özyazıcı, M., Nenni, M., Gürer Orhan, H., Özbal, S., Tekmen, I., Ertam, I., Unal, I., Özer, Ö. 2014. Effective topical delivery systems for corticosteroids: dermatological and histological evaluations. Drug Deliv. 1-12. doi:10.3109/10717544.2014.960981 |
dc.relation.references | Fenart, L., Casanova, A., Dehouck, B., Duhem, C., Slupek, S., Cecchelli, R., Betbeder. 1999. Evaluation of effect of charge and lipid coating on ability of 60 nm nanoparticles to cross an in vitro model of the blood-brain barrier. J. Pharmacol. Exp. Ther. 291, 1017-1022. |
dc.relation.references | Galindo-Rodríguez, S.A., Puel, F., Briançon, S., Allémann, E., Doelker, E., Fessi, H. 2005. Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur.
J. Pharm. Sci. 25, 357-367. doi:10.1016/j.ejps.2005.03.013 |
dc.relation.references | Ganachaud, F., Katz, J.L. 2005. Nanoparticles and nanocapsules created using the ouzo effect: Spontaneous emulsification as an alternative to ultrasonic and high-shear devices. ChemPhysChem. 6, 209-216. doi:10.1002/cphc.200400527 |
dc.relation.references | Goossens, A., Aerts, O. 2022. Contact allergy to and allergic contact dermatitis from formaldehyde and formaldehyde releasers: A clinical review and update. Contact Dermatitis. 87, 20-27. doi:10.1111/cod.14089 |
dc.relation.references | Gutfreund, K., Bienias, W., Szewczyk, A., Kaszuba, A. 2013. Topical calcineurin inhibitors in dermatology. Part I: Properties, method and effectiveness of drug use. Postepy Dermatol. Alergol. 3, 165-169. doi:10.5114/pdia.2013.35619 |
dc.relation.references | Gutiérrez-Castañeda, L.D., Jaimes, Á.O., Sánchez Bottomley, W. 2017. Epidemiología de la dermatitis de contacto: pruebas epicutáneas estándar en el Instituto Nacional de Dermatología de Colombia. Piel. 32, 390-395. doi:10.1016/j.piel.2017.01.011 |
dc.relation.references | Hadinoto, K., Sundaresan, A., Cheow, W.S. 2013. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. Eur. J. Pharm. Biopharm. 85, 427-
443. doi:10.1016/j.ejpb.2013.07.002 |
dc.relation.references | Herman, A., Aerts, O., de Montjoye, L., Tromme, I., Goossens, A., Baeck, M. 2018. Isothiazolinone derivatives and allergic contact dermatitis: a review and update. J. Eur. Acad. Dermatol. Venereol. 33, 267-276. doi:10.1111/jdv.15267 |
dc.relation.references | Hochhaus, G. 2008. Pharmacokinetic/pharmacodynamic profile of mometasone furoate nasal spray: Potential effects on clinical safety and efficacy. Clin. Ther. 30, 1-13. doi:10.1016/j.clinthera.2008.01.005 |
dc.relation.references | Høybye, S., Møller, S.B., De Chunha Bang, F. 1991. Continuous and intermittent treatment of atopic dermatitis in adults with mometasone furoate versus hydrocortisone 17-butyrate. Curr. Ther. Res. 50, 67-72. |
dc.relation.references | Kazem, S., Linssen, E.C., Gibbs, S. 2019. Skin metabolism phase I and phase II enzymes in native and reconstructed human skin: a short review. Drug Discov. Today, 24, 1899- 1910. doi:10.1016/j.drudis.2019.06.002 |
dc.relation.references | Johansen, J.D., Mahler, V., Lepoittevin, J-P., Frosch, P.J. (Eds). Contact dermatitis. 2021. Sixth ed. Springer. Switzerland, pp. 95-138. |
dc.relation.references | Jung, S., Otberg, N., Thiede, G., Richter, H., Sterry, W., Panzner, S., Lademann, J. 2006. Innovative liposomes as a transfollicular drug delivery system: penetration into porcine hair follicles. J. Invest. Dermatol. 126, 1728-1732. doi:10.1038/sj.jid.5700323 |
dc.relation.references | Korting, H.C., Schöllmann, C., Willers, C., Wigger-Alberti, W. 2012. Bioavailability, antipsoriatic efficacy and tolerability of a new light cream with mometasone furoate 0.1%. Skin Pharmacol. Physiol. 25, 133-141. doi:10.1159/000335656 |
dc.relation.references | Krishnamurthy, S., Vaiyapuri, R., Zhang, L., Chan, J.M. 2015. Lipid-coated polymeric nanoparticles for cancer drug delivery. Biomater. Sci. 3, 923-936. doi:10.1039/c4bm00427b |
dc.relation.references | Landsteiner, K., Chase, M.W. 1939. Studies on the sensitization of animals with simple chemical compounds: vi. Experiments on the sensitization of guinea pigs to poison ivy. J. Exp. Med. 69, 767-784. doi:10.1084/jem.69.6.767 |
dc.relation.references | Lewallen, R., Clark, A., Feldman, S.R. (Eds). 2015. Clinical handbook of contact dermatitis. Diagnosis and management by body region. CRC Press. Boca Raton, pp. 1-5. |
dc.relation.references | Lisi, P., Stingeni, L., Cristaudo, A., Foti, C., Pigatto, P., Gola, M., Schena, D., Corazza, M., Bianchi, L. 2014. Clinical and epidemiological features of textile contact dermatitis: an Italian multicentre study. Contact Derm. 70, 344-350. doi:10.1111/cod.12179 |
dc.relation.references | Long, H., Zhao, H., Chen, A., Yao, Z., Cheng, B., Lu, Q. 2020. Protecting medical staff from skin injury/disease caused by personal protective equipment during epidemic period of COVID‐19: experience from China. J. Eur. Acad. Dermatol. Venereol. 34, 919-921. doi:10.1111/jdv.16388 |
dc.relation.references | Marchesi, E., Rozzoni, M., Pini, P. 1994. Comparative study of mometasone furoate and betamethasone dipropionate in the treatment of atopic dermatitis. G. Ital. Dermatol. Venereol. 129, 10-12. |
dc.relation.references | Martínez-Rivas, C. J., Tarhini, M., Badri, W., Miladi, K., Greige-Gerges, H., Nazari, Q.A., Galindo Rodríguez, S.A., Álvarez Román, R., Fessi, H., Elaissari, A. 2017. Nanoprecipitation process: From encapsulation to drug delivery. Int. J. Pharm. 532, 66-81. doi:10.1016/j.ijpharm.2017.08.064 |
dc.relation.references | McGowan, M.A., Scheman, A., Jacob, S.E. 2017. Propylene glycol in contact dermatitis. Dermatitis. 29, 6-12. doi:10.1097/der.0000000000000307 |
dc.relation.references | Merck Sharp and Dohme Corp. Highlights of prescribing information. Elocom® (mometasone furoate) lotion, 0.1 % for topical use. 2018. USA. Disponible: chrome- extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.accessdata.fda.gov/drugsatfda
_docs/label/2018/019796s029lbl.pdf |
dc.relation.references | Miller, S.D., Butler, L.D., Cleveland, R.P., Moorhead, J.W., Claman, H.N., Chiller, J.C. 1983. T-cell responses induced by the parenteral injection of antigen-modified syngeneic cells. Cell. Immunol. 82, 378-393. doi:10.1016/0008-8749(83)90171-5 |
dc.relation.references | Minigh J. 2008. Mometasone furoate, in Enna, S.J., Bylund, D.B. (Eds). xPharm: The comprehensive pharmacology reference. Elsevier. Amsterdam, pp.1-5. doi:10.1016/b978- 008055232-3.62206-8 |
dc.relation.references | Miri, V., Jangde, R.K., Singh, D., Suresh, P.K. 2023. Lipid-polymer hybrid nanoparticles for topical drug delivery system. J. Drug Deliv. Ther. 13, 113-120. doi:10.22270/jddt.v13i4.5789 |
dc.relation.references | Molin, S., Abeck, D., Guilabert, A., Bellosta, M. 2013. Mometasone furoate: a well- established topical corticosteroid now with improved galenic formulations. J. Clin. Exp. Dermatol. Res. 4, 1000184. doi:10.4172/2155-9554.1000184 |
dc.relation.references | Mora-Huertas, C.E., Fessi, H., Elaissari, A. 2011. Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification–diffusion methods: Critical comparison. Adv. Colloid Interface Sci. 163, 90-122. doi:10.1016/j.cis.2011.02.005 |
dc.relation.references | Mortz, C.G., Andersen, K.E. 2008. New aspects in allergic contact dermatitis. Curr. Opin. Allergy Clin. Immunol. 8, 428-432. doi:10.1097/aci.0b013e32830d84 |
dc.relation.references | Naňka, O., Elišková, M., Eliška, O., Karlova, U. 2009. Přehled anatomie: Čtvrtéí, doplněné a přepracované vydání. Galen. Praga |
dc.relation.references | Mieszawska, A.J., Gianella, A., Cormode, D.P., Zhao, Y., Meijerink, A., Langer, R., Farokhzad, O.C., Fayad, Z.A., Mulder, W.J.M. 2012. Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging. Chem. Commun. 48, 5835-5837. doi: 10.1039/c2cc32149a |
dc.relation.references | Musmade, B.D., Sawant, A.V., Kulkarni, S.V., Nage, S.D., Bhope, S.G., Padmanabhan, S., Lohar, K.S. 2022. Method development, validation and estimation of relative response factor for the quantitation of known impurities in mometasone furoate nasal spray dosage form by RP-HPLC with UV/PDA detector. Pharm. Chem. J. 56, 53-544. doi:10.1007/s11094-022-02672-5 |
dc.relation.references | Otberg, N., Richter, H., Schaefer, H., Blume-Peytavi, U., Sterry, W., Lademann, J. 2004. Variations of hair follicle size and distribution in different body sites. J. Invest. Dermatol. 122, 14-19. doi:10.1046/j.0022-202x.2003.22110 |
dc.relation.references | Özkaya, E., Pehlivan, G., Babuna Kobaner G. 2022. Sorbitan sesquioleate: A rare contact allergen that is also an important indicator of allergic contact dermatitis from cross reacting compounds as well as for false-positive fragrance allergy. Clin. Exp. Dermatol. 47, 1291- 1297. doi:10.1111/ced.15158 |
dc.relation.references | Prakash, A., Benfield, P. 1998. Topical Mometasone. Drugs. 55, 145-163. doi:10.2165/00003495-199855010-00009 |
dc.relation.references | Pyo, S.M., Maibach, H.I. 2019. Skin metabolism: Relevance of skin enzymes for rational drug design. Skin Pharmacol. Physiol. 32, 283-293. doi:10.1159/000501732 |
dc.relation.references | Quintanar-Guerrero, D., Allémann, E., Fessi, H., Doelker, E. 1998. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev. Ind. Pharm. 24, 1113-1128. doi:10.3109/03639049809108571 |
dc.relation.references | Rafanelli, A., Rafanelli, S., Stanganelli, I., Marchesi, E. 1993. Mometasone furoate in the treatment of atopic dermatitis in children. J. Eur. Acad. Dermatol. Venereol. 2, 225-230. doi:10.1111/j.1468-3083.1993.tb00040 |
dc.relation.references | Rajka, G., Avrach, W., Gärtner, L., Overgaard-Petersen, H. 1993. Mometasone furoate 0.1
% fatty cream once daily versus betamethasone valerate 0.1 % cream twice daily in the treatment of patients with atopic and allergic contact dermatitis. Curr. Ther. Res. Clin. Exp. 54, 23-29. doi:10.1016/s0011-393x0580614-9 |
dc.relation.references | Ranade, V.V. 1991. Drug delivery systems. 6. Transdermal drug delivery. J Clin. Pharmacol. 31, 401-418. doi:10.1002/j.1552-4604.1991.tb01895 |
dc.relation.references | Rundle, C.W., Presley, C.L., Militello, M., Barber, C., Powell, D.L., Jacob S.E., Atwater, A. R., Watsky, K.L., Yu, J., Dunnick C.A. 2020. Hand hygiene during COVID-19: Recommendations from the American Contact Dermatitis Society. J. Am. Acad. Dermatol. 83, 1730-1737. doi:10.1016/j.jaad.2020.07.057 |
dc.relation.references | Sahasranaman, S., Issar, M., G. Tóth, G., Horváth, Gy., Hochhaus, G. 2004. Characterization of degradation products of mometasone furoate. Pharmazie. 59, 367-373. |
dc.relation.references | Sahasranaman, S., Issar, M., Hochhaus, G. 2005. Metabolism of mometasone furoate and biological activity of the metabolites. Drug Metab. Dispos. 34, 225-233. doi:10.1124/dmd.105.005702 |
dc.relation.references | Saint-Mezard, P., Krasteva, M., Berard, F., Dubois, B., Kaiserlian, D., Nicolas, J.F. 2004. Allergic Contact Dermatitis in Bos, J.D. (Ed). Skin immune system. Cutaneous immunology and clinical immunodermatology. Third. ed. CRC Press. Boca Ratón, pp. 593-613. doi:10.1201/b14248-37 |
dc.relation.references | Senyigit, T., Ozer, O. 2012. Corticosteroids for skin delivery: challenges and new formulation opportunities, in Qian, X. (Ed). Glucocorticoids - New recognition of our familiar friend. IntechOpen. London, pp. 595-612. doi:10.5772/2915 |
dc.relation.references | Shah, S., Famta, P., Raghuvanshi, R.S., Singh, S.B., Srivastava, S. 2022. Lipid polymer hybrid nanocarriers: Insights into synthesis aspects, characterization, release mechanisms, surface functionalization and potential implications. Colloids Interface Sci. Commun. 46, 100570. doi:10.1016/j.colcom.2021.100570 |
dc.relation.references | Shao, M., Hussain, Z., Thu, H.E., Khan, S., Katas, H., Ahmed, T.A., Tripathy, M., Leng, J., Qin, H.Li., Bukhari, S.N.A. 2016. Drug nanocarrier, the future of atopic diseases: Advanced drug delivery systems and smart management of disease. Colloids Surf. B. 147, 475-491. doi:10.1016/j.colsurfb.2016.08.027 |
dc.relation.references | Schering Corporation. USA. Highlights of prescribing information; Asmanex Twisthaler (mometasone furoate inhalation powder). 2008. Disponible: chrome- extension://efaidnbmnnnibpcajpcglclefindmkaj/https://s3-us-west- 2.amazonaws.com/drugbank/fda_labels/DB14512.pdf?1554757819 |
dc.relation.references | Silverberg, J.I., Patel, N., Warshaw, E.M., DeKoven, J.G, Atwater, A.R., Belsito, D.V., Dunnick, C.A., Houle, M.C., Reeder, M.J., Maibach, H.I., Zug, K.A., Taylor, J.S., Sasseville, D., Fransway, A.F., DeLeo, V.A., Pratt, M.D., Fowler Jr, J.F., Zirwas, M.J. 2022. Lanolin allergic reactions: North American Contact Dermatitis Group Experience, 2001 to 2018. Dermatitis. 33, 193-199. doi:10.1097/DER0000000000000871 |
dc.relation.references | Sivadasan, D., Sultan M.H., Madkhali, O., Almoshari, Y., Thangavel, N. 2021. Polymeric lipid hybrid nanoparticles (PLNs) as emerging drug delivery platform - A comprehensive review of their properties, preparation methods, and therapeutic applications. Pharmaceutics. 13, 1291. doi:10.3390/pharmaceutics13081291 |
dc.relation.references | Spada, F., Barnes, T.M., Greive, K.A. 2018. Comparative safety and efficacy of topical mometasone furoate with other topical corticosteroids. Aust. J. Dermatol. 59, 168-174. doi:10.1111/ajd.12762 |
dc.relation.references | Stenton, J., Dahlin, J., Antelmi, A., Bruze, M., Svedman, C., Zimerson, E., Hamnerius, N., Pontén, A., Isaksson, M. 2020. Patch testing with a textile dye mix with and without Disperse Orange 3. Contact Dermatitis. 1-4. doi:10.1111/cod.13660 |
dc.relation.references | Tahir, N., Madni, A., Balasubramanian, V., Rehman, M., Correia, A., Kashif, P.M., Mäkilä, E., Salonen, J., Santos H.A. 2017. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. Int. J. Pharm. 533, 156-168. doi:10.1016/j.ijpharm.2017.09.061 |
dc.relation.references | Teng, X.W., Cutler, D.C., Davies, N.M. 2003. Degradation kinetics of mometasone furoate in aqueous systems. Int. J. Pharm. 259, 129-141. doi:10.1016/s0378-5173(03)00226-6 |
dc.relation.references | Thevenot, J., Troutier, A.-L., David, L., Delair, T., Ladavière, C. 2007. Steric stabilization of lipid/polymer particle assemblies by poly(ethylene glycol)-lipids. Biomacromolecules. 8, 3651–3660. doi:10.1021/bm700753q |
dc.relation.references | Uchechi, O., Ogbonna, J.D.N., Attama, A.A. 2014. Nanoparticles for dermal and transdermal drug delivery, in Sezer, A.D. (Ed). Application of nanotechnology in drug delivery. IntechOpen. London, pp. 193-235. doi:10.5772/58672 |
dc.relation.references | United States Pharmacopeial Convention. Farmacopea de los Estados Unidos de América: USP-NF 2024. Rockville. |
dc.relation.references | Vaidya, S., Ziegler, D., Tanase, A.M., Malmqvist, U., Kanniess, F., Hederer, B., Hosoe, M. 2021. Pharmacokinetics of mometasone furoate delivered via two dry powder inhalers. Pulm. Pharmacol. Ther. 70, 102019. doi:10.1016/j.pupt.2021.102019 |
dc.relation.references | Valotis, A., Högger, P., Neukam, K., Elert, O. 2004. Human receptor kinetics, tissue binding affinity, and stability of mometasone furoate. J. Pharm. Sci. 93, 1337-1350. doi:10.1002/jps.20049 |
dc.relation.references | Vitale, S.A., Katz, J.L. 2003. Liquid droplet dispersions formed by homogeneous liquid−liquid nucleation: “The Ouzo Effect.” Langmuir. 19, 4105-4110. doi:10.1021/la026842 |
dc.relation.references | Wilke, K., Wepf, R., Keil, F.J., Wittern, K-P., Wenck, H., Biel, S.S. 2005. Are sweat glands an alternate penetration pathway? Understanding the morphological complexity of the axillary sweat gland apparatus. Skin Pharmacol. Physiol. 19, 38-49. doi:10.1159/000089142 |
dc.relation.references | Xie, Z., Yang, Y., Zhang, H. 2020. Mask‐induced contact dermatitis in handling COVID ‐19 outbreak. Contact Derm. 83, 166-167. doi:10.1111/cod.13599 |
dc.relation.references | Yan, Y., Chen, H., Chen, L., Cheng, B., Diao, P., Dong, L., Li, H. 2020. Consensus of chinese experts on protection of skin and mucous membrane barrier for healthcare workers fighting against coronavirus disease 2019. Dermatologic Therapy. 33, e13310. doi:10.1111/dth.13310 |
dc.relation.references | Yin, J., Hou, Y., Song, X., Wang, P., Li, Y. 2019. Cholate-modified polymer-lipid hybrid nanoparticles for oral delivery of quercetin to potentiate the antileukemic effect. Int. J. Nanomedicine. 14, 4045-4057. doi:10.2147/ijn.s210057 |
dc.relation.references | Yousef, H., Alhajj, M., Sharma, S. 2022. Anatomy, skin (integument), epidermis. USA. Disponible en: StatPearls https://www.ncbi.nlm.nih.gov/books/NBK470464/ |
dc.relation.references | Yu, YQ., Yang, X., Wu, XF., Fan. Y.B. 2021. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications. Front. Bioeng. Biotechnol. 9, 646554. doi: 10.3389/fbioe.2021.646554 |
dc.relation.references | Zeeuwen, P. 2004. Epidermal differentiation: The role of proteases and their inhibitors. Eur.
J. Cell Biol. 83, 761-773. doi:10.1078/0171-9335-00388 |
dc.relation.references | Zhang, L., Chan, J.M., Gu, F.X., Rhee, J.W., Wang, A.Z., Radovic-Moreno, A.F., Alexis, A., Langer, R., Farokhzad, O.C. 2008. Self-assembled lipid - polymer hybrid nanoparticles: a robust drug delivery platform. ACS nano. 2, 1696-1702. doi:10.1021/nn800275r |
dc.relation.references | Zhang, Z., Tsai, P-C., Ramezanli, T., Michniak-Kohn, B.B. 2013. Polymeric nanoparticles- based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 205-218. doi:10.1002/wnan.1211 |
dc.relation.references | Abstiens, K., Goepferich, A.M. 2018. Microfluidic manufacturing improves polydispersity of multicomponent polymeric nanoparticles. J. Drug Deliv. Sci. Technol. 49, 433-439. doi:10.1016/j.jddst.2018.12.009 |
dc.relation.references | Alsaidan, O.A., Elmowafy, M., Shalaby, K., Alzarea, S.I., Massoud, D., Kassem, A.M., Ibrahim, M.F. 2023. Hydrocortisone-loaded lipid−polymer hybrid nanoparticles for controlled topical delivery: formulation design optimization and in vitro and in vivo appraisal. ACS Omega 19, 18714-18725. doi:18714-18725. 10.1021/acsomega.3c00638 |
dc.relation.references | Alshamsan, A. 2014. Nanoprecipitation is more efficient than emulsion solvent evaporation method to encapsulate cucurbitacin I in PLGA nanoparticles. Saudi Pharm. J. 22, 219-222. doi: 10.1016/j.jsps.2013.12.002 |
dc.relation.references | Anwer, K., Ali, E.A., Iqbal, M., Ahmed, M.M., Aldawsar, M.F., Al Saqr, A., Ansari, M.N., Aboudzadeh, M.A. 2022. Development of sustained release baricitinib loaded lipid-polymer hybrid nanoparticles with improved oral bioavailability. Molecules. 27, 168. doi:10.3390/molecules27010168 |
dc.relation.references | Arruda, D.C., Lachagès, A.M., Demory, H., Escriou, G., Lai-Kuen, R., Dugas, P.Y., Hoffmann, C., Bessoles, S., Sarrabayrouse, G., Malachias, A., Finet, S., Gastelois, P.L., de Almeida Macedo, W.A., Cunha Jr, A.S., Bigey, P., Escriou, V. 2022. Spheroplexes: Hybrid PLGA- cationic lipid nanoparticles, for in vitro and oral delivery of siRNA. J. Control Release. 350, 228-243. doi:10.1016/j.jconrel.2022.08.030 |
dc.relation.references | Bahrami, M.A., Farhadian, N. 2019. Experimental study and mathematical modeling for encapsulation of fentanyl citrate drug in nanostructured lipid carrier. J. Biomol. Struct. Dyn. 38, 1263-1271. doi:10.1080/07391102.2019.1599732 |
dc.relation.references | Barton, A.F.M. 1991. Handbook of solubility parameters and other cohesion parameters. Second ed. CRC Press. Boca Ratón. |
dc.relation.references | Bian, X., Liang, S., John, J., Hsiao, C.H., Wei, X., Liang, D., Xie, H. 2013. Development of PLGA-based itraconazole injectable nanospheres for sustained release. Int. J. Nanomedicine. 8, 4521-4531. doi: 10.2147/IJN.S54040 |
dc.relation.references | Calegari-Lino, R., Matos de Carvalho, S., Montanheiro-Noronha, C., Sganzerla, W.G., Gonçalves da Rosa, C., Ramos-Nunes, M., Manique-Barreto, P.L. 2020. Development and characterization of poly-ε-caprolactone nanocapsules containing β-carotene using the nanoprecipitation method and optimized by response surface methodology. Braz. Arch. Biol. Technol. 63, 20190184. doi:10.1590/1678-4324-2020190184 |
dc.relation.references | Chaudhari, S., Kwon, Y., Shon, M. 2019. Pervaporation dehydration of azeotropic water/acetonitrile mixture using high water affinity PVA-PVAm blended membrane. Bull. Korean Chem. Soc. 1-10. doi:10.1002/bkcs.11668 |
dc.relation.references | Choi, M.J., Maibach, H.I. 2005. Liposomes and niosomes as topical drug delivery systems. Skin Pharmacol. Physiol. 18, 209–219. doi:10.1159/000086666 |
dc.relation.references | Cheow, W.S., Hadinoto, K. 2011. Factors affecting drug encapsulation and stability of lipid– polymer hybrid nanoparticles. Colloids Surf. B. 85, 214-220.
doi:10.1016/j.colsurfb.2011.02.033 |
dc.relation.references | Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., Mozafari, M. 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 10, 1-17. doi:10.3390/pharmaceutics10020057 |
dc.relation.references | Dave, V., Yadav, R.B., Kushwaha, K., Yadav, S., Sharma, S., Agrawal, U. 2017. Lipid-polymer hybrid nanoparticles: Development & statistical optimization of norfloxacin for topical drug delivery system. Bioactive Materials. 2, 269-280. doi:10.1016/j.bioactmat.2017.07 |
dc.relation.references | Dehaini, D., Fang, R.H., Luk, B.T., Pang, Z., Hu, C.M.J., Kroll, A.V., Yu, C.L, Gao, W., Zhang, L. 2016. Ultra-small lipid–polymer hybrid nanoparticles for tumor-penetrating drug delivery. Nanoscale. 8, 14411-14419. doi:10.1039/c6nr04091h |
dc.relation.references | Devi, R., Agarwal, S. 2019. Some multifunctional lipid excipients and their pharmaceutical applications. Int. J. Pharm. Pharm. Sci. 11, 1-7. doi:10.22159/ijpps.2019v11i9.34194 |
dc.relation.references | Doktorovova, S., Souto, E.B., Silva, A.M. 2017. Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): in vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines. Pharm Dev Technol. 23, 96-
105. doi:10.1080/10837450.2017.1384491 |
dc.relation.references | Donga, Y., Ng W.K., Shen, S., Kim, S., Tan, R.B.H. 2012. Solid lipid nanoparticles: Continuous and potential large-scale nanoprecipitation production in static mixers. Colloids Surf. B. 94, 68-72. doi: 10.1016/j.colsurfb.2012.01.018 |
dc.relation.references | Du, M., Ouyang, Y., Meng, F., Zhang, X., Ma, Q., Zhuang, Y., Liu, H., Pang, M., Cai, T., Cai,
Y. 2019. Polymer-lipid hybrid nanoparticles: A novel drug delivery system for enhancing the activity of Psoralen against breast cancer. Int. J. Pharm. 561, 274-282. doi:10.1016/j.ijpharm.2019.03.006 |
dc.relation.references | Elkasabgy, N.A., Salama, A., Salama, A.H. 2023. Exploring the effect of intramuscularly injected polymer/lipid hybrid nanoparticles loaded with quetiapine fumarate on the behavioral and neurological changes in cuprizone-induced schizophrenia in mice. J. Drug. Deliv. Sci. Technol. 79, 104064. doi:10.1016/j.jddst.2022.104064 |
dc.relation.references | Fang, R.H., Aryal, S., Hu, C.M.J., Zhang, L. 2010. Quick synthesis of lipid−polymer hybrid nanoparticles with low polydispersity using a single-step sonication method. Langmuir, 26, 16958-16962. doi:10.1021/la103576a |
dc.relation.references | Fessi, H., Puisieux, F., Devissaguet, J.P. 1988. Procédé de préparation de systèmes colloïdaux dispersibles d’une substance sous forme de nanocapsules. European Patent. 274961 A1 |
dc.relation.references | Ghasemiyeh, P., Mohammadi-Samani, S. 2020. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: advantages and disadvantages. Drug Des. Devel. Ther. 14, 3271-3289. doi:10.2147/dddt.s264648 |
dc.relation.references | Godara, S., Lather, V., Kirthanashri, V.S., Awasthi, R., Pandita, D. 2020. Lipid-PLGA hybrid nanoparticles of paclitaxel: Preparation, characterization, in vitro and in vivo evaluation. Mater. Sci. Eng. C. 109, 110576. doi:10.1016/j.msec.2019.110576 |
dc.relation.references | Gordillo-Galeano A. 2020. Efecto de las propiedades estructurales de la partícula sobre la liberación de moléculas encapsuladas en sistemas lipídicos coloidales. Tesis de Doctorado en Ciencias Farmacéuticas. Universidad Nacional de Colombia. Repositorio Institucional – Universidad Nacional de Colombia. |
dc.relation.references | Gordillo-Galeano, A., Mora-Huertas, C.E. 2021. Hydrodynamic diameter and zeta potential of nanostructured lipid carriers: Emphasizing some parameters for correct measurements. Colloids Surf. A Physicochem. Eng. Asp. 620, 126610. doi:10.1016/j.colsurfa.2021.126610 |
dc.relation.references | Grüne, L., Bunjes, H. 2020. Self-dispersing formulations for the delivery of poorly soluble drugs – miscibility of phosphatidylcholines with oils and fats. Eur. J. Pharm. Biopharm. 151, 209-219. doi:10.1016/j.ejpb.2020.04.013 |
dc.relation.references | Güçlü-Üstündağ, Ö., Temelli, F. 2005. Solubility behavior of ternary systems of lipids, cosolvents and supercritical carbon dioxide and processing aspects. J. Supercrit. Fluids. 36, 1-15. doi:10.1016/j.supflu.2005.03.002 |
dc.relation.references | Guo, P., Buttaro, B.A., Xue, H.Y., Tran, N.T., Wong, H.L. 2020. Lipid-polymer hybrid nanoparticles carrying linezolid improve treatment of methicillin-resistant Staphylococcus aureus (MRSA) harbored inside bone cells and biofilms. Eur. J. Pharm. Biopharm. 151, 189-
198. doi:10.1016/j.ejpb.2020.04.010 |
dc.relation.references | Gumustas, M., Sengel-Turk, C.T., Gumustas, A., Ozkan, S.A., Uslu, B. 2017. Effect of polymer-based nanoparticles on the assay of antimicrobial drug delivery systems. multifunctional systems for combined delivery, in: Grumezescu, A.M (Ed.), Multifunctional systems for combined delivery, Biosensing and Diagnostics. Elsevier. Cambridge, pp. 67-108. doi:10.1016/b978-0-323-52725-5.00005-8 |
dc.relation.references | Han, FY., Liu, Y., Kumar, V., Xu, W., Yang, G., Zhao, C.X., Woodruff, T.M., Whittaker, A.K., Smith, M.T. 2020. Sustained-release ketamine-loaded nanoparticles fabricated by sequential nanoprecipitation. Int. J. Pharm. 581, 119291. doi:10.1016/j.ijpharm.2020.119291 |
dc.relation.references | Hu, F., Zhang, Y., Du, Y., Yuan, H. 2008. Nimodipine loaded lipid nanospheres prepared by solvent diffusion method in a drug saturated aqueous system. Int. J. Pharm. 348, 146-152. doi:10.1016/j.ijpharm.2007.07.02 |
dc.relation.references | Hubbard, M.A., Mccaulley, J.A., Holcomb, D.R. 2001. Método de apresto de articulos de poliolefina para revestimiento. España. ES2214626T3. |
dc.relation.references | International Council for Harmonization of Technical requirements for Pharmaceuticals for Human use. Committee for Medicinal Products for Human Use Impurities: Guideline for residual solvents Q3C (R9). 2024 |
dc.relation.references | Ishak, R.A.H., Mostafa, N.M., Kamel, A.O. 2017. Stealth lipid polymer hybrid nanoparticles loaded with rutin for effective brain delivery – comparative study with the gold standard (Tween 80): optimization, characterization and biodistribution. Drug Deliv. 24, 1874-1890. doi:10.1080/10717544.2017.1410263 |
dc.relation.references | Jadon, R.S., Sharma, M. 2019. Docetaxel-loaded lipid-polymer hybrid nanoparticles for breast cancer therapeutics. J. Drug Deliv. Sci. Technol. 51, 475-484. doi:10.1016/j.jddst.2019.03.039 |
dc.relation.references | Johansen, J.D., Mahler, V., Lepoittevin, J-P., Frosch, P.J. (Eds). Contact dermatitis. 2021. Sixth ed. Springer. Switzerland, pp. 95-120. |
dc.relation.references | Kang, D.H., Zeng, Y., Tewari, M., Kim, J. 2022. Highly sensitive and quantitative bio detection with lipid-polymer hybrid nanoparticles having organic room-temperature phosphorescence. Biosens. Bioelectron. 199, 113889. doi:10.1016/j.bios.2021.113889 |
dc.relation.references | Kelidari, H.R., Saeedi, M., Akbari, J., Morteza-Semnani, K., Gill, P., Valizadeh, H., Nokhodchi,
A. 2015. Formulation optimization and in vitro skin penetration of spironolactone loaded solid lipid nanoparticles. Colloids Surf. B. 128, 473-479. doi:10.1016/j.colsurfb.2015.02.046 |
dc.relation.references | Khan, S., Aamir, M.N., Madni, A., Jan, N., Khan, Arshad., Jabar, A., Shah, H., Rahim, M.A., Ali, A. 2021. Lipid poly (ɛ-caprolactone) hybrid nanoparticles of 5-fluorouracil for sustained release and enhanced anticancer efficacy. Life Sci. 284, 119909. doi:10.1016/j.lfs.2021.119909 |
dc.relation.references | Khater, S.E., El-khouly, A., Abdel-Bar, H.M., Al-Mahallawi, A.M., Ghb, D.M. 2021. Fluoxetine hydrochloride loaded lipid polymer hybrid nanoparticles showed possible efficiency against SARS-CoV-2 infection. Int. J. Pharm. 607, 121023. doi:10.1016/j.ijpharm.2021.121023 |
dc.relation.references | Kitak, T., Dumičić, A., Planinšek, O., Šibanc, R., Srčič, S. 2015. Determination of solubility parameters of ibuprofen and ibuprofen lysinate. Molecules. 20, 21549-21568. doi:10.3390/molecules201219777 |
dc.relation.references | Liu, H., Zhuang, Y., Wang, P., Zou, T., Lan, M., Li, L., Liu, F., Cai, T., Cai, Y. 2021. Polymeric lipid hybrid nanoparticles as a delivery system enhance the antitumor effect of emodin in vitro and in vivo. J. Pharm. Sci. 110, 2986-2996. doi:10.1016/j.xphs.2021.04.006 |
dc.relation.references | Liu, J., Cheng, H., Han, L., Qiang, Z., Zhang, X., Gao, W., Zhao, K., Song, Y. 2018. Synergistic combination therapy of lung cancer using paclitaxel- and triptolide-coloaded lipid–polymer hybrid nanoparticles. Drug Des. Devel. Ther. 12, 3199-3209. doi:10.2147/dddt.s172199 |
dc.relation.references | Liu, M., Gao, T., Jiang, L., Li, S., Shi, B., Li, F. 2023. Enhancing the biopharmaceutical attributes of atorvastatin calcium using polymeric and lipid-polymer hybrid nanoparticles: An approach for atherosclerosis treatment. Biomed. Pharmacother. 159, 114261. doi:10.1016/j.biopha.2023.114261 |
dc.relation.references | Liu, X., Shen, B., Shen, C., Zhong, R., Wang, X., Yuan, H. 2018. Nanoparticle-loaded gels for topical delivery of nitrofurazone: Effect of particle size on skin permeation and retention. J Drug Deliv Sci Technol. 45, 367-372. doi:10.1016/j.jddst.2018.04.005 |
dc.relation.references | Liu, X., Zhao Q. 2019. Long-term anesthetic analgesic effects: Comparison of tetracaine loaded polymeric nanoparticles, solid lipid nanoparticles, and nanostructured lipid carriers in vitro and in vivo. Biomed. Pharmacother. 117, 109057. doi: 10.1016/j.biopha.2019.109057 |
dc.relation.references | Makoni, P.A., Ranchhod, J., WaKasongo, K., Khamanga, S.M., Walker, R.B. 2020. The use of quantitative analysis and hansen solubility parameter predictions for the selection of excipients for lipid nanocarriers to be loaded with water soluble and insoluble compounds. Saudi Pharm J. 28, 308-315. doi:10.1016/j.jsps.2020.01.010 |
dc.relation.references | Mandal, B., Mittal, N.K., Balabathula, P., Thoma, L. A., Wood, G.C. 2016. Development and in vitro evaluation of core–shell type lipid–polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer. Eur. J. Pharm. Sci. 81, 162-171. doi:10.1016/j.ejps.2015.10.021 |
dc.relation.references | Martínez-Muñoz, O.I., Mora-Huertas, C.E. 2022. Nanoprecipitation technology to prepare carrier systems of interest in pharmaceutics: An overview of patenting. Int. J. Pharm. 614, 121440. doi:10.1016/j.ijpharm.2021.121440 |
dc.relation.references | Mocan, L., Xayprasith-Mays, S., Orza, A. 2017. Novel method for preparing pH dependent ultra small polymeric nanoparticles for topical and/or transdermal delivery. US Patent. 2017/0182472 A1. |
dc.relation.references | Moghimi, S.M., Hunter, A.C., Murray, C. 2001. Long-Circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 53, 283-318. |
dc.relation.references | Musmade, B.D., Sawant, A.V., Kulkarni, S.V., Nage, S.D., Bhope, S.G., Padmanabhan, S., Lohar, K.S. 2022. Method development, validation and estimation of relative response factor for the quantitation of known impurities in mometasone furoate nasal spray dosage form by RP-HPLC with UV/PDA detector. Pharm. Chem. J. 56, 53-544. doi:10.1007/s11094-022- 02672-5 |
dc.relation.references | Meyer, R.A., Hussmann, G.P., Peterson, N.C., Santos, J.L., Tuesca, A.D. 2022. A scalable and robust cationic lipid/polymer hybrid nanoparticle platform for mRNA delivery. Int. J. Pharm. 611, 121314. doi:10.1016/j.ijpharm.2021.121314 |
dc.relation.references | Mohammad-Beigi, H., Shojaosadati, S.A., Morshedi, D., Mirzazadeh, N., Arpanaei, A. 2016. The effects of organic solvents on the physicochemical properties of human serum albumin nanoparticles. Iran J. Biotechnol. 14, 45–50. doi:10.15171/ijb.1168 |
dc.relation.references | Mora-Huertas, C.E., Garrigues, O., Fessi, H., Elaissari, A. 2012. Nanocapsules prepared via nanoprecipitation and emulsification–diffusion methods: Comparative study. Eur. J. Pharm. Biopharm. 80, 235-239. doi:10.1016/j.ejpb.2011.09.013 |
dc.relation.references | Mukherjee, A., Waters, A.K., Kalyan, P., Achrol, A.S., Kesari, S., Yenugonda, V.M. 2019. Lipid–polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int. J. Nanomedicine. 14, 1937- 1952. doi:10.2147/ijn.s198353 |
dc.relation.references | Nakamura, D., Hirano, M., Ohta, R. 2017. Nontoxic organic solvents identified using an a priori approach with Hansen solubility parameters. Chem. Comm. 53, 4096- 4099. doi:10.1039/c7cc01434 |
dc.relation.references | National Center for Biotechnology Information. 2023. PubChem Compound Summary for CID 11148, Trimyristin. Consultado en abril 31, 2023 en https://pubchem.ncbi.nlm.nih.gov/compound/Trimyristin. |
dc.relation.references | Olbrich, C., Schöler, N., Tabatt, K., Kayser, O., Müller, R.H. 2004. Cytotoxicity studies of Dynasan 114 solid lipid nanoparticles (SLN) on RAW 264.7 macrophages-impact of phagocytosis on viability and cytokine production. J. Pharm. Pharmacol. 56, 883-891. doi:10.1211/0022357023754 |
dc.relation.references | Patel, G., Thakur, N.S., Kushwah, V., Patil, M.D., Nile, S.H., Jain, S., Kai, G., Banerjee, U.C. 2019. Mycophenolate co-administration with quercetin via lipid-polymer hybrid nanoparticles for enhanced breast cancer management. Nanomedicine: Nanotechnology, Biology and Medicine. 24, 102147. doi:10.1016/j.nano.2019.102147 |
dc.relation.references | Patel, J-K., Pathak, Y-V. (Eds) 2021. Emerging technologies for nanoparticle manufacturing. Springer Nature. Switzerland, pp 25-36. |
dc.relation.references | Pivetta, T.P., Simões, S., Araújo, M.M., Carvalho, T., Arruda, C., Marcato, P.D. 2018. Development of nanoparticles from natural lipids for topical delivery of thymol: Investigation of its anti-inflammatory properties. Colloids Surf. B. 164, 281–290. doi:10.1016/j.colsurfb.2018.01.05 |
dc.relation.references | Popov, A., Schopf, L., Bourassa, J., Chen, H.B. 2016. Enhanced pulmonary delivery of fluticasone propionate in rodents by mucus-penetrating nanoparticles. Int. J. Pharm. 502, 188-197. doi: 10.1016/j.ijpharm.2016.02.031 |
dc.relation.references | Rahdar, A., Sargazi, S., Barani, M., Shahraki, S., Sabir, F., Aboudzadeh, M.A. 2021. Lignin- stabilized doxorubicin microemulsions: Synthesis, physical characterization, and in vitro assessments. Polymers. 13, 641. doi:10.3390/polym13040641 |
dc.relation.references | Raina, H., Kaur, S., Jindal, A.B. 2017. Development of efavirenz loaded solid lipid nanoparticles: Risk assessment, quality-by-design (QbD) based optimization and physicochemical characterization. J. Drug Deliv. Sci. Technol. 39, 180-191. doi:10.1016/j.jddst.2017.02.013 |
dc.relation.references | Reddy, M.S.B., Ponnamma, D., Choudhary, R., Sadasivuni, K.K. 2021. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers. 13, 1105. doi:10.3390/polym13071105 |
dc.relation.references | Riadi, Y., Afzal, O., Geesi, M.H., Almalki, W.H., Singh, T. 2023. Baicalin-loaded lipid–polymer hybrid nanoparticles inhibiting the proliferation of human colon cancer: Pharmacokinetics and in vivo evaluation. Polymers. 15, 598. doi:10.3390/polym15030598 |
dc.relation.references | Rowe, R.C., Sheskey, P.J., Quinn, M.E. (Eds). 2009. Handbook of Pharmaceutical Excipients. Sixth ed. Pharmaceutical Press. American Pharmacists Association. London. |
dc.relation.references | Sahle, F. F., Gerecke, C., Kleuser, B., Bodmeier, R. 2017. Formulation and comparative in vitro evaluation of various dexamethasone-loaded pH-sensitive polymeric nanoparticles intended for dermal applications. Int. J. Pharm. 516, 21-31. doi:10.1016/j.ijpharm.2016.11.029 |
dc.relation.references | Santhanes, D., Wilkins, A., Zhang, H., Aitken, R.J., Liang, M. 2022. Microfluidic formulation of lipid/polymer hybrid nanoparticles for plasmid DNA (pDNA) delivery. Int. J. Pharm. 627, 122223. doi:10.1016/j.ijpharm.2022.122223 |
dc.relation.references | Schwarz, J.C., Baisaeng, N., Hoppel, M., Löw, M., Keck, C. M., Valenta, C. 2013. Ultra-small NLC for improved dermal delivery of coenyzme Q10. Int. J. Pharm. 447, 213-217. doi:10.1016/j.ijpharm.2013.02.037 |
dc.relation.references | Stetefeld, J., McKenna, S.A., Patel, T.R. 2016. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys. Rev. 8, 409-427. doi:10.1007/s12551-016- 0218-6 |
dc.relation.references | Suksiriworapong, J., Rungvimolsin, T., A-gomol, A., Junyaprasert, V.B., Chantasart, D. 2013. Development and characterization of lyophilized diazepam-loaded polymeric micelles. AAPS PharmSciTech. 15, 52-64. doi:10.1208/s12249-013-0032-4 |
dc.relation.references | Tahir, N., Madni, A., Li, W., Correia, A., Khan, M.M., Rahim, M.A., Santo, H.A. 2020. Microfluidic fabrication and characterization of sorafenib-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery. Int. J. Pharm. 581, 119275. doi:10.1016/j.ijpharm.2020.119275 |
dc.relation.references | Tiwari, S., Mall, C., Solanki, P.P. 2020. CMC studies of CTAB, SLS & tween 80 by spectral and conductivity methodology to explore its potential in photogalvanic cell. Surf. Interfaces. 18, 100427. doi:10.1016/j.surfin.2019.100427 |
dc.relation.references | Torres-Flores, G., Türeli-Nazende, G., Akif-Emre, T. 2019. Preparation of fenofibrate loaded Eudragit L100 nanoparticles by nanoprecipitation method. Mater. Today: Proc. 13, 428-435. doi:10.1016/j.matpr.2019.03.176 |
dc.relation.references | Turk, C.T.S., Oz, U.C., Serim, T.M., Hascicek, C. 2013. Formulation and optimization of nonionic surfactants emulsified nimesulide-loaded PLGA-based nanoparticles by design of experiments. AAPS PharmSciTech. 15, 161-176. doi:10.1208/s12249-013-0048-9 |
dc.relation.references | van Krevelen, D.W., Te Nijenhuis, K. 2009. Properties of polymers. Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Fourth ed. Elsevier. Slovenia, pp. 189-227. |
dc.relation.references | Woodruff, M.A., Hutmacher, D.W. 2010. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog. Polym. Sci. 35, 1217-1256. doi:10.1016/j.progpolymsci.2010.0 |
dc.relation.references | Xu, S., Wang, H. 2006. Separation of tetrahydrofuran–water azeotropic mixture by batch extractive distillation process. Chem. Eng. Res. Des. 84, 478-482. doi:10.1205/cherd05050 |
dc.relation.references | Yan, J., Guo, J., Wang, Y., Xing, X., Zhang, X., Zhang, G., Dong, Z. 2022. Acute myocardial infarction therapy using calycosin and tanshinone co-loaded mitochondria targeted lipid- polymer hybrid nano-system: Preparation, characterization, and anti myocardial infarction activity assessment, Biomed. Pharmacother. 155, 113650.
doi:10.1016/j.biopha.2022.113650 |
dc.relation.references | Zhang, X., Yang, L., Zhang, C., Liu, D., Meng, S., Zhang, W., Meng, S. 2019. Effect of polymer permeability and solvent removal rate on in situ forming implants: drug burst release and microstructure. Pharmaceutics. 11, 520. doi:10.3390/pharmaceutics11100520 |
dc.relation.references | Zheng, D., Giljohann, D.A., Chen, D.L., Massich, M.D., Wang, X-Q., Iordanov, H., Mirkin, C.A., Paller, A.S. 2012. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc. Natl. Acad. Sci. 109, 11975-11980. doi:10.1073/pnas.1118425109 |
dc.relation.references | Zhang, Z., Tsai, P-C., Ramezanli, T., Michniak-Kohn, B.B. 2013. Polymeric nanoparticles- based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 205-218. doi:10.1002/wnan.1211 |
dc.relation.references | Zhu, B., Zhang, H., Yu, L. 2017. Novel transferrin modified and doxorubicin loaded Pluronic 85/lipid-polymeric nanoparticles for the treatment of leukemia: In vitro and in vivo therapeutic effect evaluation. Biomed. Pharmacother. 86, 547-554. doi:10.1016/j.biopha.2016.11.121 |
dc.relation.references | Abd-Allah, H., Abdel-Aziz, R. T.A., Nasr, M. 2020. Chitosan nanoparticles making their way to clinical practice: A feasibility study on their topical use for acne treatment. Int. J. Biol. Macromol. 1, 262-270. doi: 10.1016/j.ijbiomac.2020.04.040 |
dc.relation.references | Abdelkader, H., Longman, M.R., Alany, R.G., Pierscionek, B. 2016. Phytosome-hyaluronic acid systems for ocular delivery of L-carnosine. 14, 2815-2827. doi: 10.2147/IJN.S104774 |
dc.relation.references | Adrar, N., Bahadori, F., Ceylan, F.D., Topçu, G., Bedjou, F., Capanoglu, E. 2021. Stability evaluation of interdigitated liposomes prepared with a combination of 1,2‐distearoyl‐sn‐ glycero‐3‐phosphocholine and 1,2‐dilauroyl‐sn‐glycero‐3‐phosphocholine. J. Chem. Technol. Biotechnol. 96, 2537-2546. doi:10.1002/jctb.6793 |
dc.relation.references | Austin, R.J.H., Maschera, B., Walker, A., Fairbairn, L., Meldrum, E., Farrow, S.N., Uings, I.
J. 2002. Mometasone furoate is a less specific glucocorticoid than fluticasone propionate. Eur. Respir. J. 206, 1386-1392. doi:10.1183/09031936.02.02472001 |
dc.relation.references | Bachhav, S.S., Dighe, V.D., Kotak, D., Devarajan, P.V. 2017. Rifampicin lipid-polymer hybrid nanoparticles (Lipomer) for enhanced Peyer’s patch uptake. Int. J. Pharm. 532, 612- 622. doi:10.1016/j.ijpharm.2017.09.040 |
dc.relation.references | Baena Aristizábal, C.M. 2015. Vectorización del extracto de Physialis peruviana L. en nuevos sistemas de liberación de uso farmacéutico. Tesis de Doctorado en Ciencias Farmacéuticas. Universidad Nacional de Colombia. Repositorio Institucional – Universidad Nacional de Colombia. |
dc.relation.references | Balu, R., Kumar, T.S.S., Ramalingam, M., Ramakrishna, S. 2011. Electrospun polycaprolactone/poly(1,4-butylene adipate-co-polycaprolactam) blends: potential biodegradable scaffold for bone tissue regeneration. J. Biomater. Tissue Eng. 1, 30-39. doi:10.1166/jbt.2011.1004 |
dc.relation.references | Bunjes, H., Westesen, K., Koch, M.H.J. 1996. Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int. J. Pharm. 129, 159-173. doi:10.1016/0378- 5173(95)04286-5 |
dc.relation.references | Cho, E.C., Cho, K., Ahn, J.K., Kim, J., Chang, I.S. 2006. Effect of particle size, composition, and thermal treatment on the crystalline structure of polycaprolactone nanoparticles. Biomacromolecules. 7, 1679-1685. doi:10.1021/bm050883s |
dc.relation.references | Del Ángel-Sánchez, K., Borbolla-Torres, C.I., Palacios-Pineda, L.M., Ulloa-Castillo, N.A., Elías-Zúñiga, A. 2019. Development, fabrication, and characterization of composite polycaprolactone membranes reinforced with TiO2 nanoparticles. Polymers. 11, 1955. doi:10.3390/polym11121955 |
dc.relation.references | Desai, P.R., Marepally, S., Patel, A.R., Voshavar, C., Chaudhuri, A., Singh, M. 2013. Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo. J. Control. Release. 170, 51-63. doi:10.1016/j.jconrel.2013.04.021 |
dc.relation.references | Duggirala, N.K., Sonje, J., Yuan, X., Shalaev, E., Suryanarayanan, R. 2021. Phase behavior of poloxamer 188 in frozen aqueous solutions – Influence of processing conditions and cosolutes. Int. J. Pharm. 20, 121145. doi.org/10.1016/j.ijpharm.2021.121145 |
dc.relation.references | Elazazy, M.S., Issa, A.A., Al-Mashreky, M., Al-Sulaiti, M., Al-Saad, K. 2018. Application of fractional factorial design for green synthesis of cyano-modified silica nanoparticles: Chemometrics and multifarious response optimization. Adv. Powder. Technol. 29, 1204- 1215. doi:10.1016/j.apt.2018.02.012 |
dc.relation.references | Fadaie, M., Mirzaei, E. 2018. Nanofibrillated chitosan/polycaprolactone bionanocomposite scaffold with improved tensile strength and cellular behavior. Nanomed. J. 5, 77-89. doi: 10.22038/nmj.2018.005.004 |
dc.relation.references | Fang, J-Y., Fang, C-L., Liu, C-H., Su, Y-H. 2008. Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur. J. Pharm Biopharm. 70, 633-640. doi:10.1016/j.ejpb.2008.05.008 |
dc.relation.references | Far, J., Abdel-Haq, M., Gruber, M., Abu Ammar, A. 2020. Developing biodegradable nanoparticles loaded with mometasone furoate for potential nasal drug delivery. ACS Omega. 5, 7432-7439. doi:10.1021/acsomega.0c00111 |
dc.relation.references | Fetisov, G. V. 2020. X-ray diffraction methods for structural diagnostics of materials: progress and achievements. Phys.-Uspekhi. 63, 2-32. doi:10.3367/ufne.2018.10.038435 |
dc.relation.references | Garg, N.K., Singh, B., Sharma, G., Kushwah, V., Tyagi, R.K., Jain, S., Prakash, K.O. 2015. Development and characterization of single step self-assembled lipid polymer hybrid nanoparticles for effective delivery of methotrexate. RSC Adv. 5, 62989-62999. doi:10.1039/C5RA12459J |
dc.relation.references | Göke, K., Roese, E., Arnold, A., Kuntsche, J., Bunjes, H. 2016. Control over particle size distribution by autoclaving poloxamer-stabilized trimyristin nanodispersions. Mol. Pharm. 13, 3187-3195. doi:10.1021/acs.molpharmaceut.6b0 |
dc.relation.references | Hsu, M.N., Luo, R., Kwek, K.Z., Por, Y.C., Zhang, Y., Chen, C.H. 2015. Sustained release of hydrophobic drugs by the microfluidic assembly of multistage microgel/poly (lactic-co- glycolic acid) nanoparticle composites. Biomicrofluidics. 9, 052601. doi:10.1063/1.4916230 |
dc.relation.references | Jenning, V., Gysler, A., Schäfer-Korting, M., Gohla, S.H. 2000. Vitamin A loaded solid lipid nanoparticles for topical use: Occlusive properties and drug targeting to the upper skin. Eur.
J. Pharm. Biopharm. 49, 211-218. doi:10.1016/s0939-6411(99)00075-2 |
dc.relation.references | Kamaly, N., Xiao, Z., Valencia, P., Radovic-Moreno, A.F., Farokhzad, O.C. 2012. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41, 2971-3010. doi:10.1039/c2cs15344k |
dc.relation.references | Kollamaram, G., Williams, G.R. 2021. The effect of the composition of polysorbate 80 grades on their physicochemical properties. J. Excipients and Food Chem. 12, 32-40. |
dc.relation.references | Kumar, N., Nautiyal, U. 2017. A review article on lyophilization techniques used in pharmaceutical. manufacturing. Int. J. Pharm. Med. Res. 5, 478-484. |
dc.relation.references | Martínez-Rodríguez. L.I. 2014. Estudio de la encapsulación de quercetina en partículas sólidas lipídicas preparadas por la técnica de emulsificación difusión. Trabajo de grado de pregrado en Farmacia – Universidad Nacional de Colombia |
dc.relation.references | Mahmood, S., Kiong, K.C., Tham, C.S., Chien, T.C., Hilles, A.R., Venugopal, J.R. 2020. PEGylated lipid polymeric nanoparticle–encapsulated acyclovir for in vitro controlled release and ex vivo gut sac permeation. AAPS PharmSciTech. 21, 285. doi:10.1208/s12249-020-01810-0 |
dc.relation.references | Mehta, A.B., Nadkarni, N.J, Patil, S.P., Godse, K.V., Gautam, M., Agarwal, S. 2016. Topical corticosteroids in dermatology. Indian J. Dermatol. Venereol. Leprol. 82, 371-378. doi:10.4103/0378-6323.178903 |
dc.relation.references | Misery, L. 2012. Why is there poor adherence to topical corticosteroid therapy in atopic dermatitis?, Rev. Dermatol. 7, 5-7. doi:10.1586/edm.11.77 |
dc.relation.references | Montgomery. D.C. 2013. Design and analysis of experiments. Eighth ed. Wiley. New York, pp. 320-322. |
dc.relation.references | Moreno de Araujo, M., Borgheti-Cardoso, L.N., Garcia-Praça, F., Marcato, P.D., Brada- Bentley, M.V.L. 2023. Solid lipid-polymer hybrid nanoplatform for topical delivery of siRNA: In vitro biological activity and permeation studies. J. Funct. Biomater. 14, 374. doi: 10.3390/jfb14070374 |
dc.relation.references | Morris. K.R., Knipp, G.T., Serajuddin, A.T.M. 1992. Structural properties of polyethylene glycol - polysorbate 80 mixture, a solid dispersion vehicle. J. Pharm. Sci. 81, 1185-1188. doi:10.1002/jps.2600811212 |
dc.relation.references | Nanaki, S., Eleftheriou, R.M., Barmpalexis, P., Kostoglou, M., Karavas, E., Bikiaris, D. 2019. Evaluation of dissolution enhancement of aprepitant drug in ternary pharmaceutical solid dispersions with Soluplus® and poloxamer 188 prepared by melt mixing. Sci. 1, 48. doi:10.3390/sci1020048 |
dc.relation.references | Nekkanti, V., Venkateshwarlu, V., Pillai, R. 2012. Preparation, characterization and in vivo evaluation of raloxifene hydrochloride solid lipid nanoparticles. Pharm. Nanotechnol. 1, 68-
77. doi:10.2174/2211738511301010068 |
dc.relation.references | Nic Dhonncha, E., O’Connor, C., O’Connell, G., Quinlan, C., Roche, L., Murphy, M. 2021. Adherence to treatment with prescribed topical corticosteroid therapy and potential barriers to adherence among women with vulvar lichen sclerosus: a prospective cross‐sectional study. Clin. Exp. Dermatol. 46, 734-735. doi:10.1111/ced.14527 |
dc.relation.references | Nilsson, E.J., Lind, T.K., Scherer, D., Skansberger, T., Mortensen, K., Engblom, J., Kocherbitov, V. 2020. Mechanisms of crystallisation in polysorbates and sorbitan esters. CrystEngComm. 22, 3840-3853. doi:10.1039/d0ce00236d |
dc.relation.references | Orellana-Vázquez, K.C. 2018. Estudio de la degradabilidad del PCL (Policaprolactona) dosificado con la lignina extraída de la fibra de banano. Trabajo de grado. Universidad Politécnica Salesiana. Cuenca. |
dc.relation.references | Ourique, A.F., Contri, R.V., Guterres, S.S., Beck, R.C.R., Pohlmann, A.R., Melero, A., Schaefer, U.F. 2012. Set-up of a method using LC-UV to assay mometasone furoate in pharmaceutical dosage forms. Quím. Nova. 35, 818-821. doi:10.1590/s0100- 40422012000400030 |
dc.relation.references | Papakostas, D., Rancan, F., Sterry, W., Blume-Peytavi, U., Vogt, A. 2011. Nanoparticles in dermatology. Arch. Dermatol. Res. 303, 533–550. doi:10.1007/s00403-011-1163-7 |
dc.relation.references | Parmar, K., Patel, H. 2023. Dacarbazine-loaded lipid polymer hybrid nanoparticles for management of skin melanoma: Optimization and anticancer studies. BioNanoScience. 13, 1102269. doi: 10.1007/s12668-023-01236-5 |
dc.relation.references | Pople, P.V., Singh, K.K. 2006. Development and evaluation of topical formulation containing solid lipid nanoparticles of vitamin A. AAPS PharmSciTech, 7, 63-69. doi:10.1208/pt070491 |
dc.relation.references | Pramod, K., Suneesh, C.V., Shanavas, S., Ansari, S.H., Ali, J. 2015. Unveiling the compatibility of eugenol with formulation excipients by systematic drug-excipient compatibility studies. J. Anal. Sci. Technol. 6, 2-14. doi:10.1186/s40543-015-0073-2 |
dc.relation.references | Pukale, S.S., Sharma, S., Dalela, M., Singh, Singh, A.K., Mohanty, S., Mittal, A., Chitkara, D. 2020. Multi-component clobetasol-loaded monolithic lipid-polymer hybrid nanoparticles ameliorate imiquimod-induced psoriasis-like skin inflammation in Swiss albino. Acta Biomater. 115, 393-409. doi: https://doi.org/10.1016/j.actbio.2020.08.020 |
dc.relation.references | Rabha, B., Bharadwaj, K.K., Baishya, D., Sarkar, T., Edinur, H.A., Pati, S. 2021. Synthesis and characterization of diosgenin encapsulated poly-ε-caprolactone-pluronic nanoparticles and its effect on brain cancer cells. Polymers. 13, 1322. doi:10.3390/polym13081322 |
dc.relation.references | Rampado, R., Peer, D. 2023. Design of experiments in the optimization of nanoparticle- based drug delivery systems. J. Control. Release. 358, 398-419. doi:10.1016/j.jconrel.2023.05.001 |
dc.relation.references | Salgado, A.C.G.B., da Silva, A.M.N.N., Machado, M.C.J.C., Duarte, M.A. da S.C., Ribeiro, H.M. de O.M. 2010. Development, stability and in vitro permeation studies of gels containing mometasone furoate for the treatment of dermatitis of the scalp. Brazilian J. Pharm. Sci. 46, 109-114. doi:10.1590/s1984-82502010000100012 |
dc.relation.references | Sharma, A., Jain, C.P., Tanwar, Y.S. 2013. Preparation and characterization of solid dispersions of carvedilol with poloxamer 188. J. Chil. Chem. Soc. 58, 1553-1557. doi:10.4067/s0717-97072013000100012 |
dc.relation.references | Shinde, G., Desai, P., Shelke, S., Patel, R., Bangale, G., Kulkarni, D. 2020. Mometasone furoate loaded aspasomal gel for topical treatment of psoriasis: formulation, optimization, in vitro and in vivo performance. J. Dermatolog. Treat. 33, 885-896. doi:10.1080/09546634.2020.1789043 |
dc.relation.references | Shoormeij, Z., Taheri, A., Homayouni, A. 2017. Preparation and physicochemical characterization of meloxicam orally fast disintegration tablet using its solid dispersion. Braz. J. Pharm. Sci. 53, e00176. doi:10.1590/s2175-97902017000400176 |
dc.relation.references | Sigma -Aldrich. Policaprolactona. https://www.sigmaaldrich.com/CO/es/search/policaprolactona?focus=products&page=1&p erpage=30&sort=relevance&term=policaprolactona&type=product. Consultado: 02-01-
2024 |
dc.relation.references | Sigma -Aldrich. Poly(D,L-lactide-co-glycolide). https://www.sigmaaldrich.com/CO/es/product/sigma/p2191. Consultado: 02-01-2024 |
dc.relation.references | Tahir, N., Madni, A., Balasubramanian, V., Rehman, M., Correia, A., Kashif, P.M., Mäkilä, E., Salonen, J., Santos H.A. 2017. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. Int. J. Pharm. 533, 156-168. doi:10.1016/j.ijpharm.2017.09.061 |
dc.relation.references | Tavares Luiz, M., Santos Rosa Viegas, J., Palma Abriata, J., Viegas, F., Testa Moura de Carvalho Vicentini, F., Lopes Badra Bentley, M.V., Chorilli, M., Maldonado Marchetti, J., Tapia-Blácido, D.R. 2021. Design of experiments (DOE) to develop and to optimize nanoparticles as drug delivery systems. Eur. J. Pharm. Biopharm. 165, 127-148. doi:10.1016/j.ejpb.2021.05.011 |
dc.relation.references | Thanki, K., Zeng, X., Justesen, S., Tejlmann, S., Falkenberg, E., Van Driessche, E., Nielsen, H.M., Franzyk, H., Foged, C. 2017. Engineering of small interfering RNA-loaded lipidoid-poly (DL -lactic-co-glycolic acid) hybrid nanoparticles for highly efficient and safe gene silencing: A quality by design-based approach. Eur. J. Pharm. Biopharm, 120, 22-33. doi:10.1016/j.ejpb.2017.07.014 |
dc.relation.references | Toll, R., Jacobi, U., Richter, H., Lademann, J., Schaefer, H., Blume-Peytavi, U. 2004. Penetration profile of microspheres in follicular targeting of terminal hair follicles. J. Invest. Dermatol. 123, 168-176. doi:10.1111/j.0022-202x.2004.22717 |
dc.relation.references | WHO Expert Committee on Specification for Pharmaceutical Preparations. Stability testing of active pharmaceutical ingredients and finished pharmaceutical products. Annex 2. 2009. Forty-third report. World Health Organization. Geneve. Switzerland. |
dc.relation.references | Xie, Y., Li, G., Yuan, X., Cai, Z., Rong, R. 2009. Preparation and in vitro evaluation of solid dispersions of total flavones of Hippophae rhamnoides L. AAPS PharmSciTech. 10, 631- 640. doi:10.1208/s12249-009-9246-x |
dc.relation.references | Yang, Q., Owusu-Ababio, G. 2000. Biodegradable progesterone microsphere delivery system for osteoporosis therapy. Drug Dev. Ind. Pharm. 26, 61-70. doi:10.1081/DDC- 100100328 |
dc.relation.references | Yalcin, T.E., Ilbasmis-Tamer, S., Takka, S. 2018. Development and characterization of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs) using central composite design. Int. J. Pharm. 548, 255-262. doi:10.1016/j.ijpharm.2018.06.063 |
dc.relation.references | Zheng, M., Gong, P., Zheng, C., Zhao, P., Luo, Z., Ma, Y., Cai, L. 2015. Lipid-polymer nanoparticles for folate-receptor targeting delivery of doxorubicin. J. Nanosci. Nanotechnol. 15, 4792-4798. doi:10.1166/jnn.2015.9604 |
dc.relation.references | Zhu, J.J., Tang, C.H., Luo, F.C., Yin, S.W., Yang, X.Q. 2022. Topical application of zein- silk sericin nanoparticles loaded with curcumin for improved therapy of dermatitis. Mater. Today Chem. 24, 100802. doi:10.1016/j.mtchem.2022.100802 |
dc.relation.references | Aina, A., Gupta, M., Boukari, Y., Morris, A., Billa, N., Doughty, S. 2015. Monitoring model drug microencapsulation in PLGA scaffolds using X-ray powder diffraction. Saudi Pharm.
J. 24, 227–231. doi:10.1016/j.jsps.2015.03.015 |
dc.relation.references | Ashok, B., Arleth, L., Hjelm, R.P., Rubinstein, I., Önyüksel, H. 2004. In vitro characterization of PEGylated phospholipid micelles for improved drug solubilization: Effects of PEG chain length and PC incorporation. J. Pharm. Sci. 93, 2476–2487. doi:10.1002/jps.20150 |
dc.relation.references | Chan, J.M., Zhang, L., Yuet, K.P., Liao, G., Rhee, J-W., Langer, R., Farokhzad, O.C. 2009. PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials. 30, 1627–1634. doi:10.1016/j.biomaterials.2008.12.013 |
dc.relation.references | Clawson, C., Ton, L., Aryal, S., Fu, V., Esener, S., Zhang, L. 2011. Synthesis and characterization of lipid–polymer hybrid nanoparticles with pH-triggered poly(ethylene glycol) shedding. Langmuir. 27, 10556–10561. doi:10.1021/la202123e |
dc.relation.references | Coêlho Rios Silva, A.T., Oliveira-Cardoso, B.C., Scarpelli Ribeiro, M.E., Souza-Freitas, R.F., Sousa, R.G. 2015. Synthesis, characterization, and study of PLGA copolymer in vitro degradation. J. Biomater. Nanobiotechnol. 6, 8-19. doi:10.4236/jbnb.2015.61002 |
dc.relation.references | Dos Santos-Ferreira, D., Dornelas-Faria, S., Caldeira de Araújo, S., Lopes, C.S., Teixeira, A.M., Magalhães-Paniago, R., De Souza-Filho, J.D., De Jesus-Pinto, B.L., Oliveira, A.R., Guimarães, P.C., Miranda, L.A., Ferreira, R.J.A., Oliveira, M.C. 2016. Development of a bone-targeted pH-sensitive liposomal formulation containing doxorubicin: physicochemical characterization, cytotoxicity, and biodistribution evaluation in a mouse model of bone metastasis. Int. J. Nanomed. 11, 3737–3751. doi:10.2147/ijn.s109966 |
dc.relation.references | Gadzinowski, M., Slomkowski, S., Elaissari, A., Pichot, C. 2000. Phase transfer and characterization of poly(epsilon-caprolactone) and poly(L-lactide) microspheres. Biomater. Sci. Polym. Ed. 11, 459-480. doi: 10.1163/156856200743814 |
dc.relation.references | García‐García, P., Briffault, E., Landin, M., Evora, C., Diaz‐Rodríguez, P., Delgado, A. 2021. Tailor‐made oligonucleotide‐loaded lipid‐polymer nanosystems designed for bone gene therapy. Drug Deliv. Transl. Res. 11, 598–607. doi:10.1007/s13346-021-00926- |
dc.relation.references | Guo, F., Shang, J., Zhao, H., Lai, K., Li, Y., Fan, Z., Hou, Z., Su, G. 2017. Cube-shaped theranostic paclitaxel prodrug nanocrystals with surface functionalization of SPC and MPEG-DSPE for imaging and chemotherapy. Colloids Surf. B: Biointerfaces. 160, 649– 660. doi:10.1016/j.colsurfb.2017.10.01 |
dc.relation.references | Higashi, K., Mibu, F., Saito, K., Limwikrant, W., Yamamoto, K., Moribe, K. 2017. Composition-dependent structural changes and antitumor activity of ASC-DP/DSPE-PEG nanoparticles. Eur. J. Pharm. Sci. 99, 24–31. doi:10.1016/j.ejps.2016.11.029 |
dc.relation.references | Kamel, A.O., Awad, G.A.S., Geneidi, A.S., Mortada, N.D. 2009. Preparation of intravenous stealthy acyclovir nanoparticles with increased mean residence time. AAPS PharmSciTech. 10, 1427–1436. doi:10.1208/s12249-009-9342 |
dc.relation.references | Liu, J., Lee, H., Allen, C. 2006. Formulation of drugs in block copolymer micelles: Drug loading and release. Curr. Pharm. Des. 12, 4685–4701. doi:10.2174/138161206779026263 |
dc.relation.references | Liu, Y., Ghassemi, A.H., Hennink, W.E., Schwendeman, S.P. 2012. The microclimate pH in poly(d,l-lactide-co-hydroxymethyl glycolide) microspheres during biodegradation. Biomaterials. 33, 7584–7593. doi:10.1016/j.biomaterials |
dc.relation.references | Masoudipour, E., Kashanian, S., Azandaryani, A.H., Omidfar, K., Bazyar, E. 2017. Surfactant effects on the particle size, zeta potential, and stability of starch nanoparticles and their use in a pH-responsive manner. Cellulose. 24, 4217–4234. doi:10.1007/s10570- 017-1426-3 |
dc.relation.references | Mora-Huertas, C.E., Couenne, F., Fessi, H., Elaissari, A. 2012. Electrokinetic properties of poly-ε-caprolactone-based nanoparticles prepared by nanoprecipitation and emulsification-diffusion methods: A comparative study. J. Nanopart. Res. 14, 876. doi:10.1007/s11051- 012-0876-7 |
dc.relation.references | Tahir, N., Madni, A., Correia, A., Rehman, M., Balasubramanian, V., Khan, M.M., Santos, H.A. 2019. Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy. Int. J. Nanomedicine. 14, 4961–4974. doi:10.2147/ijn.s209325 |
dc.relation.references | Viitala, L., Pajari, S., Gentile, L., Määttä, J., Gubitosi, M., Deska, J., Sammalkorpi, M., Olsson, U., Murtomäki, L. 2019. Shape and phase transitions in a PEGylated phospholipid system. Langmuir. 35, 3999-4010. doi:10.1021/acs.langmuir.8b03829 |
dc.relation.references | Wu, X.Y. 2016. Strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery. Expert Opin. Drug Deliv. 13, 609–612. doi:10.1517/17425247.2016.116566 Zeeuwen, P. 2004. Epidermal differentiation: The role of proteases and their inhibitors. Eur. J. Cell Biol. 83, 761–773. doi:10.1078/0171-9335-00388 |
dc.relation.references | Zhang, Z., Wang, X., Zhu, R., Wang, Y., Li, B., Ma, Y., Yin, Y. 2016. Synthesis and characterization of serial random and block-copolymers based on lactide and glycolide. Polym. Sci. Ser. B. 58, 720–729. doi:10.1134/s1560090416060191 |
dc.relation.references | Zheng, M., Gong, P., Zheng, C., Zhao, P., Luo, Z., Ma, Y., Cai, L. 2015. Lipid-polymer nanoparticles for folate-receptor targeting delivery of doxorubicin. J. Nanosci. Nanotechnol. 15, 4792–4798. doi:10.1166/jnn.2015.9604 |
dc.relation.references | Baez, M.E., Zincker, J. 1999. Parámetro de calidad analítica de un método de determinación multiresiduos de plaguicidas por HPLC-DAD. Bol. Soc. Chil. Quím. 3, 357-
366. doi:10.4067/S0366-16441999000300013 |
dc.relation.references | Blessy, M., Patel, R.D., Prajapati, P.N., Agrawal, Y.K. 2014. Development of forced degradation and stability indicating studies of drugs - A review. J. Pharm. Anal. 4, 159–165. doi:10.1016/j.jpha.2013.09.003 |
dc.relation.references | De Zan, M.M. 2011. Utilización de quimiometría para mejorar el rendimiento de la cromatografía líquida de alta resolución. Universidad Nacional del Litoral Facultad de Bioquímica y Ciencias Biológicas. |
dc.relation.references | International Conference of Harmonisation ICH. Q2 (R2). Validation of Analytical Procedures: Text and Methodology Guidance for Industry., 2023. |
dc.relation.references | Magnusson, B., Örnemark, U. (Eds.). 2014. Eurachem Guide: The fitness for purpose of analytical methods – A laboratory guide to method validation and related topics. Second ed. Disponible: www.eurachem.org. |
dc.relation.references | Sandoval, S. 2010. Validación de métodos y determinación de la incertidumbre de la medición: “Aspectos generales sobre la validación de métodos” Instituto de Salud Pública de Chile. |
dc.relation.references | Ngwa, G. 2010. Forced degradation studies. Forced degradation as an integral part of HPLC stability-indicating method development. Drug Deliv. Technol. 5, 56-59. Disponible en: https://studylib.net/doc/18112713/forced-degradation-as-an-integral-part-of-hplc- stability |
dc.relation.references | OMS Serie de Informes Técnicos, No. 902, 2002. Informe 36, Anexo 3. Buenas prácticas para Laboratorios Nacionales de Control Farmacéutico |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.lemb | NANOPARTICULAS |
dc.subject.lemb | Nanoparticles |
dc.subject.lemb | MEZCLA (INGENIERIA QUIMICA) |
dc.subject.lemb | Mixing |
dc.subject.lemb | ENFERMEDADES DE LA PIEL |
dc.subject.lemb | Skin diseases |
dc.subject.lemb | DERMATITIS POR CONTACTO |
dc.subject.lemb | Contact dermatitis |
dc.subject.lemb | ALERGIA |
dc.subject.lemb | Allergy |
dc.subject.lemb | POLIMEROS CONDUCTORES |
dc.subject.lemb | Conducting Polymers |
dc.subject.lemb | LIPIDOS |
dc.subject.lemb | Lipids |
dc.subject.proposal | Nanopartículas híbridas polímero – lípido |
dc.subject.proposal | Nanoprecipitación |
dc.subject.proposal | Dermatitis alérgica de contacto |
dc.subject.proposal | Furoato de mometasona |
dc.subject.proposal | Polymer–lipid hybrid nanoparticles |
dc.subject.proposal | Nanoprecipitation |
dc.subject.proposal | Allergic contact dermatitis |
dc.subject.proposal | Mometasone furoate |
dc.title.translated | Development of hybrid polymer-lipid nanoparticles with application in the treatment of allergic contact dermatitis |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | DataPaper |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Público general |