Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorMora Huertas, Claudia Elizabeth
dc.contributor.authorMartínez Muñoz, Oscar Iván
dc.date.accessioned2025-04-29T13:03:10Z
dc.date.available2025-04-29T13:03:10Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88134
dc.descriptionilustraciones, diagramas
dc.description.abstractLas nanopartículas híbridas polímero – lípido (HPLNP) son sistemas transportadores de sustancias activas que han demostrado resultados prometedores en el ámbito farmacéutico gracias a su tamaño y composición. Como un aporte a la investigación en este campo la presente investigación aborda dos estrategias para la preparación de HPLNP empleando la técnica de nanoprecipitación, en las que se incorpora furoato de mometasona, un corticosteroide útil para el tratamiento de patologías cutáneas como la dermatitis alérgica de contacto. La primera estrategia para la preparación de las HPLNP es a partir de un polímero y un lípido; en la segunda estrategia, se trabaja con un polímero y un fosfolípido modificado. En los dos casos se obtienen partículas con tamaños entre 150 y 250 nm, PDI menores a 0.2, potenciales Z entre -10 y - 40 mV y eficiencias de encapsulación superiores al 95 %. La liberación del activo ocurre a los 15 min en un medio adicionado de un agente solubilizante y las dispersiones acuosas mantienen su estabilidad física durante 60 días de almacenamiento en condiciones de envejecimiento natural y 30 días en envejecimiento acelerado según las condiciones para la zona IVb estipuladas por la OMS. Los sistemas nanoparticulados se caracterizan por FTIR, DSC, XRD y TEM observándose que las HPLNP presentan una estructura predominantemente amorfa sin que se detecten incompatibilidades físicas o químicas relevantes. En conjunto, los resultados de esta investigación constituyen la fase preliminar para el desarrollo de nanopartículas que aporten valor agregado a los productos de administración tópica actualmente disponibles en el mercado a base de furoato de mometasona para los que se han evidenciado dificultades en la adherencia a la terapia debido a la necesidad de reaplicaciones y a la generación de eventos adversos (Texto tomado de la fuente).
dc.description.abstractHybrid polymer-lipid nanoparticles (HPLNP) are promising drug carriers due to their size and composition. As a contribution in this field, this work addresses two strategies to prepare this kind of particles using the nanoprecipitation technique, wherein mometasone furoate is incorporated. This is a corticosteroid useful to treat skin pathologies such as allergic contact dermatitis. The first strategy to preparing HPLNP is by using a polymer and a lipid; in the second one, a polymer and a modified phospholipid are employed. In both cases, particles with sizes ranging between 150 and 250 nm, PDI less than 0.2, Z potentials between -10 and - 40 mV, and encapsulation efficiencies greater than 95 % are obtained. The release of the active ingredient occurs after 15 min in an aqueous medium added with a solubilizing agent. The nanoparticle dispersions keep stable for 60 days of storage under natural aging conditions and 30 days under accelerated aging. The nanoparticulate systems are characterized by FTIR, DSC, XRD and TEM. Overall, the obtained results are a preliminary phase to the develop nanoparticles providing added value to the topical products currently available on the market based on mometasone furoate, which evidence difficulties in the therapy adherence because of re-application is needed and adverse events are generated.
dc.description.sponsorship“Investigación Desarrollo, innovación y transferencia de conocimiento para el procesamiento de la semilla de Sacha Inchi en productos de valor agregado, como estrategia para mejorar la productividad del sector agroindustrial de la Región Cundinamarca”. BPIN 2020000100169. Regalías. Código Hermes: 45756"
dc.format.extentxxiv, 230 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéutica
dc.titleDesarrollo de nanopartículas híbridas polímero – lípido con potencial aplicación en el tratamiento de la dermatitis alérgica de contacto
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticas
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Farmacéuticas
dc.description.researchareaFarmacotecnia
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbdali, S., Yu, J. 2021. Occupational dermatoses related to personal protective equipment used during the COVID-19 pandemic. Dermatol. Clin. 39, 555-568. doi:10.1016/j.det.2021.05.009
dc.relation.referencesAerts, O., Dendooven, E., Foubert, K., Stappers, S., Ulicki, M., Lambert, J. 2020. Surgical mask dermatitis caused by formaldehyde (releasers) during the COVID ‐19 pandemic. Contact Derm. 83, 172-173. doi:10.1111/cod.13626
dc.relation.referencesBabino, G., Argenziano, G., Balato, A. 2022. Impact in contact dermatitis during and after SARS‐CoV2 pandemic. Curr. Treat. Options Allergy. 9, 19-26. doi:10.1007/s40521-022- 00298-2
dc.relation.referencesBothra, A., Das, S., Singh, M., Pawar, M., Maheswari, A. 2020. Retroauricular dermatitis with vehement use of ear loop face masks during COVID19 pandemic. J. Eur. Acad. Dermatol. Venereol. 34, e549-e552. doi:10.1111/jdv.16692
dc.relation.referencesCoondoo, A., Phiske, M., Verma, S., Lahiri, K. 2014. Side-effects of topical steroids: A long overdue revisit. Indian Dermatol. Online J. 5, 416. doi:10.4103/2229-5178.142483
dc.relation.referencesGuillet, G., Guillet, M.H., Dagregorio, G. 2005. Allergic contact dermatitis from natural rubber latex in atopic dermatitis and the risk of later Type I allergy. Contact Dermatitis. 53, 46-51. doi:10.1111/j.0105-1873.2005.00634.x
dc.relation.referencesGottlöber, P., Gall, H., Uwe-Peter, R. 2001. Allergic contact dermatitis from natural latex. Am. J. of Contact Dermat. 12, 135-138. doi:10.1053/ajcd.2001.20114
dc.relation.referencesJensen, L. B., Magnussson, E., Gunnarsson, L., Vermehren, C., Nielsen, H. M., Petersson, K. 2010. Corticosteroid solubility and lipid polarity control release from solid lipid nanoparticles. Int. J. Pharm. 390, 53-60. doi:10.1016/j.ijpharm.2009.10.022
dc.relation.referencesJohansen, J.D., Mahler, V., Lepoittevin, J-P., Frosch, P.J. (Eds). Contact dermatitis. 2021. Sixth ed. Springer. Switzerland, pp. 13-78.
dc.relation.referencesKao, J.S., Fluhr, J.W., Man, MQ., Fowler, A.J., Hachem, J.P., Crumrine, D., Ahn, S.K., Brown, B.E., Elias, P.M., Feingold, K.R. 2003. Short-term glucocorticoid treatment compromises both permeability barrier homeostasis and stratum corneum integrity: Inhibition of epidermal lipid synthesis accounts for functional abnormalities. J. Invest. Dermatol. 120, 456-464. doi:10.1046/j.1523-1747.2003.12053
dc.relation.referencesLázaro, A., Moreno-García, F. 2010. Corticosteroides tópicos. Inf. Ter. Sist. Nac. Salud. 34; 83-88.
dc.relation.referencesLong, H., Zhao, H., Chen, A., Yao, Z., Cheng, B., Lu, Q. 2020. Protecting medical staff from skin injury/disease caused by personal protective equipment during epidemic period of COVID‐19: experience from China. J. Eur. Acad. Dermatol. Venereol. 34, 919-921. doi:10.1111/jdv.16388
dc.relation.referencesMartínez-Muñoz, O.I., Ospina-Giraldo, L.F., Mora-Huertas, C.E., 2020. Nanoprecipitation: Applications for entrapping active molecules of interest in pharmaceutics, in: Abu-Thabit, N. (Ed.). Nano- and Microencapsulation techniques and applications. IntechOpen. London, pp. 101-135. doi:10.5772/ intechopen.93338
dc.relation.referencesNassau, S., Fonacier, L. 2019. Allergic contact dermatitis. Med. Clin. North Am. 104, 61- 76. doi:10.1016/j.mcna.2019.08.012
dc.relation.referencesPatel, N.U., D’Ambra, V., Feldman, S.R. 2017. Increasing adherence with topical agents for atopic dermatitis. Am. J. Clin. Dermatol. 18, 323-332. doi:10.1007/s40257-017-0261-5
dc.relation.referencesSchoepe, S., Schacke, H., May, E., Asadullah, K. 2006. Glucocorticoid therapy-induced skin atrophy. Exp. Dermatol. 15, 406-420. doi:10.1111/j.0906-6705.2006.00435
dc.relation.referencesTier, H.L., Balogh, E.A., Bashyam, A.M., Fleischer, A.B., Spergel, J.M., Masicampo, E.J., Kammrath, L.K., Strowd, L.C., Feldman, S.R. 2021. Tolerability of and adherence to topical treatments in atopic dermatitis: A narrative Review. Dermatol Ther. 11, 415-431. doi:10.1007/s13555-021-00500-4
dc.relation.referencesXie, Z., Yang, Y., Zhang, H. 2020. Mask‐induced contact dermatitis in handling COVID ‐19 outbreak. Contact Derm. 83, 166-167. doi:10.1111/cod.13599
dc.relation.referencesAbd, E., Roberts, M.S., Grice, J.E. 2016. A comparison of the penetration and permeation of caffeine into and through human epidermis after application in various vesicle formulations. Skin Pharmacol. Physiol. 29, 24-30. doi:10.1159/000441040
dc.relation.referencesAbdo, J.M., Sopko, N.A., Milner, S.M. 2020. The applied anatomy of human skin: A model for regeneration. Wound Med. 28, 100179. doi:10.1016/j.wndm.2020.100179
dc.relation.referencesAfshar, Z.M., Babazadeh A., Hasanpour, A., Barary, M., Sayad, B., Janbakhsh, A., Aryanian, Z., Ebrahimpour, S. 2021. Dermatological manifestations associated with COVID-19: A comprehensive review of the current knowledge. J. Med. Virol. 93, 5756- 5767. doi: 10.1002/jmv.27187
dc.relation.referencesAhmaditabar, P., Momtazi-Borojeni, A.A., Rezayan, A.H., Mahmoodi, M., Sahebkar, A., Mellat, M. 2017. Enhanced entrapment and improved in vitro controlled release of N-Acetyl Cysteine in hybrid PLGA/lecithin nanoparticles prepared using a nanoprecipitation/self- assembly method. J. Cell. Biochem. 118, 4203-4209. doi:10.1002/jcb.26070
dc.relation.referencesÁlvarez-Román, R., Naik, A., Kalia, Y.N., Guy, R.H., Fessi, H. 2004. Enhancement of topical delivery from biodegradable nanoparticles. Pharm. Res. 21, 1818-1825. doi:10.1023/b:pham.0000045235.86197
dc.relation.referencesBeck-Broichsitter, M. 2016. Stability-limit “Ouzo region” boundaries for poly (lactide- co - glycolide) nanoparticles prepared by nanoprecipitation. Int. J. Pharm. 511, 262-266. doi:10.1016/j.ijpharm.2016.07.010
dc.relation.referencesBeiu, C., Mihai, M., Popa, L., Cima, L., Popescu, M.N. 2020. Frequent hand washing for COVID‐19 prevention can cause hand dermatitis: Management tips. Cureus. 12, e7506. doi: 10.7759/cureus.7506
dc.relation.referencesBenson, H.A.E., Watkinson, A.C. (Eds.). 2012. Transdermal and Topical Drug Delivery. Principles and Practice. Wiley. New Jersey, pp. 3-22.
dc.relation.referencesBrar, K.K. 2020. A review of contact dermatitis. Ann. Allergy Asthma Immunol. 126, 32-39. doi:10.1016/j.anai.2020.10.003
dc.relation.referencesCaniga, M., Cabal, A., Mehta, K., Ross, D.S., Gil, M.A., Woodhouse, J.D., Eckman, J., Naber, J.R., Callahan, M.K., Goncalves, L., Hill, S.E., Mcleod, R.L., McIntosh, F., Freke, M.C., Visser, S.A.G., Johnson, N., Salmon, M., Cicmil, M. 2016. Preclinical experimental and mathematical approaches for assessing effective doses of inhaled drugs, using mometasone to support human dose predictions. J. Aerosol. Med. Pulm. Drug Deliv. 29, 362-377. doi:10.1089/jamp.2015.1253
dc.relation.referencesChambers, E.S., Vukmanovic‐Stejic, M. 2019. Skin barrier immunity and ageing. immunology. 160, 116-125. doi:10.1111/imm.13152
dc.relation.referencesChen, X., Carillo, M., Haltiwanger, R.C., Bradley, P. 2005. Solid state characterization of mometasone furoate anhydrous and monohydrate forms. J. Pharm. Sci. 94, 2496-2509. doi:10.1002/jps.20470
dc.relation.referencesCrim, C. 2001. A review of the pharmacology and pharmacokinetics of inhaled fluticasone propionate and mometasone furoate. Clin. Ther. 23, 1339-1354. doi:10.1016/s0149- 2918(01)80113-2
dc.relation.referencesD’Addio, S.M., Prud’homme, R.K. 2011. Controlling drug nanoparticle formation by rapid precipitation. Adv. Drug Deliv. Rev, 63, 417-426. doi:10.1016/j.addr.2011.04.005
dc.relation.referencesDas, L., Kaurav, M., Pandey, R.S. 2019. Phospholipid-polymer hybrid nanoparticles mediated transfollicular delivery of Quercetin: prospective implement for the treatment of androgenic alopecia. Drug Dev. Ind. Pharm. 45, 1654-1663. doi:10.1080/03639045.2019.1652635
dc.relation.referencesDavea, V., Taka, K., Sohgauraa, A., Guptaa, A., Sadhub, V. Reddy, K.R. 2019. Lipid- polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. J. Microbiol. Methods. 160, 130-142. doi:10.1016/j.mimet.2019.03.017
dc.relation.referencesDu, M., Ouyang, Y., Meng, F., Zhang, X., Ma, Q., Zhuang, Y., Liu, H., Pang, M., Cai, T., Cai, Y. 2019. Polymer-lipid hybrid nanoparticles: A novel drug delivery system for enhancing the activity of Psoralen against breast cancer. Int. J. Pharm. 561, 274-282. doi:10.1016/j.ijpharm.2019.03.006
dc.relation.referencesEroğlu, İ., Azizoğlu, E., Özyazıcı, M., Nenni, M., Gürer Orhan, H., Özbal, S., Tekmen, I., Ertam, I., Unal, I., Özer, Ö. 2014. Effective topical delivery systems for corticosteroids: dermatological and histological evaluations. Drug Deliv. 1-12. doi:10.3109/10717544.2014.960981
dc.relation.referencesFenart, L., Casanova, A., Dehouck, B., Duhem, C., Slupek, S., Cecchelli, R., Betbeder. 1999. Evaluation of effect of charge and lipid coating on ability of 60 nm nanoparticles to cross an in vitro model of the blood-brain barrier. J. Pharmacol. Exp. Ther. 291, 1017-1022.
dc.relation.referencesGalindo-Rodríguez, S.A., Puel, F., Briançon, S., Allémann, E., Doelker, E., Fessi, H. 2005. Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur. J. Pharm. Sci. 25, 357-367. doi:10.1016/j.ejps.2005.03.013
dc.relation.referencesGanachaud, F., Katz, J.L. 2005. Nanoparticles and nanocapsules created using the ouzo effect: Spontaneous emulsification as an alternative to ultrasonic and high-shear devices. ChemPhysChem. 6, 209-216. doi:10.1002/cphc.200400527
dc.relation.referencesGoossens, A., Aerts, O. 2022. Contact allergy to and allergic contact dermatitis from formaldehyde and formaldehyde releasers: A clinical review and update. Contact Dermatitis. 87, 20-27. doi:10.1111/cod.14089
dc.relation.referencesGutfreund, K., Bienias, W., Szewczyk, A., Kaszuba, A. 2013. Topical calcineurin inhibitors in dermatology. Part I: Properties, method and effectiveness of drug use. Postepy Dermatol. Alergol. 3, 165-169. doi:10.5114/pdia.2013.35619
dc.relation.referencesGutiérrez-Castañeda, L.D., Jaimes, Á.O., Sánchez Bottomley, W. 2017. Epidemiología de la dermatitis de contacto: pruebas epicutáneas estándar en el Instituto Nacional de Dermatología de Colombia. Piel. 32, 390-395. doi:10.1016/j.piel.2017.01.011
dc.relation.referencesHadinoto, K., Sundaresan, A., Cheow, W.S. 2013. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. Eur. J. Pharm. Biopharm. 85, 427- 443. doi:10.1016/j.ejpb.2013.07.002
dc.relation.referencesHerman, A., Aerts, O., de Montjoye, L., Tromme, I., Goossens, A., Baeck, M. 2018. Isothiazolinone derivatives and allergic contact dermatitis: a review and update. J. Eur. Acad. Dermatol. Venereol. 33, 267-276. doi:10.1111/jdv.15267
dc.relation.referencesHochhaus, G. 2008. Pharmacokinetic/pharmacodynamic profile of mometasone furoate nasal spray: Potential effects on clinical safety and efficacy. Clin. Ther. 30, 1-13. doi:10.1016/j.clinthera.2008.01.005
dc.relation.referencesHøybye, S., Møller, S.B., De Chunha Bang, F. 1991. Continuous and intermittent treatment of atopic dermatitis in adults with mometasone furoate versus hydrocortisone 17-butyrate. Curr. Ther. Res. 50, 67-72.
dc.relation.referencesKazem, S., Linssen, E.C., Gibbs, S. 2019. Skin metabolism phase I and phase II enzymes in native and reconstructed human skin: a short review. Drug Discov. Today, 24, 1899- 1910. doi:10.1016/j.drudis.2019.06.002
dc.relation.referencesJohansen, J.D., Mahler, V., Lepoittevin, J-P., Frosch, P.J. (Eds). Contact dermatitis. 2021. Sixth ed. Springer. Switzerland, pp. 95-138.
dc.relation.referencesJung, S., Otberg, N., Thiede, G., Richter, H., Sterry, W., Panzner, S., Lademann, J. 2006. Innovative liposomes as a transfollicular drug delivery system: penetration into porcine hair follicles. J. Invest. Dermatol. 126, 1728-1732. doi:10.1038/sj.jid.5700323
dc.relation.referencesKorting, H.C., Schöllmann, C., Willers, C., Wigger-Alberti, W. 2012. Bioavailability, antipsoriatic efficacy and tolerability of a new light cream with mometasone furoate 0.1%. Skin Pharmacol. Physiol. 25, 133-141. doi:10.1159/000335656
dc.relation.referencesKrishnamurthy, S., Vaiyapuri, R., Zhang, L., Chan, J.M. 2015. Lipid-coated polymeric nanoparticles for cancer drug delivery. Biomater. Sci. 3, 923-936. doi:10.1039/c4bm00427b
dc.relation.referencesLandsteiner, K., Chase, M.W. 1939. Studies on the sensitization of animals with simple chemical compounds: vi. Experiments on the sensitization of guinea pigs to poison ivy. J. Exp. Med. 69, 767-784. doi:10.1084/jem.69.6.767
dc.relation.referencesLewallen, R., Clark, A., Feldman, S.R. (Eds). 2015. Clinical handbook of contact dermatitis. Diagnosis and management by body region. CRC Press. Boca Raton, pp. 1-5.
dc.relation.referencesLisi, P., Stingeni, L., Cristaudo, A., Foti, C., Pigatto, P., Gola, M., Schena, D., Corazza, M., Bianchi, L. 2014. Clinical and epidemiological features of textile contact dermatitis: an Italian multicentre study. Contact Derm. 70, 344-350. doi:10.1111/cod.12179
dc.relation.referencesLong, H., Zhao, H., Chen, A., Yao, Z., Cheng, B., Lu, Q. 2020. Protecting medical staff from skin injury/disease caused by personal protective equipment during epidemic period of COVID‐19: experience from China. J. Eur. Acad. Dermatol. Venereol. 34, 919-921. doi:10.1111/jdv.16388
dc.relation.referencesMarchesi, E., Rozzoni, M., Pini, P. 1994. Comparative study of mometasone furoate and betamethasone dipropionate in the treatment of atopic dermatitis. G. Ital. Dermatol. Venereol. 129, 10-12.
dc.relation.referencesMartínez-Rivas, C. J., Tarhini, M., Badri, W., Miladi, K., Greige-Gerges, H., Nazari, Q.A., Galindo Rodríguez, S.A., Álvarez Román, R., Fessi, H., Elaissari, A. 2017. Nanoprecipitation process: From encapsulation to drug delivery. Int. J. Pharm. 532, 66-81. doi:10.1016/j.ijpharm.2017.08.064
dc.relation.referencesMcGowan, M.A., Scheman, A., Jacob, S.E. 2017. Propylene glycol in contact dermatitis. Dermatitis. 29, 6-12. doi:10.1097/der.0000000000000307
dc.relation.referencesMerck Sharp and Dohme Corp. Highlights of prescribing information. Elocom® (mometasone furoate) lotion, 0.1 % for topical use. 2018. USA. Disponible: chrome- extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.accessdata.fda.gov/drugsatfda _docs/label/2018/019796s029lbl.pdf
dc.relation.referencesMiller, S.D., Butler, L.D., Cleveland, R.P., Moorhead, J.W., Claman, H.N., Chiller, J.C. 1983. T-cell responses induced by the parenteral injection of antigen-modified syngeneic cells. Cell. Immunol. 82, 378-393. doi:10.1016/0008-8749(83)90171-5
dc.relation.referencesMinigh J. 2008. Mometasone furoate, in Enna, S.J., Bylund, D.B. (Eds). xPharm: The comprehensive pharmacology reference. Elsevier. Amsterdam, pp.1-5. doi:10.1016/b978- 008055232-3.62206-8
dc.relation.referencesMiri, V., Jangde, R.K., Singh, D., Suresh, P.K. 2023. Lipid-polymer hybrid nanoparticles for topical drug delivery system. J. Drug Deliv. Ther. 13, 113-120. doi:10.22270/jddt.v13i4.5789
dc.relation.referencesMolin, S., Abeck, D., Guilabert, A., Bellosta, M. 2013. Mometasone furoate: a well- established topical corticosteroid now with improved galenic formulations. J. Clin. Exp. Dermatol. Res. 4, 1000184. doi:10.4172/2155-9554.1000184
dc.relation.referencesMora-Huertas, C.E., Fessi, H., Elaissari, A. 2011. Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification–diffusion methods: Critical comparison. Adv. Colloid Interface Sci. 163, 90-122. doi:10.1016/j.cis.2011.02.005
dc.relation.referencesMortz, C.G., Andersen, K.E. 2008. New aspects in allergic contact dermatitis. Curr. Opin. Allergy Clin. Immunol. 8, 428-432. doi:10.1097/aci.0b013e32830d84
dc.relation.referencesNaňka, O., Elišková, M., Eliška, O., Karlova, U. 2009. Přehled anatomie: Čtvrtéí, doplněné a přepracované vydání. Galen. Praga
dc.relation.referencesMieszawska, A.J., Gianella, A., Cormode, D.P., Zhao, Y., Meijerink, A., Langer, R., Farokhzad, O.C., Fayad, Z.A., Mulder, W.J.M. 2012. Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging. Chem. Commun. 48, 5835-5837. doi: 10.1039/c2cc32149a
dc.relation.referencesMusmade, B.D., Sawant, A.V., Kulkarni, S.V., Nage, S.D., Bhope, S.G., Padmanabhan, S., Lohar, K.S. 2022. Method development, validation and estimation of relative response factor for the quantitation of known impurities in mometasone furoate nasal spray dosage form by RP-HPLC with UV/PDA detector. Pharm. Chem. J. 56, 53-544. doi:10.1007/s11094-022-02672-5
dc.relation.referencesOtberg, N., Richter, H., Schaefer, H., Blume-Peytavi, U., Sterry, W., Lademann, J. 2004. Variations of hair follicle size and distribution in different body sites. J. Invest. Dermatol. 122, 14-19. doi:10.1046/j.0022-202x.2003.22110
dc.relation.referencesÖzkaya, E., Pehlivan, G., Babuna Kobaner G. 2022. Sorbitan sesquioleate: A rare contact allergen that is also an important indicator of allergic contact dermatitis from cross reacting compounds as well as for false-positive fragrance allergy. Clin. Exp. Dermatol. 47, 1291- 1297. doi:10.1111/ced.15158
dc.relation.referencesPrakash, A., Benfield, P. 1998. Topical Mometasone. Drugs. 55, 145-163. doi:10.2165/00003495-199855010-00009
dc.relation.referencesPyo, S.M., Maibach, H.I. 2019. Skin metabolism: Relevance of skin enzymes for rational drug design. Skin Pharmacol. Physiol. 32, 283-293. doi:10.1159/000501732
dc.relation.referencesQuintanar-Guerrero, D., Allémann, E., Fessi, H., Doelker, E. 1998. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev. Ind. Pharm. 24, 1113-1128. doi:10.3109/03639049809108571
dc.relation.referencesRafanelli, A., Rafanelli, S., Stanganelli, I., Marchesi, E. 1993. Mometasone furoate in the treatment of atopic dermatitis in children. J. Eur. Acad. Dermatol. Venereol. 2, 225-230. doi:10.1111/j.1468-3083.1993.tb00040
dc.relation.referencesRajka, G., Avrach, W., Gärtner, L., Overgaard-Petersen, H. 1993. Mometasone furoate 0.1 % fatty cream once daily versus betamethasone valerate 0.1 % cream twice daily in the treatment of patients with atopic and allergic contact dermatitis. Curr. Ther. Res. Clin. Exp. 54, 23-29. doi:10.1016/s0011-393x0580614-9
dc.relation.referencesRanade, V.V. 1991. Drug delivery systems. 6. Transdermal drug delivery. J Clin. Pharmacol. 31, 401-418. doi:10.1002/j.1552-4604.1991.tb01895
dc.relation.referencesRundle, C.W., Presley, C.L., Militello, M., Barber, C., Powell, D.L., Jacob S.E., Atwater, A. R., Watsky, K.L., Yu, J., Dunnick C.A. 2020. Hand hygiene during COVID-19: Recommendations from the American Contact Dermatitis Society. J. Am. Acad. Dermatol. 83, 1730-1737. doi:10.1016/j.jaad.2020.07.057
dc.relation.referencesSahasranaman, S., Issar, M., G. Tóth, G., Horváth, Gy., Hochhaus, G. 2004. Characterization of degradation products of mometasone furoate. Pharmazie. 59, 367-373.
dc.relation.referencesSahasranaman, S., Issar, M., Hochhaus, G. 2005. Metabolism of mometasone furoate and biological activity of the metabolites. Drug Metab. Dispos. 34, 225-233. doi:10.1124/dmd.105.005702
dc.relation.referencesSaint-Mezard, P., Krasteva, M., Berard, F., Dubois, B., Kaiserlian, D., Nicolas, J.F. 2004. Allergic Contact Dermatitis in Bos, J.D. (Ed). Skin immune system. Cutaneous immunology and clinical immunodermatology. Third. ed. CRC Press. Boca Ratón, pp. 593-613. doi:10.1201/b14248-37
dc.relation.referencesSenyigit, T., Ozer, O. 2012. Corticosteroids for skin delivery: challenges and new formulation opportunities, in Qian, X. (Ed). Glucocorticoids - New recognition of our familiar friend. IntechOpen. London, pp. 595-612. doi:10.5772/2915
dc.relation.referencesShah, S., Famta, P., Raghuvanshi, R.S., Singh, S.B., Srivastava, S. 2022. Lipid polymer hybrid nanocarriers: Insights into synthesis aspects, characterization, release mechanisms, surface functionalization and potential implications. Colloids Interface Sci. Commun. 46, 100570. doi:10.1016/j.colcom.2021.100570
dc.relation.referencesShao, M., Hussain, Z., Thu, H.E., Khan, S., Katas, H., Ahmed, T.A., Tripathy, M., Leng, J., Qin, H.Li., Bukhari, S.N.A. 2016. Drug nanocarrier, the future of atopic diseases: Advanced drug delivery systems and smart management of disease. Colloids Surf. B. 147, 475-491. doi:10.1016/j.colsurfb.2016.08.027
dc.relation.referencesSchering Corporation. USA. Highlights of prescribing information; Asmanex Twisthaler (mometasone furoate inhalation powder). 2008. Disponible: chrome- extension://efaidnbmnnnibpcajpcglclefindmkaj/https://s3-us-west- 2.amazonaws.com/drugbank/fda_labels/DB14512.pdf?1554757819
dc.relation.referencesSilverberg, J.I., Patel, N., Warshaw, E.M., DeKoven, J.G, Atwater, A.R., Belsito, D.V., Dunnick, C.A., Houle, M.C., Reeder, M.J., Maibach, H.I., Zug, K.A., Taylor, J.S., Sasseville, D., Fransway, A.F., DeLeo, V.A., Pratt, M.D., Fowler Jr, J.F., Zirwas, M.J. 2022. Lanolin allergic reactions: North American Contact Dermatitis Group Experience, 2001 to 2018. Dermatitis. 33, 193-199. doi:10.1097/DER0000000000000871
dc.relation.referencesSivadasan, D., Sultan M.H., Madkhali, O., Almoshari, Y., Thangavel, N. 2021. Polymeric lipid hybrid nanoparticles (PLNs) as emerging drug delivery platform - A comprehensive review of their properties, preparation methods, and therapeutic applications. Pharmaceutics. 13, 1291. doi:10.3390/pharmaceutics13081291
dc.relation.referencesSpada, F., Barnes, T.M., Greive, K.A. 2018. Comparative safety and efficacy of topical mometasone furoate with other topical corticosteroids. Aust. J. Dermatol. 59, 168-174. doi:10.1111/ajd.12762
dc.relation.referencesStenton, J., Dahlin, J., Antelmi, A., Bruze, M., Svedman, C., Zimerson, E., Hamnerius, N., Pontén, A., Isaksson, M. 2020. Patch testing with a textile dye mix with and without Disperse Orange 3. Contact Dermatitis. 1-4. doi:10.1111/cod.13660
dc.relation.referencesTahir, N., Madni, A., Balasubramanian, V., Rehman, M., Correia, A., Kashif, P.M., Mäkilä, E., Salonen, J., Santos H.A. 2017. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. Int. J. Pharm. 533, 156-168. doi:10.1016/j.ijpharm.2017.09.061
dc.relation.referencesTeng, X.W., Cutler, D.C., Davies, N.M. 2003. Degradation kinetics of mometasone furoate in aqueous systems. Int. J. Pharm. 259, 129-141. doi:10.1016/s0378-5173(03)00226-6
dc.relation.referencesThevenot, J., Troutier, A.-L., David, L., Delair, T., Ladavière, C. 2007. Steric stabilization of lipid/polymer particle assemblies by poly(ethylene glycol)-lipids. Biomacromolecules. 8, 3651–3660. doi:10.1021/bm700753q
dc.relation.referencesUchechi, O., Ogbonna, J.D.N., Attama, A.A. 2014. Nanoparticles for dermal and transdermal drug delivery, in Sezer, A.D. (Ed). Application of nanotechnology in drug delivery. IntechOpen. London, pp. 193-235. doi:10.5772/58672
dc.relation.referencesUnited States Pharmacopeial Convention. Farmacopea de los Estados Unidos de América: USP-NF 2024. Rockville.
dc.relation.referencesVaidya, S., Ziegler, D., Tanase, A.M., Malmqvist, U., Kanniess, F., Hederer, B., Hosoe, M. 2021. Pharmacokinetics of mometasone furoate delivered via two dry powder inhalers. Pulm. Pharmacol. Ther. 70, 102019. doi:10.1016/j.pupt.2021.102019
dc.relation.referencesValotis, A., Högger, P., Neukam, K., Elert, O. 2004. Human receptor kinetics, tissue binding affinity, and stability of mometasone furoate. J. Pharm. Sci. 93, 1337-1350. doi:10.1002/jps.20049
dc.relation.referencesVitale, S.A., Katz, J.L. 2003. Liquid droplet dispersions formed by homogeneous liquid−liquid nucleation: “The Ouzo Effect.” Langmuir. 19, 4105-4110. doi:10.1021/la026842
dc.relation.referencesWilke, K., Wepf, R., Keil, F.J., Wittern, K-P., Wenck, H., Biel, S.S. 2005. Are sweat glands an alternate penetration pathway? Understanding the morphological complexity of the axillary sweat gland apparatus. Skin Pharmacol. Physiol. 19, 38-49. doi:10.1159/000089142
dc.relation.referencesXie, Z., Yang, Y., Zhang, H. 2020. Mask‐induced contact dermatitis in handling COVID ‐19 outbreak. Contact Derm. 83, 166-167. doi:10.1111/cod.13599
dc.relation.referencesYan, Y., Chen, H., Chen, L., Cheng, B., Diao, P., Dong, L., Li, H. 2020. Consensus of chinese experts on protection of skin and mucous membrane barrier for healthcare workers fighting against coronavirus disease 2019. Dermatologic Therapy. 33, e13310. doi:10.1111/dth.13310
dc.relation.referencesYin, J., Hou, Y., Song, X., Wang, P., Li, Y. 2019. Cholate-modified polymer-lipid hybrid nanoparticles for oral delivery of quercetin to potentiate the antileukemic effect. Int. J. Nanomedicine. 14, 4045-4057. doi:10.2147/ijn.s210057
dc.relation.referencesYousef, H., Alhajj, M., Sharma, S. 2022. Anatomy, skin (integument), epidermis. USA. Disponible en: StatPearls https://www.ncbi.nlm.nih.gov/books/NBK470464/
dc.relation.referencesYu, YQ., Yang, X., Wu, XF., Fan. Y.B. 2021. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications. Front. Bioeng. Biotechnol. 9, 646554. doi: 10.3389/fbioe.2021.646554
dc.relation.referencesZeeuwen, P. 2004. Epidermal differentiation: The role of proteases and their inhibitors. Eur. J. Cell Biol. 83, 761-773. doi:10.1078/0171-9335-00388
dc.relation.referencesZhang, L., Chan, J.M., Gu, F.X., Rhee, J.W., Wang, A.Z., Radovic-Moreno, A.F., Alexis, A., Langer, R., Farokhzad, O.C. 2008. Self-assembled lipid - polymer hybrid nanoparticles: a robust drug delivery platform. ACS nano. 2, 1696-1702. doi:10.1021/nn800275r
dc.relation.referencesZhang, Z., Tsai, P-C., Ramezanli, T., Michniak-Kohn, B.B. 2013. Polymeric nanoparticles- based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 205-218. doi:10.1002/wnan.1211
dc.relation.referencesAbstiens, K., Goepferich, A.M. 2018. Microfluidic manufacturing improves polydispersity of multicomponent polymeric nanoparticles. J. Drug Deliv. Sci. Technol. 49, 433-439. doi:10.1016/j.jddst.2018.12.009
dc.relation.referencesAlsaidan, O.A., Elmowafy, M., Shalaby, K., Alzarea, S.I., Massoud, D., Kassem, A.M., Ibrahim, M.F. 2023. Hydrocortisone-loaded lipid−polymer hybrid nanoparticles for controlled topical delivery: formulation design optimization and in vitro and in vivo appraisal. ACS Omega 19, 18714-18725. doi:18714-18725. 10.1021/acsomega.3c00638
dc.relation.referencesAlshamsan, A. 2014. Nanoprecipitation is more efficient than emulsion solvent evaporation method to encapsulate cucurbitacin I in PLGA nanoparticles. Saudi Pharm. J. 22, 219-222. doi: 10.1016/j.jsps.2013.12.002
dc.relation.referencesAnwer, K., Ali, E.A., Iqbal, M., Ahmed, M.M., Aldawsar, M.F., Al Saqr, A., Ansari, M.N., Aboudzadeh, M.A. 2022. Development of sustained release baricitinib loaded lipid-polymer hybrid nanoparticles with improved oral bioavailability. Molecules. 27, 168. doi:10.3390/molecules27010168
dc.relation.referencesArruda, D.C., Lachagès, A.M., Demory, H., Escriou, G., Lai-Kuen, R., Dugas, P.Y., Hoffmann, C., Bessoles, S., Sarrabayrouse, G., Malachias, A., Finet, S., Gastelois, P.L., de Almeida Macedo, W.A., Cunha Jr, A.S., Bigey, P., Escriou, V. 2022. Spheroplexes: Hybrid PLGA- cationic lipid nanoparticles, for in vitro and oral delivery of siRNA. J. Control Release. 350, 228-243. doi:10.1016/j.jconrel.2022.08.030
dc.relation.referencesBahrami, M.A., Farhadian, N. 2019. Experimental study and mathematical modeling for encapsulation of fentanyl citrate drug in nanostructured lipid carrier. J. Biomol. Struct. Dyn. 38, 1263-1271. doi:10.1080/07391102.2019.1599732
dc.relation.referencesBarton, A.F.M. 1991. Handbook of solubility parameters and other cohesion parameters. Second ed. CRC Press. Boca Ratón.
dc.relation.referencesBian, X., Liang, S., John, J., Hsiao, C.H., Wei, X., Liang, D., Xie, H. 2013. Development of PLGA-based itraconazole injectable nanospheres for sustained release. Int. J. Nanomedicine. 8, 4521-4531. doi: 10.2147/IJN.S54040
dc.relation.referencesCalegari-Lino, R., Matos de Carvalho, S., Montanheiro-Noronha, C., Sganzerla, W.G., Gonçalves da Rosa, C., Ramos-Nunes, M., Manique-Barreto, P.L. 2020. Development and characterization of poly-ε-caprolactone nanocapsules containing β-carotene using the nanoprecipitation method and optimized by response surface methodology. Braz. Arch. Biol. Technol. 63, 20190184. doi:10.1590/1678-4324-2020190184
dc.relation.referencesChaudhari, S., Kwon, Y., Shon, M. 2019. Pervaporation dehydration of azeotropic water/acetonitrile mixture using high water affinity PVA-PVAm blended membrane. Bull. Korean Chem. Soc. 1-10. doi:10.1002/bkcs.11668
dc.relation.referencesChoi, M.J., Maibach, H.I. 2005. Liposomes and niosomes as topical drug delivery systems. Skin Pharmacol. Physiol. 18, 209–219. doi:10.1159/000086666
dc.relation.referencesCheow, W.S., Hadinoto, K. 2011. Factors affecting drug encapsulation and stability of lipid– polymer hybrid nanoparticles. Colloids Surf. B. 85, 214-220. doi:10.1016/j.colsurfb.2011.02.033
dc.relation.referencesDanaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., Mozafari, M. 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 10, 1-17. doi:10.3390/pharmaceutics10020057
dc.relation.referencesDave, V., Yadav, R.B., Kushwaha, K., Yadav, S., Sharma, S., Agrawal, U. 2017. Lipid-polymer hybrid nanoparticles: Development & statistical optimization of norfloxacin for topical drug delivery system. Bioactive Materials. 2, 269-280. doi:10.1016/j.bioactmat.2017.07
dc.relation.referencesDehaini, D., Fang, R.H., Luk, B.T., Pang, Z., Hu, C.M.J., Kroll, A.V., Yu, C.L, Gao, W., Zhang, L. 2016. Ultra-small lipid–polymer hybrid nanoparticles for tumor-penetrating drug delivery. Nanoscale. 8, 14411-14419. doi:10.1039/c6nr04091h
dc.relation.referencesDevi, R., Agarwal, S. 2019. Some multifunctional lipid excipients and their pharmaceutical applications. Int. J. Pharm. Pharm. Sci. 11, 1-7. doi:10.22159/ijpps.2019v11i9.34194
dc.relation.referencesDoktorovova, S., Souto, E.B., Silva, A.M. 2017. Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): in vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines. Pharm Dev Technol. 23, 96- 105. doi:10.1080/10837450.2017.1384491
dc.relation.referencesDonga, Y., Ng W.K., Shen, S., Kim, S., Tan, R.B.H. 2012. Solid lipid nanoparticles: Continuous and potential large-scale nanoprecipitation production in static mixers. Colloids Surf. B. 94, 68-72. doi: 10.1016/j.colsurfb.2012.01.018
dc.relation.referencesDu, M., Ouyang, Y., Meng, F., Zhang, X., Ma, Q., Zhuang, Y., Liu, H., Pang, M., Cai, T., Cai, Y. 2019. Polymer-lipid hybrid nanoparticles: A novel drug delivery system for enhancing the activity of Psoralen against breast cancer. Int. J. Pharm. 561, 274-282. doi:10.1016/j.ijpharm.2019.03.006
dc.relation.referencesElkasabgy, N.A., Salama, A., Salama, A.H. 2023. Exploring the effect of intramuscularly injected polymer/lipid hybrid nanoparticles loaded with quetiapine fumarate on the behavioral and neurological changes in cuprizone-induced schizophrenia in mice. J. Drug. Deliv. Sci. Technol. 79, 104064. doi:10.1016/j.jddst.2022.104064
dc.relation.referencesFang, R.H., Aryal, S., Hu, C.M.J., Zhang, L. 2010. Quick synthesis of lipid−polymer hybrid nanoparticles with low polydispersity using a single-step sonication method. Langmuir, 26, 16958-16962. doi:10.1021/la103576a
dc.relation.referencesFessi, H., Puisieux, F., Devissaguet, J.P. 1988. Procédé de préparation de systèmes colloïdaux dispersibles d’une substance sous forme de nanocapsules. European Patent. 274961 A1
dc.relation.referencesGhasemiyeh, P., Mohammadi-Samani, S. 2020. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: advantages and disadvantages. Drug Des. Devel. Ther. 14, 3271-3289. doi:10.2147/dddt.s264648
dc.relation.referencesGodara, S., Lather, V., Kirthanashri, V.S., Awasthi, R., Pandita, D. 2020. Lipid-PLGA hybrid nanoparticles of paclitaxel: Preparation, characterization, in vitro and in vivo evaluation. Mater. Sci. Eng. C. 109, 110576. doi:10.1016/j.msec.2019.110576
dc.relation.referencesGordillo-Galeano A. 2020. Efecto de las propiedades estructurales de la partícula sobre la liberación de moléculas encapsuladas en sistemas lipídicos coloidales. Tesis de Doctorado en Ciencias Farmacéuticas. Universidad Nacional de Colombia. Repositorio Institucional – Universidad Nacional de Colombia.
dc.relation.referencesGordillo-Galeano, A., Mora-Huertas, C.E. 2021. Hydrodynamic diameter and zeta potential of nanostructured lipid carriers: Emphasizing some parameters for correct measurements. Colloids Surf. A Physicochem. Eng. Asp. 620, 126610. doi:10.1016/j.colsurfa.2021.126610
dc.relation.referencesGrüne, L., Bunjes, H. 2020. Self-dispersing formulations for the delivery of poorly soluble drugs – miscibility of phosphatidylcholines with oils and fats. Eur. J. Pharm. Biopharm. 151, 209-219. doi:10.1016/j.ejpb.2020.04.013
dc.relation.referencesGüçlü-Üstündağ, Ö., Temelli, F. 2005. Solubility behavior of ternary systems of lipids, cosolvents and supercritical carbon dioxide and processing aspects. J. Supercrit. Fluids. 36, 1-15. doi:10.1016/j.supflu.2005.03.002
dc.relation.referencesGuo, P., Buttaro, B.A., Xue, H.Y., Tran, N.T., Wong, H.L. 2020. Lipid-polymer hybrid nanoparticles carrying linezolid improve treatment of methicillin-resistant Staphylococcus aureus (MRSA) harbored inside bone cells and biofilms. Eur. J. Pharm. Biopharm. 151, 189- 198. doi:10.1016/j.ejpb.2020.04.010
dc.relation.referencesGumustas, M., Sengel-Turk, C.T., Gumustas, A., Ozkan, S.A., Uslu, B. 2017. Effect of polymer-based nanoparticles on the assay of antimicrobial drug delivery systems. multifunctional systems for combined delivery, in: Grumezescu, A.M (Ed.), Multifunctional systems for combined delivery, Biosensing and Diagnostics. Elsevier. Cambridge, pp. 67-108. doi:10.1016/b978-0-323-52725-5.00005-8
dc.relation.referencesHan, FY., Liu, Y., Kumar, V., Xu, W., Yang, G., Zhao, C.X., Woodruff, T.M., Whittaker, A.K., Smith, M.T. 2020. Sustained-release ketamine-loaded nanoparticles fabricated by sequential nanoprecipitation. Int. J. Pharm. 581, 119291. doi:10.1016/j.ijpharm.2020.119291
dc.relation.referencesHu, F., Zhang, Y., Du, Y., Yuan, H. 2008. Nimodipine loaded lipid nanospheres prepared by solvent diffusion method in a drug saturated aqueous system. Int. J. Pharm. 348, 146-152. doi:10.1016/j.ijpharm.2007.07.02
dc.relation.referencesHubbard, M.A., Mccaulley, J.A., Holcomb, D.R. 2001. Método de apresto de articulos de poliolefina para revestimiento. España. ES2214626T3.
dc.relation.referencesInternational Council for Harmonization of Technical requirements for Pharmaceuticals for Human use. Committee for Medicinal Products for Human Use Impurities: Guideline for residual solvents Q3C (R9). 2024
dc.relation.referencesIshak, R.A.H., Mostafa, N.M., Kamel, A.O. 2017. Stealth lipid polymer hybrid nanoparticles loaded with rutin for effective brain delivery – comparative study with the gold standard (Tween 80): optimization, characterization and biodistribution. Drug Deliv. 24, 1874-1890. doi:10.1080/10717544.2017.1410263
dc.relation.referencesJadon, R.S., Sharma, M. 2019. Docetaxel-loaded lipid-polymer hybrid nanoparticles for breast cancer therapeutics. J. Drug Deliv. Sci. Technol. 51, 475-484. doi:10.1016/j.jddst.2019.03.039
dc.relation.referencesJohansen, J.D., Mahler, V., Lepoittevin, J-P., Frosch, P.J. (Eds). Contact dermatitis. 2021. Sixth ed. Springer. Switzerland, pp. 95-120.
dc.relation.referencesKang, D.H., Zeng, Y., Tewari, M., Kim, J. 2022. Highly sensitive and quantitative bio detection with lipid-polymer hybrid nanoparticles having organic room-temperature phosphorescence. Biosens. Bioelectron. 199, 113889. doi:10.1016/j.bios.2021.113889
dc.relation.referencesKelidari, H.R., Saeedi, M., Akbari, J., Morteza-Semnani, K., Gill, P., Valizadeh, H., Nokhodchi, A. 2015. Formulation optimization and in vitro skin penetration of spironolactone loaded solid lipid nanoparticles. Colloids Surf. B. 128, 473-479. doi:10.1016/j.colsurfb.2015.02.046
dc.relation.referencesKhan, S., Aamir, M.N., Madni, A., Jan, N., Khan, Arshad., Jabar, A., Shah, H., Rahim, M.A., Ali, A. 2021. Lipid poly (ɛ-caprolactone) hybrid nanoparticles of 5-fluorouracil for sustained release and enhanced anticancer efficacy. Life Sci. 284, 119909. doi:10.1016/j.lfs.2021.119909
dc.relation.referencesKhater, S.E., El-khouly, A., Abdel-Bar, H.M., Al-Mahallawi, A.M., Ghb, D.M. 2021. Fluoxetine hydrochloride loaded lipid polymer hybrid nanoparticles showed possible efficiency against SARS-CoV-2 infection. Int. J. Pharm. 607, 121023. doi:10.1016/j.ijpharm.2021.121023
dc.relation.referencesKitak, T., Dumičić, A., Planinšek, O., Šibanc, R., Srčič, S. 2015. Determination of solubility parameters of ibuprofen and ibuprofen lysinate. Molecules. 20, 21549-21568. doi:10.3390/molecules201219777
dc.relation.referencesLiu, H., Zhuang, Y., Wang, P., Zou, T., Lan, M., Li, L., Liu, F., Cai, T., Cai, Y. 2021. Polymeric lipid hybrid nanoparticles as a delivery system enhance the antitumor effect of emodin in vitro and in vivo. J. Pharm. Sci. 110, 2986-2996. doi:10.1016/j.xphs.2021.04.006
dc.relation.referencesLiu, J., Cheng, H., Han, L., Qiang, Z., Zhang, X., Gao, W., Zhao, K., Song, Y. 2018. Synergistic combination therapy of lung cancer using paclitaxel- and triptolide-coloaded lipid–polymer hybrid nanoparticles. Drug Des. Devel. Ther. 12, 3199-3209. doi:10.2147/dddt.s172199
dc.relation.referencesLiu, M., Gao, T., Jiang, L., Li, S., Shi, B., Li, F. 2023. Enhancing the biopharmaceutical attributes of atorvastatin calcium using polymeric and lipid-polymer hybrid nanoparticles: An approach for atherosclerosis treatment. Biomed. Pharmacother. 159, 114261. doi:10.1016/j.biopha.2023.114261
dc.relation.referencesLiu, X., Shen, B., Shen, C., Zhong, R., Wang, X., Yuan, H. 2018. Nanoparticle-loaded gels for topical delivery of nitrofurazone: Effect of particle size on skin permeation and retention. J Drug Deliv Sci Technol. 45, 367-372. doi:10.1016/j.jddst.2018.04.005
dc.relation.referencesLiu, X., Zhao Q. 2019. Long-term anesthetic analgesic effects: Comparison of tetracaine loaded polymeric nanoparticles, solid lipid nanoparticles, and nanostructured lipid carriers in vitro and in vivo. Biomed. Pharmacother. 117, 109057. doi: 10.1016/j.biopha.2019.109057
dc.relation.referencesMakoni, P.A., Ranchhod, J., WaKasongo, K., Khamanga, S.M., Walker, R.B. 2020. The use of quantitative analysis and hansen solubility parameter predictions for the selection of excipients for lipid nanocarriers to be loaded with water soluble and insoluble compounds. Saudi Pharm J. 28, 308-315. doi:10.1016/j.jsps.2020.01.010
dc.relation.referencesMandal, B., Mittal, N.K., Balabathula, P., Thoma, L. A., Wood, G.C. 2016. Development and in vitro evaluation of core–shell type lipid–polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer. Eur. J. Pharm. Sci. 81, 162-171. doi:10.1016/j.ejps.2015.10.021
dc.relation.referencesMartínez-Muñoz, O.I., Mora-Huertas, C.E. 2022. Nanoprecipitation technology to prepare carrier systems of interest in pharmaceutics: An overview of patenting. Int. J. Pharm. 614, 121440. doi:10.1016/j.ijpharm.2021.121440
dc.relation.referencesMocan, L., Xayprasith-Mays, S., Orza, A. 2017. Novel method for preparing pH dependent ultra small polymeric nanoparticles for topical and/or transdermal delivery. US Patent. 2017/0182472 A1.
dc.relation.referencesMoghimi, S.M., Hunter, A.C., Murray, C. 2001. Long-Circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 53, 283-318.
dc.relation.referencesMusmade, B.D., Sawant, A.V., Kulkarni, S.V., Nage, S.D., Bhope, S.G., Padmanabhan, S., Lohar, K.S. 2022. Method development, validation and estimation of relative response factor for the quantitation of known impurities in mometasone furoate nasal spray dosage form by RP-HPLC with UV/PDA detector. Pharm. Chem. J. 56, 53-544. doi:10.1007/s11094-022- 02672-5
dc.relation.referencesMeyer, R.A., Hussmann, G.P., Peterson, N.C., Santos, J.L., Tuesca, A.D. 2022. A scalable and robust cationic lipid/polymer hybrid nanoparticle platform for mRNA delivery. Int. J. Pharm. 611, 121314. doi:10.1016/j.ijpharm.2021.121314
dc.relation.referencesMohammad-Beigi, H., Shojaosadati, S.A., Morshedi, D., Mirzazadeh, N., Arpanaei, A. 2016. The effects of organic solvents on the physicochemical properties of human serum albumin nanoparticles. Iran J. Biotechnol. 14, 45–50. doi:10.15171/ijb.1168
dc.relation.referencesMora-Huertas, C.E., Garrigues, O., Fessi, H., Elaissari, A. 2012. Nanocapsules prepared via nanoprecipitation and emulsification–diffusion methods: Comparative study. Eur. J. Pharm. Biopharm. 80, 235-239. doi:10.1016/j.ejpb.2011.09.013
dc.relation.referencesMukherjee, A., Waters, A.K., Kalyan, P., Achrol, A.S., Kesari, S., Yenugonda, V.M. 2019. Lipid–polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int. J. Nanomedicine. 14, 1937- 1952. doi:10.2147/ijn.s198353
dc.relation.referencesNakamura, D., Hirano, M., Ohta, R. 2017. Nontoxic organic solvents identified using an a priori approach with Hansen solubility parameters. Chem. Comm. 53, 4096- 4099. doi:10.1039/c7cc01434
dc.relation.referencesNational Center for Biotechnology Information. 2023. PubChem Compound Summary for CID 11148, Trimyristin. Consultado en abril 31, 2023 en https://pubchem.ncbi.nlm.nih.gov/compound/Trimyristin.
dc.relation.referencesOlbrich, C., Schöler, N., Tabatt, K., Kayser, O., Müller, R.H. 2004. Cytotoxicity studies of Dynasan 114 solid lipid nanoparticles (SLN) on RAW 264.7 macrophages-impact of phagocytosis on viability and cytokine production. J. Pharm. Pharmacol. 56, 883-891. doi:10.1211/0022357023754
dc.relation.referencesPatel, G., Thakur, N.S., Kushwah, V., Patil, M.D., Nile, S.H., Jain, S., Kai, G., Banerjee, U.C. 2019. Mycophenolate co-administration with quercetin via lipid-polymer hybrid nanoparticles for enhanced breast cancer management. Nanomedicine: Nanotechnology, Biology and Medicine. 24, 102147. doi:10.1016/j.nano.2019.102147
dc.relation.referencesPatel, J-K., Pathak, Y-V. (Eds) 2021. Emerging technologies for nanoparticle manufacturing. Springer Nature. Switzerland, pp 25-36.
dc.relation.referencesPivetta, T.P., Simões, S., Araújo, M.M., Carvalho, T., Arruda, C., Marcato, P.D. 2018. Development of nanoparticles from natural lipids for topical delivery of thymol: Investigation of its anti-inflammatory properties. Colloids Surf. B. 164, 281–290. doi:10.1016/j.colsurfb.2018.01.05
dc.relation.referencesPopov, A., Schopf, L., Bourassa, J., Chen, H.B. 2016. Enhanced pulmonary delivery of fluticasone propionate in rodents by mucus-penetrating nanoparticles. Int. J. Pharm. 502, 188-197. doi: 10.1016/j.ijpharm.2016.02.031
dc.relation.referencesRahdar, A., Sargazi, S., Barani, M., Shahraki, S., Sabir, F., Aboudzadeh, M.A. 2021. Lignin- stabilized doxorubicin microemulsions: Synthesis, physical characterization, and in vitro assessments. Polymers. 13, 641. doi:10.3390/polym13040641
dc.relation.referencesRaina, H., Kaur, S., Jindal, A.B. 2017. Development of efavirenz loaded solid lipid nanoparticles: Risk assessment, quality-by-design (QbD) based optimization and physicochemical characterization. J. Drug Deliv. Sci. Technol. 39, 180-191. doi:10.1016/j.jddst.2017.02.013
dc.relation.referencesReddy, M.S.B., Ponnamma, D., Choudhary, R., Sadasivuni, K.K. 2021. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers. 13, 1105. doi:10.3390/polym13071105
dc.relation.referencesRiadi, Y., Afzal, O., Geesi, M.H., Almalki, W.H., Singh, T. 2023. Baicalin-loaded lipid–polymer hybrid nanoparticles inhibiting the proliferation of human colon cancer: Pharmacokinetics and in vivo evaluation. Polymers. 15, 598. doi:10.3390/polym15030598
dc.relation.referencesRowe, R.C., Sheskey, P.J., Quinn, M.E. (Eds). 2009. Handbook of Pharmaceutical Excipients. Sixth ed. Pharmaceutical Press. American Pharmacists Association. London.
dc.relation.referencesSahle, F. F., Gerecke, C., Kleuser, B., Bodmeier, R. 2017. Formulation and comparative in vitro evaluation of various dexamethasone-loaded pH-sensitive polymeric nanoparticles intended for dermal applications. Int. J. Pharm. 516, 21-31. doi:10.1016/j.ijpharm.2016.11.029
dc.relation.referencesSanthanes, D., Wilkins, A., Zhang, H., Aitken, R.J., Liang, M. 2022. Microfluidic formulation of lipid/polymer hybrid nanoparticles for plasmid DNA (pDNA) delivery. Int. J. Pharm. 627, 122223. doi:10.1016/j.ijpharm.2022.122223
dc.relation.referencesSchwarz, J.C., Baisaeng, N., Hoppel, M., Löw, M., Keck, C. M., Valenta, C. 2013. Ultra-small NLC for improved dermal delivery of coenyzme Q10. Int. J. Pharm. 447, 213-217. doi:10.1016/j.ijpharm.2013.02.037
dc.relation.referencesStetefeld, J., McKenna, S.A., Patel, T.R. 2016. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys. Rev. 8, 409-427. doi:10.1007/s12551-016- 0218-6
dc.relation.referencesSuksiriworapong, J., Rungvimolsin, T., A-gomol, A., Junyaprasert, V.B., Chantasart, D. 2013. Development and characterization of lyophilized diazepam-loaded polymeric micelles. AAPS PharmSciTech. 15, 52-64. doi:10.1208/s12249-013-0032-4
dc.relation.referencesTahir, N., Madni, A., Li, W., Correia, A., Khan, M.M., Rahim, M.A., Santo, H.A. 2020. Microfluidic fabrication and characterization of sorafenib-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery. Int. J. Pharm. 581, 119275. doi:10.1016/j.ijpharm.2020.119275
dc.relation.referencesTiwari, S., Mall, C., Solanki, P.P. 2020. CMC studies of CTAB, SLS & tween 80 by spectral and conductivity methodology to explore its potential in photogalvanic cell. Surf. Interfaces. 18, 100427. doi:10.1016/j.surfin.2019.100427
dc.relation.referencesTorres-Flores, G., Türeli-Nazende, G., Akif-Emre, T. 2019. Preparation of fenofibrate loaded Eudragit L100 nanoparticles by nanoprecipitation method. Mater. Today: Proc. 13, 428-435. doi:10.1016/j.matpr.2019.03.176
dc.relation.referencesTurk, C.T.S., Oz, U.C., Serim, T.M., Hascicek, C. 2013. Formulation and optimization of nonionic surfactants emulsified nimesulide-loaded PLGA-based nanoparticles by design of experiments. AAPS PharmSciTech. 15, 161-176. doi:10.1208/s12249-013-0048-9
dc.relation.referencesvan Krevelen, D.W., Te Nijenhuis, K. 2009. Properties of polymers. Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Fourth ed. Elsevier. Slovenia, pp. 189-227.
dc.relation.referencesWoodruff, M.A., Hutmacher, D.W. 2010. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog. Polym. Sci. 35, 1217-1256. doi:10.1016/j.progpolymsci.2010.0
dc.relation.referencesXu, S., Wang, H. 2006. Separation of tetrahydrofuran–water azeotropic mixture by batch extractive distillation process. Chem. Eng. Res. Des. 84, 478-482. doi:10.1205/cherd05050
dc.relation.referencesYan, J., Guo, J., Wang, Y., Xing, X., Zhang, X., Zhang, G., Dong, Z. 2022. Acute myocardial infarction therapy using calycosin and tanshinone co-loaded mitochondria targeted lipid- polymer hybrid nano-system: Preparation, characterization, and anti myocardial infarction activity assessment, Biomed. Pharmacother. 155, 113650. doi:10.1016/j.biopha.2022.113650
dc.relation.referencesZhang, X., Yang, L., Zhang, C., Liu, D., Meng, S., Zhang, W., Meng, S. 2019. Effect of polymer permeability and solvent removal rate on in situ forming implants: drug burst release and microstructure. Pharmaceutics. 11, 520. doi:10.3390/pharmaceutics11100520
dc.relation.referencesZheng, D., Giljohann, D.A., Chen, D.L., Massich, M.D., Wang, X-Q., Iordanov, H., Mirkin, C.A., Paller, A.S. 2012. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc. Natl. Acad. Sci. 109, 11975-11980. doi:10.1073/pnas.1118425109
dc.relation.referencesZhang, Z., Tsai, P-C., Ramezanli, T., Michniak-Kohn, B.B. 2013. Polymeric nanoparticles- based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 205-218. doi:10.1002/wnan.1211
dc.relation.referencesZhu, B., Zhang, H., Yu, L. 2017. Novel transferrin modified and doxorubicin loaded Pluronic 85/lipid-polymeric nanoparticles for the treatment of leukemia: In vitro and in vivo therapeutic effect evaluation. Biomed. Pharmacother. 86, 547-554. doi:10.1016/j.biopha.2016.11.121
dc.relation.referencesAbd-Allah, H., Abdel-Aziz, R. T.A., Nasr, M. 2020. Chitosan nanoparticles making their way to clinical practice: A feasibility study on their topical use for acne treatment. Int. J. Biol. Macromol. 1, 262-270. doi: 10.1016/j.ijbiomac.2020.04.040
dc.relation.referencesAbdelkader, H., Longman, M.R., Alany, R.G., Pierscionek, B. 2016. Phytosome-hyaluronic acid systems for ocular delivery of L-carnosine. 14, 2815-2827. doi: 10.2147/IJN.S104774
dc.relation.referencesAdrar, N., Bahadori, F., Ceylan, F.D., Topçu, G., Bedjou, F., Capanoglu, E. 2021. Stability evaluation of interdigitated liposomes prepared with a combination of 1,2‐distearoyl‐sn‐ glycero‐3‐phosphocholine and 1,2‐dilauroyl‐sn‐glycero‐3‐phosphocholine. J. Chem. Technol. Biotechnol. 96, 2537-2546. doi:10.1002/jctb.6793
dc.relation.referencesAustin, R.J.H., Maschera, B., Walker, A., Fairbairn, L., Meldrum, E., Farrow, S.N., Uings, I. J. 2002. Mometasone furoate is a less specific glucocorticoid than fluticasone propionate. Eur. Respir. J. 206, 1386-1392. doi:10.1183/09031936.02.02472001
dc.relation.referencesBachhav, S.S., Dighe, V.D., Kotak, D., Devarajan, P.V. 2017. Rifampicin lipid-polymer hybrid nanoparticles (Lipomer) for enhanced Peyer’s patch uptake. Int. J. Pharm. 532, 612- 622. doi:10.1016/j.ijpharm.2017.09.040
dc.relation.referencesBaena Aristizábal, C.M. 2015. Vectorización del extracto de Physialis peruviana L. en nuevos sistemas de liberación de uso farmacéutico. Tesis de Doctorado en Ciencias Farmacéuticas. Universidad Nacional de Colombia. Repositorio Institucional – Universidad Nacional de Colombia.
dc.relation.referencesBalu, R., Kumar, T.S.S., Ramalingam, M., Ramakrishna, S. 2011. Electrospun polycaprolactone/poly(1,4-butylene adipate-co-polycaprolactam) blends: potential biodegradable scaffold for bone tissue regeneration. J. Biomater. Tissue Eng. 1, 30-39. doi:10.1166/jbt.2011.1004
dc.relation.referencesBunjes, H., Westesen, K., Koch, M.H.J. 1996. Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int. J. Pharm. 129, 159-173. doi:10.1016/0378- 5173(95)04286-5
dc.relation.referencesCho, E.C., Cho, K., Ahn, J.K., Kim, J., Chang, I.S. 2006. Effect of particle size, composition, and thermal treatment on the crystalline structure of polycaprolactone nanoparticles. Biomacromolecules. 7, 1679-1685. doi:10.1021/bm050883s
dc.relation.referencesDel Ángel-Sánchez, K., Borbolla-Torres, C.I., Palacios-Pineda, L.M., Ulloa-Castillo, N.A., Elías-Zúñiga, A. 2019. Development, fabrication, and characterization of composite polycaprolactone membranes reinforced with TiO2 nanoparticles. Polymers. 11, 1955. doi:10.3390/polym11121955
dc.relation.referencesDesai, P.R., Marepally, S., Patel, A.R., Voshavar, C., Chaudhuri, A., Singh, M. 2013. Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo. J. Control. Release. 170, 51-63. doi:10.1016/j.jconrel.2013.04.021
dc.relation.referencesDuggirala, N.K., Sonje, J., Yuan, X., Shalaev, E., Suryanarayanan, R. 2021. Phase behavior of poloxamer 188 in frozen aqueous solutions – Influence of processing conditions and cosolutes. Int. J. Pharm. 20, 121145. doi.org/10.1016/j.ijpharm.2021.121145
dc.relation.referencesElazazy, M.S., Issa, A.A., Al-Mashreky, M., Al-Sulaiti, M., Al-Saad, K. 2018. Application of fractional factorial design for green synthesis of cyano-modified silica nanoparticles: Chemometrics and multifarious response optimization. Adv. Powder. Technol. 29, 1204- 1215. doi:10.1016/j.apt.2018.02.012
dc.relation.referencesFadaie, M., Mirzaei, E. 2018. Nanofibrillated chitosan/polycaprolactone bionanocomposite scaffold with improved tensile strength and cellular behavior. Nanomed. J. 5, 77-89. doi: 10.22038/nmj.2018.005.004
dc.relation.referencesFang, J-Y., Fang, C-L., Liu, C-H., Su, Y-H. 2008. Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur. J. Pharm Biopharm. 70, 633-640. doi:10.1016/j.ejpb.2008.05.008
dc.relation.referencesFar, J., Abdel-Haq, M., Gruber, M., Abu Ammar, A. 2020. Developing biodegradable nanoparticles loaded with mometasone furoate for potential nasal drug delivery. ACS Omega. 5, 7432-7439. doi:10.1021/acsomega.0c00111
dc.relation.referencesFetisov, G. V. 2020. X-ray diffraction methods for structural diagnostics of materials: progress and achievements. Phys.-Uspekhi. 63, 2-32. doi:10.3367/ufne.2018.10.038435
dc.relation.referencesGarg, N.K., Singh, B., Sharma, G., Kushwah, V., Tyagi, R.K., Jain, S., Prakash, K.O. 2015. Development and characterization of single step self-assembled lipid polymer hybrid nanoparticles for effective delivery of methotrexate. RSC Adv. 5, 62989-62999. doi:10.1039/C5RA12459J
dc.relation.referencesGöke, K., Roese, E., Arnold, A., Kuntsche, J., Bunjes, H. 2016. Control over particle size distribution by autoclaving poloxamer-stabilized trimyristin nanodispersions. Mol. Pharm. 13, 3187-3195. doi:10.1021/acs.molpharmaceut.6b0
dc.relation.referencesHsu, M.N., Luo, R., Kwek, K.Z., Por, Y.C., Zhang, Y., Chen, C.H. 2015. Sustained release of hydrophobic drugs by the microfluidic assembly of multistage microgel/poly (lactic-co- glycolic acid) nanoparticle composites. Biomicrofluidics. 9, 052601. doi:10.1063/1.4916230
dc.relation.referencesJenning, V., Gysler, A., Schäfer-Korting, M., Gohla, S.H. 2000. Vitamin A loaded solid lipid nanoparticles for topical use: Occlusive properties and drug targeting to the upper skin. Eur. J. Pharm. Biopharm. 49, 211-218. doi:10.1016/s0939-6411(99)00075-2
dc.relation.referencesKamaly, N., Xiao, Z., Valencia, P., Radovic-Moreno, A.F., Farokhzad, O.C. 2012. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41, 2971-3010. doi:10.1039/c2cs15344k
dc.relation.referencesKollamaram, G., Williams, G.R. 2021. The effect of the composition of polysorbate 80 grades on their physicochemical properties. J. Excipients and Food Chem. 12, 32-40.
dc.relation.referencesKumar, N., Nautiyal, U. 2017. A review article on lyophilization techniques used in pharmaceutical. manufacturing. Int. J. Pharm. Med. Res. 5, 478-484.
dc.relation.referencesMartínez-Rodríguez. L.I. 2014. Estudio de la encapsulación de quercetina en partículas sólidas lipídicas preparadas por la técnica de emulsificación difusión. Trabajo de grado de pregrado en Farmacia – Universidad Nacional de Colombia
dc.relation.referencesMahmood, S., Kiong, K.C., Tham, C.S., Chien, T.C., Hilles, A.R., Venugopal, J.R. 2020. PEGylated lipid polymeric nanoparticle–encapsulated acyclovir for in vitro controlled release and ex vivo gut sac permeation. AAPS PharmSciTech. 21, 285. doi:10.1208/s12249-020-01810-0
dc.relation.referencesMehta, A.B., Nadkarni, N.J, Patil, S.P., Godse, K.V., Gautam, M., Agarwal, S. 2016. Topical corticosteroids in dermatology. Indian J. Dermatol. Venereol. Leprol. 82, 371-378. doi:10.4103/0378-6323.178903
dc.relation.referencesMisery, L. 2012. Why is there poor adherence to topical corticosteroid therapy in atopic dermatitis?, Rev. Dermatol. 7, 5-7. doi:10.1586/edm.11.77
dc.relation.referencesMontgomery. D.C. 2013. Design and analysis of experiments. Eighth ed. Wiley. New York, pp. 320-322.
dc.relation.referencesMoreno de Araujo, M., Borgheti-Cardoso, L.N., Garcia-Praça, F., Marcato, P.D., Brada- Bentley, M.V.L. 2023. Solid lipid-polymer hybrid nanoplatform for topical delivery of siRNA: In vitro biological activity and permeation studies. J. Funct. Biomater. 14, 374. doi: 10.3390/jfb14070374
dc.relation.referencesMorris. K.R., Knipp, G.T., Serajuddin, A.T.M. 1992. Structural properties of polyethylene glycol - polysorbate 80 mixture, a solid dispersion vehicle. J. Pharm. Sci. 81, 1185-1188. doi:10.1002/jps.2600811212
dc.relation.referencesNanaki, S., Eleftheriou, R.M., Barmpalexis, P., Kostoglou, M., Karavas, E., Bikiaris, D. 2019. Evaluation of dissolution enhancement of aprepitant drug in ternary pharmaceutical solid dispersions with Soluplus® and poloxamer 188 prepared by melt mixing. Sci. 1, 48. doi:10.3390/sci1020048
dc.relation.referencesNekkanti, V., Venkateshwarlu, V., Pillai, R. 2012. Preparation, characterization and in vivo evaluation of raloxifene hydrochloride solid lipid nanoparticles. Pharm. Nanotechnol. 1, 68- 77. doi:10.2174/2211738511301010068
dc.relation.referencesNic Dhonncha, E., O’Connor, C., O’Connell, G., Quinlan, C., Roche, L., Murphy, M. 2021. Adherence to treatment with prescribed topical corticosteroid therapy and potential barriers to adherence among women with vulvar lichen sclerosus: a prospective cross‐sectional study. Clin. Exp. Dermatol. 46, 734-735. doi:10.1111/ced.14527
dc.relation.referencesNilsson, E.J., Lind, T.K., Scherer, D., Skansberger, T., Mortensen, K., Engblom, J., Kocherbitov, V. 2020. Mechanisms of crystallisation in polysorbates and sorbitan esters. CrystEngComm. 22, 3840-3853. doi:10.1039/d0ce00236d
dc.relation.referencesOrellana-Vázquez, K.C. 2018. Estudio de la degradabilidad del PCL (Policaprolactona) dosificado con la lignina extraída de la fibra de banano. Trabajo de grado. Universidad Politécnica Salesiana. Cuenca.
dc.relation.referencesOurique, A.F., Contri, R.V., Guterres, S.S., Beck, R.C.R., Pohlmann, A.R., Melero, A., Schaefer, U.F. 2012. Set-up of a method using LC-UV to assay mometasone furoate in pharmaceutical dosage forms. Quím. Nova. 35, 818-821. doi:10.1590/s0100- 40422012000400030
dc.relation.referencesPapakostas, D., Rancan, F., Sterry, W., Blume-Peytavi, U., Vogt, A. 2011. Nanoparticles in dermatology. Arch. Dermatol. Res. 303, 533–550. doi:10.1007/s00403-011-1163-7
dc.relation.referencesParmar, K., Patel, H. 2023. Dacarbazine-loaded lipid polymer hybrid nanoparticles for management of skin melanoma: Optimization and anticancer studies. BioNanoScience. 13, 1102269. doi: 10.1007/s12668-023-01236-5
dc.relation.referencesPople, P.V., Singh, K.K. 2006. Development and evaluation of topical formulation containing solid lipid nanoparticles of vitamin A. AAPS PharmSciTech, 7, 63-69. doi:10.1208/pt070491
dc.relation.referencesPramod, K., Suneesh, C.V., Shanavas, S., Ansari, S.H., Ali, J. 2015. Unveiling the compatibility of eugenol with formulation excipients by systematic drug-excipient compatibility studies. J. Anal. Sci. Technol. 6, 2-14. doi:10.1186/s40543-015-0073-2
dc.relation.referencesPukale, S.S., Sharma, S., Dalela, M., Singh, Singh, A.K., Mohanty, S., Mittal, A., Chitkara, D. 2020. Multi-component clobetasol-loaded monolithic lipid-polymer hybrid nanoparticles ameliorate imiquimod-induced psoriasis-like skin inflammation in Swiss albino. Acta Biomater. 115, 393-409. doi: https://doi.org/10.1016/j.actbio.2020.08.020
dc.relation.referencesRabha, B., Bharadwaj, K.K., Baishya, D., Sarkar, T., Edinur, H.A., Pati, S. 2021. Synthesis and characterization of diosgenin encapsulated poly-ε-caprolactone-pluronic nanoparticles and its effect on brain cancer cells. Polymers. 13, 1322. doi:10.3390/polym13081322
dc.relation.referencesRampado, R., Peer, D. 2023. Design of experiments in the optimization of nanoparticle- based drug delivery systems. J. Control. Release. 358, 398-419. doi:10.1016/j.jconrel.2023.05.001
dc.relation.referencesSalgado, A.C.G.B., da Silva, A.M.N.N., Machado, M.C.J.C., Duarte, M.A. da S.C., Ribeiro, H.M. de O.M. 2010. Development, stability and in vitro permeation studies of gels containing mometasone furoate for the treatment of dermatitis of the scalp. Brazilian J. Pharm. Sci. 46, 109-114. doi:10.1590/s1984-82502010000100012
dc.relation.referencesSharma, A., Jain, C.P., Tanwar, Y.S. 2013. Preparation and characterization of solid dispersions of carvedilol with poloxamer 188. J. Chil. Chem. Soc. 58, 1553-1557. doi:10.4067/s0717-97072013000100012
dc.relation.referencesShinde, G., Desai, P., Shelke, S., Patel, R., Bangale, G., Kulkarni, D. 2020. Mometasone furoate loaded aspasomal gel for topical treatment of psoriasis: formulation, optimization, in vitro and in vivo performance. J. Dermatolog. Treat. 33, 885-896. doi:10.1080/09546634.2020.1789043
dc.relation.referencesShoormeij, Z., Taheri, A., Homayouni, A. 2017. Preparation and physicochemical characterization of meloxicam orally fast disintegration tablet using its solid dispersion. Braz. J. Pharm. Sci. 53, e00176. doi:10.1590/s2175-97902017000400176
dc.relation.referencesSigma -Aldrich. Policaprolactona. https://www.sigmaaldrich.com/CO/es/search/policaprolactona?focus=products&page=1&p erpage=30&sort=relevance&term=policaprolactona&type=product. Consultado: 02-01- 2024
dc.relation.referencesSigma -Aldrich. Poly(D,L-lactide-co-glycolide). https://www.sigmaaldrich.com/CO/es/product/sigma/p2191. Consultado: 02-01-2024
dc.relation.referencesTahir, N., Madni, A., Balasubramanian, V., Rehman, M., Correia, A., Kashif, P.M., Mäkilä, E., Salonen, J., Santos H.A. 2017. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. Int. J. Pharm. 533, 156-168. doi:10.1016/j.ijpharm.2017.09.061
dc.relation.referencesTavares Luiz, M., Santos Rosa Viegas, J., Palma Abriata, J., Viegas, F., Testa Moura de Carvalho Vicentini, F., Lopes Badra Bentley, M.V., Chorilli, M., Maldonado Marchetti, J., Tapia-Blácido, D.R. 2021. Design of experiments (DOE) to develop and to optimize nanoparticles as drug delivery systems. Eur. J. Pharm. Biopharm. 165, 127-148. doi:10.1016/j.ejpb.2021.05.011
dc.relation.referencesThanki, K., Zeng, X., Justesen, S., Tejlmann, S., Falkenberg, E., Van Driessche, E., Nielsen, H.M., Franzyk, H., Foged, C. 2017. Engineering of small interfering RNA-loaded lipidoid-poly (DL -lactic-co-glycolic acid) hybrid nanoparticles for highly efficient and safe gene silencing: A quality by design-based approach. Eur. J. Pharm. Biopharm, 120, 22-33. doi:10.1016/j.ejpb.2017.07.014
dc.relation.referencesToll, R., Jacobi, U., Richter, H., Lademann, J., Schaefer, H., Blume-Peytavi, U. 2004. Penetration profile of microspheres in follicular targeting of terminal hair follicles. J. Invest. Dermatol. 123, 168-176. doi:10.1111/j.0022-202x.2004.22717
dc.relation.referencesWHO Expert Committee on Specification for Pharmaceutical Preparations. Stability testing of active pharmaceutical ingredients and finished pharmaceutical products. Annex 2. 2009. Forty-third report. World Health Organization. Geneve. Switzerland.
dc.relation.referencesXie, Y., Li, G., Yuan, X., Cai, Z., Rong, R. 2009. Preparation and in vitro evaluation of solid dispersions of total flavones of Hippophae rhamnoides L. AAPS PharmSciTech. 10, 631- 640. doi:10.1208/s12249-009-9246-x
dc.relation.referencesYang, Q., Owusu-Ababio, G. 2000. Biodegradable progesterone microsphere delivery system for osteoporosis therapy. Drug Dev. Ind. Pharm. 26, 61-70. doi:10.1081/DDC- 100100328
dc.relation.referencesYalcin, T.E., Ilbasmis-Tamer, S., Takka, S. 2018. Development and characterization of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs) using central composite design. Int. J. Pharm. 548, 255-262. doi:10.1016/j.ijpharm.2018.06.063
dc.relation.referencesZheng, M., Gong, P., Zheng, C., Zhao, P., Luo, Z., Ma, Y., Cai, L. 2015. Lipid-polymer nanoparticles for folate-receptor targeting delivery of doxorubicin. J. Nanosci. Nanotechnol. 15, 4792-4798. doi:10.1166/jnn.2015.9604
dc.relation.referencesZhu, J.J., Tang, C.H., Luo, F.C., Yin, S.W., Yang, X.Q. 2022. Topical application of zein- silk sericin nanoparticles loaded with curcumin for improved therapy of dermatitis. Mater. Today Chem. 24, 100802. doi:10.1016/j.mtchem.2022.100802
dc.relation.referencesAina, A., Gupta, M., Boukari, Y., Morris, A., Billa, N., Doughty, S. 2015. Monitoring model drug microencapsulation in PLGA scaffolds using X-ray powder diffraction. Saudi Pharm. J. 24, 227–231. doi:10.1016/j.jsps.2015.03.015
dc.relation.referencesAshok, B., Arleth, L., Hjelm, R.P., Rubinstein, I., Önyüksel, H. 2004. In vitro characterization of PEGylated phospholipid micelles for improved drug solubilization: Effects of PEG chain length and PC incorporation. J. Pharm. Sci. 93, 2476–2487. doi:10.1002/jps.20150
dc.relation.referencesChan, J.M., Zhang, L., Yuet, K.P., Liao, G., Rhee, J-W., Langer, R., Farokhzad, O.C. 2009. PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials. 30, 1627–1634. doi:10.1016/j.biomaterials.2008.12.013
dc.relation.referencesClawson, C., Ton, L., Aryal, S., Fu, V., Esener, S., Zhang, L. 2011. Synthesis and characterization of lipid–polymer hybrid nanoparticles with pH-triggered poly(ethylene glycol) shedding. Langmuir. 27, 10556–10561. doi:10.1021/la202123e
dc.relation.referencesCoêlho Rios Silva, A.T., Oliveira-Cardoso, B.C., Scarpelli Ribeiro, M.E., Souza-Freitas, R.F., Sousa, R.G. 2015. Synthesis, characterization, and study of PLGA copolymer in vitro degradation. J. Biomater. Nanobiotechnol. 6, 8-19. doi:10.4236/jbnb.2015.61002
dc.relation.referencesDos Santos-Ferreira, D., Dornelas-Faria, S., Caldeira de Araújo, S., Lopes, C.S., Teixeira, A.M., Magalhães-Paniago, R., De Souza-Filho, J.D., De Jesus-Pinto, B.L., Oliveira, A.R., Guimarães, P.C., Miranda, L.A., Ferreira, R.J.A., Oliveira, M.C. 2016. Development of a bone-targeted pH-sensitive liposomal formulation containing doxorubicin: physicochemical characterization, cytotoxicity, and biodistribution evaluation in a mouse model of bone metastasis. Int. J. Nanomed. 11, 3737–3751. doi:10.2147/ijn.s109966
dc.relation.referencesGadzinowski, M., Slomkowski, S., Elaissari, A., Pichot, C. 2000. Phase transfer and characterization of poly(epsilon-caprolactone) and poly(L-lactide) microspheres. Biomater. Sci. Polym. Ed. 11, 459-480. doi: 10.1163/156856200743814
dc.relation.referencesGarcía‐García, P., Briffault, E., Landin, M., Evora, C., Diaz‐Rodríguez, P., Delgado, A. 2021. Tailor‐made oligonucleotide‐loaded lipid‐polymer nanosystems designed for bone gene therapy. Drug Deliv. Transl. Res. 11, 598–607. doi:10.1007/s13346-021-00926-
dc.relation.referencesGuo, F., Shang, J., Zhao, H., Lai, K., Li, Y., Fan, Z., Hou, Z., Su, G. 2017. Cube-shaped theranostic paclitaxel prodrug nanocrystals with surface functionalization of SPC and MPEG-DSPE for imaging and chemotherapy. Colloids Surf. B: Biointerfaces. 160, 649– 660. doi:10.1016/j.colsurfb.2017.10.01
dc.relation.referencesHigashi, K., Mibu, F., Saito, K., Limwikrant, W., Yamamoto, K., Moribe, K. 2017. Composition-dependent structural changes and antitumor activity of ASC-DP/DSPE-PEG nanoparticles. Eur. J. Pharm. Sci. 99, 24–31. doi:10.1016/j.ejps.2016.11.029
dc.relation.referencesKamel, A.O., Awad, G.A.S., Geneidi, A.S., Mortada, N.D. 2009. Preparation of intravenous stealthy acyclovir nanoparticles with increased mean residence time. AAPS PharmSciTech. 10, 1427–1436. doi:10.1208/s12249-009-9342
dc.relation.referencesLiu, J., Lee, H., Allen, C. 2006. Formulation of drugs in block copolymer micelles: Drug loading and release. Curr. Pharm. Des. 12, 4685–4701. doi:10.2174/138161206779026263
dc.relation.referencesLiu, Y., Ghassemi, A.H., Hennink, W.E., Schwendeman, S.P. 2012. The microclimate pH in poly(d,l-lactide-co-hydroxymethyl glycolide) microspheres during biodegradation. Biomaterials. 33, 7584–7593. doi:10.1016/j.biomaterials
dc.relation.referencesMasoudipour, E., Kashanian, S., Azandaryani, A.H., Omidfar, K., Bazyar, E. 2017. Surfactant effects on the particle size, zeta potential, and stability of starch nanoparticles and their use in a pH-responsive manner. Cellulose. 24, 4217–4234. doi:10.1007/s10570- 017-1426-3
dc.relation.referencesMora-Huertas, C.E., Couenne, F., Fessi, H., Elaissari, A. 2012. Electrokinetic properties of poly-ε-caprolactone-based nanoparticles prepared by nanoprecipitation and emulsification-diffusion methods: A comparative study. J. Nanopart. Res. 14, 876. doi:10.1007/s11051- 012-0876-7
dc.relation.referencesTahir, N., Madni, A., Correia, A., Rehman, M., Balasubramanian, V., Khan, M.M., Santos, H.A. 2019. Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy. Int. J. Nanomedicine. 14, 4961–4974. doi:10.2147/ijn.s209325
dc.relation.referencesViitala, L., Pajari, S., Gentile, L., Määttä, J., Gubitosi, M., Deska, J., Sammalkorpi, M., Olsson, U., Murtomäki, L. 2019. Shape and phase transitions in a PEGylated phospholipid system. Langmuir. 35, 3999-4010. doi:10.1021/acs.langmuir.8b03829
dc.relation.referencesWu, X.Y. 2016. Strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery. Expert Opin. Drug Deliv. 13, 609–612. doi:10.1517/17425247.2016.116566 Zeeuwen, P. 2004. Epidermal differentiation: The role of proteases and their inhibitors. Eur. J. Cell Biol. 83, 761–773. doi:10.1078/0171-9335-00388
dc.relation.referencesZhang, Z., Wang, X., Zhu, R., Wang, Y., Li, B., Ma, Y., Yin, Y. 2016. Synthesis and characterization of serial random and block-copolymers based on lactide and glycolide. Polym. Sci. Ser. B. 58, 720–729. doi:10.1134/s1560090416060191
dc.relation.referencesZheng, M., Gong, P., Zheng, C., Zhao, P., Luo, Z., Ma, Y., Cai, L. 2015. Lipid-polymer nanoparticles for folate-receptor targeting delivery of doxorubicin. J. Nanosci. Nanotechnol. 15, 4792–4798. doi:10.1166/jnn.2015.9604
dc.relation.referencesBaez, M.E., Zincker, J. 1999. Parámetro de calidad analítica de un método de determinación multiresiduos de plaguicidas por HPLC-DAD. Bol. Soc. Chil. Quím. 3, 357- 366. doi:10.4067/S0366-16441999000300013
dc.relation.referencesBlessy, M., Patel, R.D., Prajapati, P.N., Agrawal, Y.K. 2014. Development of forced degradation and stability indicating studies of drugs - A review. J. Pharm. Anal. 4, 159–165. doi:10.1016/j.jpha.2013.09.003
dc.relation.referencesDe Zan, M.M. 2011. Utilización de quimiometría para mejorar el rendimiento de la cromatografía líquida de alta resolución. Universidad Nacional del Litoral Facultad de Bioquímica y Ciencias Biológicas.
dc.relation.referencesInternational Conference of Harmonisation ICH. Q2 (R2). Validation of Analytical Procedures: Text and Methodology Guidance for Industry., 2023.
dc.relation.referencesMagnusson, B., Örnemark, U. (Eds.). 2014. Eurachem Guide: The fitness for purpose of analytical methods – A laboratory guide to method validation and related topics. Second ed. Disponible: www.eurachem.org.
dc.relation.referencesSandoval, S. 2010. Validación de métodos y determinación de la incertidumbre de la medición: “Aspectos generales sobre la validación de métodos” Instituto de Salud Pública de Chile.
dc.relation.referencesNgwa, G. 2010. Forced degradation studies. Forced degradation as an integral part of HPLC stability-indicating method development. Drug Deliv. Technol. 5, 56-59. Disponible en: https://studylib.net/doc/18112713/forced-degradation-as-an-integral-part-of-hplc- stability
dc.relation.referencesOMS Serie de Informes Técnicos, No. 902, 2002. Informe 36, Anexo 3. Buenas prácticas para Laboratorios Nacionales de Control Farmacéutico
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembNANOPARTICULAS
dc.subject.lembNanoparticles
dc.subject.lembMEZCLA (INGENIERIA QUIMICA)
dc.subject.lembMixing
dc.subject.lembENFERMEDADES DE LA PIEL
dc.subject.lembSkin diseases
dc.subject.lembDERMATITIS POR CONTACTO
dc.subject.lembContact dermatitis
dc.subject.lembALERGIA
dc.subject.lembAllergy
dc.subject.lembPOLIMEROS CONDUCTORES
dc.subject.lembConducting Polymers
dc.subject.lembLIPIDOS
dc.subject.lembLipids
dc.subject.proposalNanopartículas híbridas polímero – lípido
dc.subject.proposalNanoprecipitación
dc.subject.proposalDermatitis alérgica de contacto
dc.subject.proposalFuroato de mometasona
dc.subject.proposalPolymer–lipid hybrid nanoparticles
dc.subject.proposalNanoprecipitation
dc.subject.proposalAllergic contact dermatitis
dc.subject.proposalMometasone furoate
dc.title.translatedDevelopment of hybrid polymer-lipid nanoparticles with application in the treatment of allergic contact dermatitis
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentDataPaper
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentPúblico general


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit