Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorCapote Rodríguez, Gil
dc.contributor.advisorOlaya Flórez, Jhon Jairo
dc.contributor.authorVallejo Bastidas, Fabio Fernando
dc.date.accessioned2025-04-29T13:54:51Z
dc.date.available2025-04-29T13:54:51Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88135
dc.descriptionilustraciones, diagramas, fotografías a color, tablas
dc.description.abstractEn este trabajo de investigación se sintetizaron recubrimientos de (Al,Ti,Cr)N con diferentes contenidos de cobre mediante la técnica de co-sputtering magnetrón reactivo y la técnica de impulso de alta potencia (HiPIMS) depositado sobre sustratos de acero AISI 4340 y WC-Co. Se evaluó el efecto de los recubrimientos en las propiedades mecánicas y tribológicas al variar los contenidos de cobre entre 0 y 1,74 at. % Cu, para co-sputtering, y entre 0 y 4,48 at. % para HiPIMS. Además, se estudió la composición química, estructural y morfológica sobre las propiedades del recubrimiento. La composición química reveló un recubrimiento cuasi estequiométrico. Los diagramas de XRD mostraron una estructura tipo B1, FCC-NaCl con un crecimiento preferencial en la orientación (111) para ambas técnicas. La morfología de los recubrimientos depositados por sputtering reveló una estructura columnar, piramidal y porosa. Los recubrimientos de HIPIMS mostraron una transición de una morfología lenticular a una piramidal con la adición de Cu. Los recubrimientos de HIPIMS con 4,34 at. %Cu resultaron en una capa más densa y homogénea, sin vacíos o poros, en comparación con los recubrimientos de sputtering. La dureza incrementó con el aumento del Cu en ambas técnicas. Además, se evidenció un incremento del doble para HiPIMS pasando de un promedio de 11,5 GPa ± 0,3 a 23,4 GPa ± 1,75. En MS, el coeficiente de fricción, CoF en aire, disminuyó ligeramente con el aumento de at. % Cu, mientras que el CoF en aceite aumentó ligeramente. En HiPIMS, el CoF en aire disminuyó con el incremento del at. % Cu, mientras que el CoF en aceite disminuyó inicialmente y luego se estabilizó. Se observó que HiPIMS reduce el CoF en aire entre un 46% a 47% y, en aceite, entre un 16% a 23% respecto a MS. En cuanto a la tasa de desgaste, se observó que, en aire, aumentó con el incremento del at % Cu, mientras que en aceite, disminuyó inicialmente y luego aumentó, alcanzando un máximo en 1,09 at % Cu para 4340. En HiPIMS, la tasa de desgaste disminuyó con el incremento del Cu tanto para aceite como para aire sobre los WC-Co. En general, se observó que la tasa de desgaste en aire disminuye un 22,77 a 29,35% sobre WC-Co y 4340, respectivamente respecto a MS y, en aceite, casi un 100% para el 4340 y un 84% para WC-Co. La resistencia a la polarización de los recubrimientos depositados por HIPIMS aumentó en un 49,73% respecto a los depositados por MS sobre 4340 y en una unidad sobre WC-Co. Los recubrimientos depositados mediante HiPIMS mostraron un mejor desempeño debido a la alta energía de los iones que se depositan en la superficie del sustrato (Texto tomado de la fuente).
dc.description.abstractThis research work involved synthesizing (Al,Ti,Cr)N coatings with different copper contents using the reactive magnetron co-sputtering technique and the high-power impulse magnetron sputtering technique (HiPIMS) deposited on AISI 4340 steel and WC-Co substrates. The study aimed to assess the impact of copper content on the mechanical and tribological properties of the coatings. Copper contents were adjusted between 0 and 1,74 at. % Cu, for coatings deposited by co-sputtering and between 0 and 4,48 at. % for HiPIMS deposited coatings. In addition, the chemical composition, microstructural and morphological properties of the coatings were studied. The chemical composition revealed the formation of a quasi-stoichiometric coating. XRD diagrams showed a B1, FCC-NaCl type structure with preferential growth in orientation (111). The morphology analysis of the sputtering-deposited coatings revealed a columnar, pyramidal, and porous structure. Notably, HIPIMS coatings exhibited a transition from lenticular to pyramidal morphology with the addition of Cu. Coatings produced through HIPIMS with 4,34 at. %Cu resulted in a denser and more homogeneous layer, with no voids or pores, in contrast to sputtering coatings. Hardness increased with the growing Cu content in both techniques. Specifically, in HiPIMS there was a twofold increase from an average of 11,5 GPa ± 0,3 to 23,4 GPa ± 1.75. Regarding the coefficient of friction, in air, CoF slightly decreasedwith increasing at. % Cu in MS, while in oil, it exhibited a slight increase. In HiPIMS, the CoF in air decreased with increasing at. % Cu, while in oil, it initially decreased and then stabilized. Compared to MS, HiPIMS resulted in a notable reduction in CoF, decreasing by 46% to 47% in air and by 16% to 23% in oil. Examining the wear rate, it was observed that in air, it increased with the rise in at % Cu, while in oil, it initially decreased and then increased, reaching a maximum of 1,09 at % Cu for 4340. In HiPIMS, the wear rate decreased with the increase of Cu for both oil and air on the WC-Co. Overall, the wear rate in air decreased by 22,77 to 29,35% for WC-Co and 4340, respectively, inMS. In oil, the decrease was almost 100% for 4340 and 84% for WC-Co. Furthermore, the polarization resistance of coatings deposited by HIPIMS increased by 49,73% compared to those deposited by MS on 4340 and in one unit on WC-Co. Coatings deposited by HiPIMS showed better performance due to the high energy of the ions deposited on the substrate surface.
dc.format.extent219 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleResistencia al desgaste de recubrimientos de (Ti,Cr,Al)N-Cu producidos por medio de la técnica de co-sputtering magnetrón reactivo
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónica
dc.contributor.researchgroupGrupo de Investigación Afis (Análisis de Fallas, Integridad y Superficies)
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería Mecánica y Mecatrónica
dc.description.researchareaIngeniería de Fabricación y Materiales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesJ. Musil, Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness, Surf Coat Technol 207 (2012) 50–65. https://doi.org/10.1016/j.surfcoat.2012.05.073.
dc.relation.referencesR. Juza, Nitrides of Metals of the First Transition Series, Advances in Inorganic Chemistry and Radiochemistry 9 (1966) 81–131. https://doi.org/10.1016/S0065-2792(08)60302-7.
dc.relation.referencesJ. Musil, Hard and superhard nanocomposite coatings, Surf Coat Technol 125 (2000) 322–330. https://doi.org/10.1016/S0257-8972(99)00586-1.
dc.relation.referencesM. Köhler, W. Fritzsche, Nanotechnology: An Introduction to Nanostructuring Techniques: Second Edition, 2007. https://doi.org/10.1002/9783527621132.
dc.relation.referencesJ.L. Mo, M.H. Zhu, Tribological oxidation behaviour of PVD hard coatings, Tribol Int 42 (2009) 1758–1764. https://doi.org/10.1016/j.triboint.2009.04.026.
dc.relation.referencesD. Lundin, K. Sarakinos, An introduction to thin film processing using high-power impulse magnetron sputtering, J Mater Res 27 (2012) 780–792. https://doi.org/10.1557/jmr.2012.8.
dc.relation.referencesD.D. Kumar, N. Kumar, S. Kalaiselvam, S. Dash, R. Jayavel, Wear resistant super-hard multilayer transition metal-nitride coatings, Surfaces and Interfaces 7 (2017) 74–82. https://doi.org/10.1016/j.surfin.2017.03.001.
dc.relation.referencesG. Wang, X. Wang, Y. Zhao, T. Guo, Effect of a magnetron-sputtered ZrSiN/ZrO2 film on the bond strength of commercially pure titanium to porcelain, Journal of Prosthetic Dentistry 109 (2013) 313–318. https://doi.org/10.1016/S0022-3913(13)60307-8.
dc.relation.referencesA. Winkelmann, J.M. Cairney, M.J. Hoffman, P.J. Martin, A. Bendavid, Zr-Si-N films fabricated using hybrid cathodic arc and chemical vapour deposition: Structure vs. properties, Surf Coat Technol 200 (2006) 4213–4219. https://doi.org/10.1016/j.surfcoat.2005.01.004.
dc.relation.referencesG. Greczynski, J. Jensen, L. Hultman, CrNx films prepared by DC magnetron sputtering and high-power pulsed magnetron sputtering: A comparative study, IEEE Transactions on Plasma Science 38 (2010) 3046–3056. https://doi.org/10.1109/TPS.2010.2071885.
dc.relation.referencesA. Gilewicz, B. Warcholinski, Tribological properties of CrCN/CrN multilayer coatings, Tribol Int 80 (2014) 34–40. https://doi.org/10.1016/j.triboint.2014.06.012.
dc.relation.referencesZ. Geng, H. Wang, C. Wang, L. Wang, G. Zhang, Effect of Si content on the tribological properties of CrSiN films in air and water environments, Tribol Int 79 (2014) 140–150. https://doi.org/10.1016/j.triboint.2014.06.002.
dc.relation.referencesL. Shan, Y.R. Zhang, Y.X. Wang, J.L. Li, X. Jiang, J.M. Chen, Corrosion and wear behaviors of PVD CrN and CrSiN coatings in seawater, Transactions of Nonferrous Metals Society of China (English Edition) 26 (2016) 175–184. https://doi.org/10.1016/S1003-6326(16)64104-3.
dc.relation.referencesH.Y. Lee, W.S. Jung, J.G. Han, S.M. Seo, J.H. Kim, Y.H. Bae, The synthesis of CrSiN film deposited using magnetron sputtering system, Surf Coat Technol 200 (2005) 1026–1030. https://doi.org/10.1016/j.surfcoat.2005.02.006.
dc.relation.referencesJ. Musil, J. Vlček, Magnetron sputtering of hard nanocomposite coatings and their properties, Surf Coat Technol 142–144 (2001) 557–566. https://doi.org/10.1016/S0257-8972(01)01139-2.
dc.relation.referencesA. Erdemir, G. Ramirez, O.L. Eryilmaz, B. Narayanan, Y. Liao, G. Kamath, S.K.R.S. Sankaranarayanan, Carbon-based tribofilms from lubricating oils, Nature 536 (2016) 67–71. https://doi.org/10.1038/nature18948.
dc.relation.referencesY.X. Xu, H. Riedl, D. Holec, L. Chen, Y. Du, P.H. Mayrhofer, Thermal stability and oxidation resistance of sputtered Ti Al Cr N hard coatings, Surf Coat Technol 324 (2017) 48–56. https://doi.org/10.1016/j.surfcoat.2017.05.053.
dc.relation.referencesY.X. Xu, L. Chen, B. Yang, Y.B. Peng, Y. Du, J.C. Feng, F. Pei, Effect of CrN addition on the structure, mechanical and thermal properties of Ti-Al-N coating, Surf Coat Technol 235 (2013) 506–512. https://doi.org/10.1016/j.surfcoat.2013.08.010.
dc.relation.referencesP.H. Mayrhofer, R. Rachbauer, D. Holec, F. Rovere, J.M. Schneider, Protective Transition Metal Nitride Coatings, in: Comprehensive Materials Processing, Elsevier, 2014: pp. 355–388. https://doi.org/10.1016/B978-0-08-096532-1.00423-4.
dc.relation.referencesH.O. Pierson, Interstitial Nitrides, in: Handbook of Refractory Carbides and Nitrides, Elsevier, 1996: pp. 163–180. https://doi.org/10.1016/B978-081551392-6.50011-8.
dc.relation.referencesD. Rosero Causil, C. Ortega López, T. Miranda Saenz, Transiciones de Fase Inducidas por Presión en los Compuestos GaN , InN y AlN Phase Transitions Induced by Pressure in the Compounds GaN , InN and AlN, Ciencia En Desarrollo 8 (2017) 145–160.
dc.relation.referencesH. Blank, Hägg’s rule and fast solute diffusion in cubic transition-metal phases, Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties 73 (1996) 833–844. https://doi.org/10.1080/13642819608239156.
dc.relation.referencesT. Lee, B. Delley, C. Stampfl, A. Soon, Environment-dependent nanomorphology of TiN: the influence of surface vacancies, Nanoscale 4 (2012) 5183. https://doi.org/10.1039/c2nr31266b.
dc.relation.referencesE. Martinez, R. Sanjinés, O. Banakh, F. Lévy, Electrical, optical and mechanical properties of sputtered CrNy and Cr1−xSixN1.02 thin films, Thin Solid Films 447–448 (2004) 332–336. https://doi.org/http://dx.doi.org/10.1016/S0040-6090(03)01113-1.
dc.relation.referencesI. Petrov, E. Mojab, R.C. Powell, J.E. Greene, L. Hultman, J.E. Sundgren, Synthesis of metastable epitaxial zinc-blende-structure AlN by solid-state reaction, Appl Phys Lett 60 (1992) 2491–2493. https://doi.org/10.1063/1.106943.
dc.relation.referencesQ. Xia, H. Xia, A.L. Ruoff, Pressure-induced rocksalt phase of aluminum nitride: A metastable structure at ambient condition, J Appl Phys 73 (1993) 8198–8200. https://doi.org/10.1063/1.353435.
dc.relation.referencesJ. Wang, W.L. Wang, P.D. Ding, Y.X. Yang, L. Fang, J. Esteve, M.C. Polo, G. Sanchez, Synthesis of cubic aluminum nitride by carbothermal nitridation reaction, Diam Relat Mater 8 (1999) 1342–1344. https://doi.org/10.1016/S0925-9635(99)00134-X.
dc.relation.referencesD.A. Rasero Causil, T.S. Miranda Saenz, C. Ortega López, Transiciones de Fase Inducidas por Presión en los Compuestos GaN, InN y AlN / Phase Transitions Induced by Pressure in the Compounds GaN, InN and AlN, Ciencia En Desarrollo 8 (2017) 145–160. https://doi.org/10.19053/01217488.v8.n1.2017.4361.
dc.relation.referencesJ. Musil, H. Hrubý, Superhard nanocomposite Ti1-xAlxN films prepared by magnetron sputtering, Thin Solid Films 365 (2000) 104–109. https://doi.org/10.1016/S0040-6090(00)00653-2.
dc.relation.referencesL. Chen, M. Moser, Y. Du, P.H. Mayrhofer, Compositional and structural evolution of sputtered Ti-Al-N, Thin Solid Films 517 (2009) 6635–6641. https://doi.org/10.1016/j.tsf.2009.04.056.
dc.relation.referencesM. Audronis, O. Jimenez, A. Leyland, A. Matthews, The morphology and structure of PVD ZrN-Cu thin films, J Phys D Appl Phys 42 (2009). https://doi.org/10.1088/0022-3727/42/8/085308.
dc.relation.referencesA.A. Voevodin, J.S. Zabinski, Nanocomposite and nanostructured tribological materials for space applications, Compos Sci Technol 65 (2005) 741–748. https://doi.org/10.1016/j.compscitech.2004.10.008.
dc.relation.referencesD. Lundin, K. Sarakinos, An introduction to thin film processing using high-power impulse magnetron sputtering, J Mater Res 27 (2012) 780–792. https://doi.org/10.1557/jmr.2012.8.
dc.relation.referencesD.M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Elsevier, 2010. https://doi.org/10.1016/C2009-0-18800-1.
dc.relation.referencesG. Bräuer, Magnetron Sputtering, in: Comprehensive Materials Processing, Elsevier, 2014: pp. 57–73. https://doi.org/10.1016/B978-0-08-096532-1.00403-9.
dc.relation.referencesE. Santecchia, A.M.S. Hamouda, F. Musharavati, E. Zalnezhad, M. Cabibbo, S. Spigarelli, Wear resistance investigation of titanium nitride-based coatings, Ceram Int 41 (2015) 10349–10379. https://doi.org/10.1016/j.ceramint.2015.04.152.
dc.relation.referencesA. Anders, Discharge physics of high power impulse magnetron sputtering, Surf Coat Technol 205 (2011) S1–S9. https://doi.org/10.1016/j.surfcoat.2011.03.081.
dc.relation.referencesL. Chen, Y. Du, S.Q. Wang, A.J. Wang, H.H. Xu, Mechanical properties and microstructural evolution of TiN coatings alloyed with Al and Si, Materials Science and Engineering A 502 (2009) 139–143. https://doi.org/10.1016/j.msea.2008.10.013.
dc.relation.referencesJ.-E. Sundgren, Structure and properties of TiN coatings, Thin Solid Films 128 (1985) 21–44. https://doi.org/10.1016/0040-6090(85)90333-5.
dc.relation.referencesY.C. Chim, X.Z. Ding, X.T. Zeng, S. Zhang, Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc, Thin Solid Films 517 (2009) 4845–4849. https://doi.org/10.1016/j.tsf.2009.03.038.
dc.relation.referencesL. Chen, J. Paulitsch, Y. Du, P.H. Mayrhofer, Thermal stability and oxidation resistance of Ti-Al-N coatings, Surf Coat Technol 206 (2012) 2954–2960. https://doi.org/10.1016/j.surfcoat.2011.12.028.
dc.relation.referencesC. Mitterer, PVD and CVD Hard Coatings, in: Comprehensive Hard Materials, Elsevier Ltd, 2014: pp. 449–467. https://doi.org/10.1016/B978-0-08-096527-7.00035-0.
dc.relation.referencesR. Buhl, H.K. Pulker, E. Moll, TiN coatings on steel, Thin Solid Films 80 (1981) 265–270. https://doi.org/10.1016/0040-6090(81)90233-9.
dc.relation.referencesP.H. Mayrhofer, F. Kunc, J. Musil, C. Mitterer, A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings, Thin Solid Films 415 (2002) 151–159. https://doi.org/10.1016/S0040-6090(02)00511-4.
dc.relation.referencesN. Fateh, G.A. Fontalvo, G. Gassner, C. Mitterer, Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings, Wear 262 (2007) 1152–1158. https://doi.org/10.1016/j.wear.2006.11.006.
dc.relation.referencesC. Liu, Q. Bi, A. Matthews, EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution, Corros Sci 43 (2001) 1953–1961. https://doi.org/10.1016/S0010-938X(00)00188-8.
dc.relation.referencesT. Sato, Y. Tada, M. Ozaki, K. Hoke, T. Besshi, A crossed-cylinders testing for evaluation of wear and tribological properties of coated tools, Wear 178 (1994) 95–100. https://doi.org/10.1016/0043-1648(94)90133-3.
dc.relation.referencesG. Berg, C. Friedrich, E. Broszeit, C. Berger, Development of chromium nitride coatings substituting titanium nitride, Surf Coat Technol 86–87 (1996) 184–191. https://doi.org/10.1016/S0257-8972(96)03042-3.
dc.relation.referencesG. Bertrand, H. Mahdjoub, C. Meunier, A study of the corrosion behaviour and protective quality of sputtered chromium nitride coatings, Surf Coat Technol 126 (2000) 199–209. https://doi.org/10.1016/S0257-8972(00)00527-2.
dc.relation.referencesC. Liu, Q. Bi, H. Ziegele, a. Leyland, a. Matthews, Structure and corrosion properties of PVD Cr–N coatings, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 20 (2002) 772. https://doi.org/10.1116/1.1468651.
dc.relation.referencesV. Ezirmik, E. Senel, K. Kazmanli, A. Erdemir, M. Ürgen, Effect of copper addition on the temperature dependent reciprocating wear behaviour of CrN coatings, Surf Coat Technol 202 (2007) 866–870. https://doi.org/10.1016/j.surfcoat.2007.05.049.
dc.relation.referencesS. Hogmark, S. Jacobson, M. Larsson, Design and evaluation of tribological coatings, Wear 246 (2000) 20–33. https://doi.org/10.1016/S0043-1648(00)00505-6.
dc.relation.referencesM. Gong, J. Chen, X. Deng, S. Wu, Sliding wear behavior of TiAlN and AlCrN coatings on a unique cemented carbide substrate, Int J Refract Metals Hard Mater 69 (2017) 209–214. https://doi.org/10.1016/j.ijrmhm.2017.08.003.
dc.relation.referencesL. Wang, S. Zhang, Z. Chen, J. Li, M. Li, Influence of deposition parameters on hard Cr-Al-N coatings deposited by multi-arc ion plating, Appl Surf Sci 258 (2012) 3629–3636. https://doi.org/10.1016/j.apsusc.2011.11.127.
dc.relation.referencesY.P. Purandare, a. P. Ehiasarian, M.M. Stack, P.Eh. Hovsepian, CrN/NbN coatings deposited by HIPIMS: A preliminary study of erosion–corrosion performance, Surf Coat Technol 204 (2010) 1158–1162. https://doi.org/10.1016/j.surfcoat.2009.11.006.
dc.relation.referencesJ. Paulitsch, P.H. Mayrhofer, W.D. Münz, M. Schenkel, Structure and mechanical properties of CrN/TiN multilayer coatings prepared by a combined HIPIMS/UBMS deposition technique, Thin Solid Films 517 (2008) 1239–1244. https://doi.org/10.1016/j.tsf.2008.06.080.
dc.relation.referencesB. Warcholinski, A. Gilewicz, The properties of multilayer CrCN/CrN coatings dependent on their architecture, Plasma Processes and Polymers 8 (2011) 333–339. https://doi.org/10.1002/ppap.201000167.
dc.relation.referencesM.S. Kabir, P. Munroe, Z. Zhou, Z. Xie, Structure and mechanical properties of graded Cr/CrN/CrTiN coatings synthesized by close field unbalanced magnetron sputtering, Surf Coat Technol 309 (2016) 779–789. https://doi.org/10.1016/j.surfcoat.2016.10.087.
dc.relation.referencesM.S. Kabir, P. Munroe, Z. Zhou, Z. Xie, Scratch adhesion and tribological behaviour of graded Cr/CrN/CrTiN coatings synthesized by closed-field unbalanced magnetron sputtering, Wear 380–381 (2017) 163–175. https://doi.org/10.1016/j.wear.2017.03.020.
dc.relation.referencesJ. Kim, J. Pyeon, M. Jeon, O. Nam, Growth and characterization of high quality AlN using combined structure of low temperature buffer and superlattices for applications in the deep ultraviolet Growth and characterization of high quality AlN using combined structure of low temperature buffe, Jpn J Appl Phys 081001 (2015) 081001. https://doi.org/10.7567/JJAP.54.081001.
dc.relation.referencesK.A. Aissa, A. Achour, O. Elmazria, Q. Simon, M. Elhosni, P. Boulet, S. Robert, M.A. Djouadi, AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering for SAW applications, J Phys D Appl Phys 48 (2015) 145307. https://doi.org/10.1088/0022-3727/48/14/145307.
dc.relation.referencesA. Habib, A. Shelke, M. Vogel, S. Brand, X. Jiang, U. Pietsch, S. Banerjee, T. Kundu, Quantitative ultrasonic characterization of c-Axis oriented polycrystalline AlN thin film for smart device application, Acta Acustica United with Acustica 101 (2015) 675–683. https://doi.org/10.3813/AAA.918863.
dc.relation.referencesA. Siozios, D.C. Koutsogeorgis, E. Lidorikis, G.P. Dimitrakopulos, N. Pliatsikas, G. Vourlias, T. Kehagias, P. Komninou, W. Cranton, C. Kosmidis, P. Patsalas, Laser-matter interactions, phase changes and diffusion phenomena during laser annealing of plasmonic AlN:Ag templates and their applications in optical encoding, J Phys D Appl Phys 48 (2015) 285306. https://doi.org/10.1088/0022-3727/48/28/285306.
dc.relation.referencesB. Riah, A. Ayad, J. Camus, M. Rammal, F. Boukari, L. Chekour, M.A. Djouadi, N. Rouag, Textured hexagonal and cubic phases of AlN films deposited on Si (100) by DC magnetron sputtering and high power impulse magnetron sputtering, Thin Solid Films 655 (2018) 34–40. https://doi.org/10.1016/j.tsf.2018.03.076.
dc.relation.referencesJ. Zhu, D. Zhao, W.B. Luo, Y. Zhang, Y.R. Li, Epitaxial growth of cubic AlN films on SrTiO3(1 0 0) substrates by pulsed laser deposition, J Cryst Growth 310 (2008) 731–737. https://doi.org/10.1016/j.jcrysgro.2007.11.147.
dc.relation.referencesJ.T. Chen, J. Wang, F. Zhang, G.A. Zhang, X.Y. Fan, Z.G. Wu, P.X. Yan, Characterization and temperature controlling property of TiAlN coatings deposited by reactive magnetron co-sputtering, J Alloys Compd 472 (2009) 91–96. https://doi.org/10.1016/j.jallcom.2008.04.083.
dc.relation.referencesF.F. Komarov, V.M. Konstantinov, A. V. Kovalchuk, S. V. Konstantinov, H.A. Tkachenko, The effect of steel substrate pre-hardening on structural, mechanical, and tribological properties of magnetron sputtered TiN and TiAlN coatings, Wear 352–353 (2016) 92–101. https://doi.org/10.1016/j.wear.2016.02.007.
dc.relation.referencesM. Danek, F. Fernandes, A. Cavaleiro, T. Polcar, Influence of Cr additions on the structure and oxidation resistance of multilayered TiAlCrN films, Surf Coat Technol 313 (2017) 158–167. https://doi.org/10.1016/j.surfcoat.2017.01.053.
dc.relation.referencesB. Subramanian, R. Ananthakumar, M. Jayachandran, Microstructural, mechanical and electrochemical corrosion properties of sputtered titanium-aluminum-nitride films for bio-implants, Vacuum 85 (2010) 601–609. https://doi.org/10.1016/j.vacuum.2010.08.019.
dc.relation.referencesM. Gîrleanu, M. Pac, P. Louis, O. Ersen, J. Werckmann, C. Rousselot, M. Tuilier, Characterisation of nano-structured titanium and aluminium nitride coatings by indentation , transmission electron microscopy and electron energy loss spectroscopy, Thin Solid Films 519 (2011) 6190–6195. https://doi.org/10.1016/j.tsf.2011.04.113.
dc.relation.referencesS.P. Pemmasani, K. Valleti, R.C. Gundakaram, K. V. Rajulapati, R. Mantripragada, S. Koppoju, S. V. Joshi, Effect of microstructure and phase constitution on mechanical properties of Ti1-xAlxN coatings, Appl Surf Sci 313 (2014) 936–946. https://doi.org/10.1016/j.apsusc.2014.06.112.
dc.relation.referencesC. He, J. Zhang, G. Song, G. Ma, Z. Du, J. Wang, D. Zhao, Microstructure and mechanical properties of reactive sputtered nanocrystalline (Ti,Al)N films, in: Thin Solid Films, Elsevier B.V., 2015: pp. 192–197. https://doi.org/10.1016/j.tsf.2014.12.027.
dc.relation.referencesD. McIntyre, J.E. Greene, G. Håkansson, J.E. Sundgren, W.D. Münz, Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5N films: Kinetics and mechanisms, J Appl Phys 67 (1990) 1542–1553. https://doi.org/10.1063/1.345664.
dc.relation.referencesA.I. Kovalev, D.L. Wainstein, A.Y. Rashkovskiy, G.S. Fox-Rabinovich, K. Yamamoto, S. Veldhuis, M. Aguirre, B.D. Beake, Impact of Al and Cr alloying in TiN-based PVD coatings on cutting performance during machining of hard to cut materials, Vacuum 84 (2009) 184–187. https://doi.org/10.1016/j.vacuum.2009.06.019.
dc.relation.referencesJ.L. Mo, M.H. Zhu, B. Lei, Y.X. Leng, N. Huang, Comparison of tribological behaviours of AlCrN and TiAlN coatings-Deposited by physical vapor deposition, Wear 263 (2007) 1423–1429. https://doi.org/10.1016/j.wear.2007.01.051.
dc.relation.referencesA.E. Reiter, V.H. Derflinger, B. Hanselmann, T. Bachmann, B. Sartory, Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation, Surf Coat Technol 200 (2005) 2114–2122. https://doi.org/10.1016/j.surfcoat.2005.01.043.
dc.relation.referencesB.D. Beake, J.L. Endrino, C. Kimpton, G.S. Fox-Rabinovich, S.C. Veldhuis, Elevated temperature repetitive micro-scratch testing of AlCrN, TiAlN and AlTiN PVD coatings, Int J Refract Metals Hard Mater 69 (2017) 215–226. https://doi.org/10.1016/j.ijrmhm.2017.08.017.
dc.relation.referencesE. Lugscheider, K. Bobzin, S. Bärwulf, T. Hornig, Oxidation characteristics and surface energy of chromium-based hardcoatings for use in semisolid forming tools, Surf Coat Technol 133–134 (2000) 540–547. https://doi.org/10.1016/S0257-8972(00)00974-9.
dc.relation.referencesW. Kalss, A. Reiter, V. Derflinger, C. Gey, J.L. Endrino, Modern coatings in high performance cutting applications, Int J Refract Metals Hard Mater 24 (2006) 399–404. https://doi.org/10.1016/j.ijrmhm.2005.11.005.
dc.relation.referencesR. Haubner, M. Lessiak, R. Pitonak, A. Köpf, R. Weissenbacher, Evolution of conventional hard coatings for its use on cutting tools, Int J Refract Metals Hard Mater 62 (2017) 210–218. https://doi.org/10.1016/j.ijrmhm.2016.05.009.
dc.relation.referencesO. Banakh, P.E. Schmid, R. Sanjinés, High-temperature oxidation resistance of Cr1−xAlxN thin films deposited by reactive magnetron sputtering, Surf Coat Technol 163–164 (2003) 57–61. https://doi.org/10.1016/S0257-8972(02)00589-3.
dc.relation.referencesY. Makino, K. Nogi, Synthesis of pseudobinary Cr-Al-N films with B1 structure by rf-assisted magnetron sputtering method, Surf Coat Technol 98 (1998) 1008–1012. https://doi.org/10.1016/S0257-8972(97)00391-5.
dc.relation.referencesA. Kimura, M. Kawate, H. Hasegawa, T. Suzuki, Anisotropic lattice expansion and shrinkage of hexagonal TiAlN and CrAlN films, Surf Coat Technol 169–170 (2003) 367–370. https://doi.org/10.1016/S0257-8972(03)00040-9.
dc.relation.referencesZ.F. Zhou, P.L. Tam, P.W. Shum, K.Y. Li, High temperature oxidation of CrTiAlN hard coatings prepared by unbalanced magnetron sputtering, Thin Solid Films 517 (2009) 5243–5247. https://doi.org/10.1016/j.tsf.2009.03.115.
dc.relation.referencesP.L. Tam, Z.F. Zhou, P.W. Shum, K.Y. Li, Structural, mechanical, and tribological studies of Cr-Ti-Al-N coating with different chemical compositions, Thin Solid Films 516 (2008) 5725–5731. https://doi.org/10.1016/j.tsf.2007.07.127.
dc.relation.referencesA. Georgiadis, G.G. Fuentes, E. Almandoz, A. Medrano, J.F. Palacio, A. Miguel, Characterisation of cathodic arc evaporated CrTiAlN coatings: Tribological response at room temperature and at 400 °C, Mater Chem Phys 190 (2017) 194–201. https://doi.org/10.1016/j.matchemphys.2017.01.021.
dc.relation.referencesT. Yamamoto, H. Hasegawa, T. Suzuki, K. Yamamoto, Effects of thermal annealing on phase transformation and microhardness of (TixCryAlz)N films, Surf Coat Technol 200 (2005) 321–325. https://doi.org/10.1016/j.surfcoat.2005.02.048.
dc.relation.referencesG.S. Fox-Rabinovich, A.I. Kovalev, M.H. Aguirre, B.D. Beake, K. Yamamoto, S.C. Veldhuis, J.L. Endrino, D.L. Wainstein, A.Y. Rashkovskiy, Design and performance of AlTiN and TiAlCrN PVD coatings for machining of hard to cut materials, Surf Coat Technol 204 (2009) 489–496. https://doi.org/10.1016/j.surfcoat.2009.08.021.
dc.relation.referencesR. Forsén, M.P. Johansson, M. Odén, N. Ghafoor, Effects of Ti alloying of AlCrN coatings on thermal stability and oxidation resistance, Thin Solid Films 534 (2013) 394–402. https://doi.org/10.1016/j.tsf.2013.03.003.
dc.relation.referencesJ. Lin, X. Zhang, Y. Ou, R. Wei, The structure, oxidation resistance, mechanical and tribological properties of CrTiAlN coatings, Surf Coat Technol 277 (2015) 58–66. https://doi.org/10.1016/j.surfcoat.2015.07.013.
dc.relation.referencesQ. Wang, F. Zhou, J. Yan, Evaluating mechanical properties and crack resistance of CrN, CrTiN, CrAlN and CrTiAlN coatings by nanoindentation and scratch tests, Surf Coat Technol 285 (2016) 203–213. https://doi.org/10.1016/j.surfcoat.2015.11.040.
dc.relation.referencesF. Fernandes, M. Danek, T. Polcar, A. Cavaleiro, Tribological and cutting performance of TiAlCrN films with different Cr contents deposited with multilayered structure, Tribol Int 119 (2018) 345–353. https://doi.org/10.1016/j.triboint.2017.11.008.
dc.relation.referencesJ. Yuan, K. Yamamoto, D. Covelli, M. Tauhiduzzaman, T. Arif, I.S. Gershman, S.C. Veldhuis, G.S. Fox-Rabinovich, Tribo-films control in adaptive TiAlCrSiYN/TiAlCrN multilayer PVD coating by accelerating the initial machining conditions, Surf Coat Technol 294 (2016) 54–61. https://doi.org/10.1016/j.surfcoat.2016.02.041.
dc.relation.referencesQ. Yang, L.R. Zhao, F. Cai, S. Yang, D.G. Teer, Wear, erosion and corrosion resistance of CrTiAlN coating deposited by magnetron sputtering, Surf Coat Technol 202 (2008) 3886–3892. https://doi.org/10.1016/j.surfcoat.2008.01.029.
dc.relation.referencesB. Warcholinski, A. Gilewicz, Mechanical properties of multilayer TiAlN/CrN coatings deposited by cathodic arc evaporation, Surface Engineering 27 (2011) 491–497. https://doi.org/10.1179/026708410X12786785573355.
dc.relation.referencesL. Lu, Q.M. Wang, B.Z. Chen, Y.C. Ao, D.H. Yu, C.Y. Wang, S.H. Wu, K.H. Kim, Microstructure and cutting performance of CrTiAlN coating for high-speed dry milling, Transactions of Nonferrous Metals Society of China (English Edition) 24 (2014) 1800–1806. https://doi.org/10.1016/S1003-6326(14)63256-8.
dc.relation.referencesL. Lu, Q.M. Wang, B.Z. Chen, Y.C. Ao, D.H. Yu, C.Y. Wang, S.H. Wu, K.H. Kim, Microstructure and cutting performance of CrTiAlN coating for high-speed dry milling, Transactions of Nonferrous Metals Society of China (English Edition) 24 (2014) 1800–1806. https://doi.org/10.1016/S1003-6326(14)63256-8.
dc.relation.referencesT. Li, J. Xiong, Z. Guo, T. Yang, M. Yang, H. Du, Structures and properties of TiAlCrN coatings deposited on Ti(C,N)-based cermets with various WC contents, Int J Refract Metals Hard Mater 69 (2017) 247–253. https://doi.org/10.1016/j.ijrmhm.2017.08.020.
dc.relation.referencesG.S. Fox-Rabinovich, K. Yamomoto, S.C. Veldhuis, A.I. Kovalev, G.K. Dosbaeva, Tribological adaptability of TiAlCrN PVD coatings under high performance dry machining conditions, Surf Coat Technol 200 (2005) 1804–1813. https://doi.org/10.1016/j.surfcoat.2005.08.057.
dc.relation.referencesG.S. Fox-Rabinovich, K. Yamamoto, S.C. Veldhuis, A.I. Kovalev, L.S. Shuster, L. Ning, Self-adaptive wear behavior of nano-multilayered TiAlCrN/WN coatings under severe machining conditions, Surf Coat Technol 201 (2006) 1852–1860. https://doi.org/10.1016/j.surfcoat.2006.03.010.
dc.relation.referencesG.S. Fox-Rabinovich, K. Yamamoto, A.I. Kovalev, S.C. Veldhuis, L. Ning, L.S. Shuster, A. Elfizy, Wear behavior of adaptive nano-multilayered TiAlCrN/NbN coatings under dry high performance machining conditions, Surf Coat Technol 202 (2008) 2015–2022. https://doi.org/10.1016/j.surfcoat.2007.08.067.
dc.relation.referencesT. Polcar, A. Cavaleiro, High temperature behavior of nanolayered CrAlTiN coating: Thermal stability, oxidation, and tribological properties, Surf Coat Technol 257 (2014) 70–77. https://doi.org/10.1016/j.surfcoat.2014.07.053.
dc.relation.referencesK. Dejun, F. Guizhong, Friction and wear behaviors of AlTiCrN coatings by cathodic arc ion plating at high temperatures, J Mater Res 30 (2015) 503–511. https://doi.org/10.1557/jmr.2014.403.
dc.relation.referencesA. Erdemir, A.A. Voevodin, Nanocomposite Coatings for Severe Applications, in: Handbook of Deposition Technologies for Films and Coatings, Third Edit, Elsevier, 2010: pp. 679–715. https://doi.org/10.1016/B978-0-8155-2031-3.00014-4.
dc.relation.referencesC. Donnet, A. Erdemir, Historical developments and new trends in tribological and solid lubricant coatings, Surf Coat Technol 180–181 (2004) 76–84. https://doi.org/10.1016/j.surfcoat.2003.10.022.
dc.relation.referencesH.S. Myung, H.M. Lee, L.R. Shaginyan, J.G. Han, Microstructure and mechanical properties of Cu doped TiN superhard nanocomposite coatings, Surf Coat Technol 163–164 (2003) 591–596. https://doi.org/10.1016/S0257-8972(02)00627-8.
dc.relation.referencesJ. Musil, I. Leipner, M. Kolega, Nanocrystalline and nanocomposite CrCu and CrCu-N films prepared by magnetron sputtering, Surf Coat Technol 115 (1999) 32–37. https://doi.org/10.1016/S0257-8972(99)00065-1.
dc.relation.referencesS. Veprek, M.G.J. Veprek-Heijman, P. Karvankova, J. Prochazka, Different approaches to superhard coatings and nanocomposites, Thin Solid Films 476 (2005) 1–29. https://doi.org/10.1016/j.tsf.2004.10.053.
dc.relation.referencesP. Balashabadi, M.M. Larijani, E. Jafari-Khamse, H. Seyedi, The role of Cu content on the structural properties and hardness of TiN –Cu nanocomposite film, J Alloys Compd 728 (2017) 863–871. https://doi.org/10.1016/j.jallcom.2017.08.267.
dc.relation.referencesJ. Musil, J. Vlček, Magnetron sputtering of films with controlled texture and grain size, Mater Chem Phys 54 (1998) 116–122. https://doi.org/10.1016/S0254-0584(98)00020-0.
dc.relation.referencesJ.W. Lee, Y.C. Kuo, Y.C. Chang, Microstructure and mechanical properties of pulsed DC magnetron sputtered nanocomposite Cr-Cu-N thin films, Surf Coat Technol 201 (2006) 4078–4082. https://doi.org/10.1016/j.surfcoat.2006.08.092.
dc.relation.referencesM.A. Baker, P.J. Kench, M.C. Joseph, C. Tsotsos, A. Leyland, A. Matthews, The nanostructure and mechanical properties of PVD CrCu (N) coatings, Surf Coat Technol 162 (2003) 222–227. https://doi.org/10.1016/S0257-8972(02)00571-6.
dc.relation.referencesC.P. Mulligan, D. Gall, CrN-Ag self-lubricating hard coatings, Surf Coat Technol 200 (2005) 1495–1500. https://doi.org/10.1016/j.surfcoat.2005.08.063.
dc.relation.referencesY. Kuo, J. Lee, C. Wang, Y. Chang, The effect of Cu content on the microstructures, mechanical and antibacterial properties of Cr–Cu–N nanocomposite coatings deposited by pulsed DC reactive magnetron sputtering, Surf Coat Technol 202 (2007) 854–860. https://doi.org/10.1016/j.surfcoat.2007.05.062.
dc.relation.referencesJ. Deng, F. Wu, Y. Lian, Y. Xing, S. Li, Erosion wear of CrN, TiN, CrAlN, and TiAlN PVD nitride coatings, Int J Refract Metals Hard Mater 35 (2012) 10–16. https://doi.org/10.1016/j.ijrmhm.2012.03.002.
dc.relation.referencesASTM International, ASTM Standard A29/A 29M-O5 Specification for Steel Bars, Carbon and Alloy, Hot-Wrought, General Requirements for, (2006) 1–16. https://doi.org/10.1520/A0029_A0029M-16.
dc.relation.referencesI. Konyashin, S. Farag, B. Ries, B. Roebuck, WC-Co-Re cemented carbides: Structure, properties and potential applications, Int J Refract Metals Hard Mater 78 (2019) 247–253. https://doi.org/10.1016/j.ijrmhm.2018.10.001.
dc.relation.referencesF. Gao, G. Li, Y. Xia, Influence of hysteresis effect on properties of reactively sputtered TiAlSiN films, Appl Surf Sci 431 (2018) 160–164. https://doi.org/10.1016/j.apsusc.2017.07.283.
dc.relation.referencesG. Milena, P. Novoa, Estudio de las propiedades ópticas y eléctricas de películas delgadas de TiAlCrN depositadas por co-sputtering reactivo, Tesis de maestría, Universidad Nacional de Colombia, 2021.
dc.relation.referencesY. Waseda, E. Matsubara, K. Shinoda, X-Ray Diffraction Crystallography, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-16635-8.
dc.relation.referencesA. Khorsand Zak, W.H. Abd. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods, Solid State Sci 13 (2011) 251–256. https://doi.org/10.1016/j.solidstatesciences.2010.11.024.
dc.relation.referencesC. Suryanarayana, M.G. Norton, X-Ray Diffraction, Springer US, Boston, MA, 1998. https://doi.org/10.1007/978-1-4899-0148-4.
dc.relation.referencesA. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD, World Journal of Nano Science and Engineering 02 (2012) 154–160. https://doi.org/10.4236/wjnse.2012.23020.
dc.relation.referencesV. Mote, Y. Purushotham, B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, Journal of Theoretical and Applied Physics 6 (2012) 2–9. https://doi.org/10.1186/2251-7235-6-6.
dc.relation.referencesJ.I. Langford, A.J.C. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size, J Appl Crystallogr 11 (1978) 102–113. https://doi.org/10.1107/S0021889878012844.
dc.relation.referencesE. Ortiz Ortega, H. Hosseinian, I.B. Aguilar Meza, M.J. Rosales López, A. Rodríguez Vera, S. Hosseini, Material Characterization Techniques and Applications, Springer Singapore, Singapore, 2022. https://doi.org/10.1007/978-981-16-9569-8.
dc.relation.referencesI. Horcas, R. Fernández, J.M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, A.M. Baro, WSXM: A software for scanning probe microscopy and a tool for nanotechnology, Review of Scientific Instruments 78 (2007) 013705. https://doi.org/10.1063/1.2432410.
dc.relation.referencesW.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic madulus using load and displacement, J Mater Res 7 (1992) 1564–1583.
dc.relation.referencesM.F. Doerner, W.D. Nix, A method for interpreting the data from depth-sensing indentation instruments, J Mater Res 1 (1986) 601–609. https://doi.org/10.1557/JMR.1986.0601.
dc.relation.referencesASTM International, ASTM G99-17 Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus 1, Wear 05 (2011) 1–5. https://doi.org/10.1520/G0099-05R10.2.
dc.relation.referencesH. Ju, S. He, L. Yu, I. Asempah, J. Xu, The improvement of oxidation resistance, mechanical and tribological properties of W2N films by doping silicon, Surf Coat Technol 317 (2017) 158–165. https://doi.org/10.1016/j.surfcoat.2017.03.058.
dc.relation.referencesM.R. Alhafian, J.B. Chemin, N. Valle, B. El Adib, M. Penoy, L. Bourgeois, J. Ghanbaja, J. Barrirero, F. Soldera, F. Mücklich, P. Choquet, Study of the oxidation mechanism at high temperature of nanofiber textured AlTiCrN coatings produced by physical vapor deposition using high-resolution characterization techniques, Corros Sci 201 (2022) 110226. https://doi.org/10.1016/j.corsci.2022.110226.
dc.relation.referencesY.X. Xu, H. Riedl, D. Holec, L. Chen, Y. Du, P.H. Mayrhofer, Thermal stability and oxidation resistance of sputtered Ti Al Cr N hard coatings, Surf Coat Technol 324 (2017) 48–56. https://doi.org/10.1016/j.surfcoat.2017.05.053.
dc.relation.referencesA.E. Santana, A. Karimi, V.H. Derflinger, A. Schütze, Microstructure and mechanical behavior of TiAlCrN multilayer thin films, Surf Coat Technol 177–178 (2004) 334–340. https://doi.org/10.1016/j.surfcoat.2003.09.023.
dc.relation.referencesM. Danek, F. Fernandes, A. Cavaleiro, T. Polcar, Influence of Cr additions on the structure and oxidation resistance of multilayered TiAlCrN films, Surf Coat Technol 313 (2017) 158–167. https://doi.org/10.1016/j.surfcoat.2017.01.053.
dc.relation.referencesV.A. Alves, C.M.A. Brett, A. Cavaleiro, Electrochemical corrosion of magnetron sputtered WTiN-coated mild steels in a chloride medium, Surf Coat Technol 161 (2002) 257–266. https://doi.org/10.1016/S0257-8972(02)00515-7.
dc.relation.referencesA. Rizzo, L. Mirenghi, M. Massaro, U. Galietti, L. Capodieci, R. Terzi, L. Tapfer, D. Valerini, Improved properties of TiAlN coatings through the multilayer structure, Surf Coat Technol 235 (2013) 475–483. https://doi.org/10.1016/j.surfcoat.2013.08.006.
dc.relation.referencesA. Cavaleiro, J.Th.M. Hosson, Nanostructured Coatings, Springer New York, New York, NY, 2006. https://doi.org/10.1007/978-0-387-48756-4.
dc.relation.referencesD.M. Devia, E. Restrepo-Parra, P.J. Arango, A.P. Tschiptschin, J.M. Velez, TiAlN coatings deposited by triode magnetron sputtering varying the bias voltage, Appl Surf Sci 257 (2011) 6181–6185. https://doi.org/10.1016/j.apsusc.2011.02.027.
dc.relation.referencesK. Yamamoto, T. Sato, K. Takahara, K. Hanaguri, Properties of (Ti,Cr,Al)N coatings with high Al content deposited by new plasma enhanced arc-cathode, Surf Coat Technol 174–175 (2003) 620–626. https://doi.org/10.1016/S0257-8972(03)00580-2.
dc.relation.referencesJ. Lin, X. Zhang, Y. Ou, R. Wei, The structure, oxidation resistance, mechanical and tribological properties of CrTiAlN coatings, Surf Coat Technol 277 (2015) 58–66. https://doi.org/10.1016/j.surfcoat.2015.07.013.
dc.relation.referencesT. Li, J. Xiong, Z. Guo, T. Yang, M. Yang, H. Du, Structures and properties of TiAlCrN coatings deposited on Ti(C,N)-based cermets with various WC contents, Int J Refract Metals Hard Mater 69 (2017) 247–253. https://doi.org/10.1016/j.ijrmhm.2017.08.020.
dc.relation.referencesG.S. Fox-Rabinovich, S.C. Veldhuis, G.K. Dosbaeva, K. Yamamoto, A.I. Kovalev, D.L. Wainstein, I.S. Gershman, L.S. Shuster, B.D. Beake, Nanocrystalline coating design for extreme applications based on the concept of complex adaptive behavior, J Appl Phys 103 (2008). https://doi.org/10.1063/1.2904907.
dc.relation.referencesH.C. Barshilia, S. Acharya, M. Ghosh, T.N. Suresh, K.S. Rajam, M.S. Konchady, D.M. Pai, J. Sankar, Performance evaluation of TiAlCrYN nanocomposite coatings deposited using four-cathode reactive unbalanced pulsed direct current magnetron sputtering system, Vacuum 85 (2010) 411–420. https://doi.org/10.1016/j.vacuum.2010.08.003.
dc.relation.referencesH. Wang, S. Zhang, Y. Li, D. Sun, Bias effect on microstructure and mechanical properties of magnetron sputtered nanocrystalline titanium carbide thin films, Thin Solid Films 516 (2008) 5419–5423. https://doi.org/10.1016/j.tsf.2007.07.022.
dc.relation.referencesX.Y. Fan, Z.G. Wu, G.A. Zhang, C. Li, B.S. Geng, H.J. Li, P.X. Yan, Ti-doped copper nitride films deposited by cylindrical magnetron sputtering, J Alloys Compd 440 (2007) 254–258. https://doi.org/10.1016/j.jallcom.2006.09.006.
dc.relation.referencesT. Zhou, D. Liu, Y. Zhang, T. Ouyang, J. Suo, Microstructure and hydrogen impermeability of titanium nitride thin films deposited by direct current reactive magnetron sputtering, J Alloys Compd 688 (2016) 44–50. https://doi.org/10.1016/j.jallcom.2016.06.278.
dc.relation.referencesM. Kumar, S. Mishra, R. Mitra, Effect of Ar: N2 ratio on structure and properties of Ni-TiN nanocomposite thin films processed by reactive RF/DC magnetron sputtering, Surf Coat Technol 228 (2013) 100–114. https://doi.org/10.1016/j.surfcoat.2013.04.014.
dc.relation.referencesE.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa, H.H. Soliman, Roughness parameters, J Mater Process Technol 123 (2002) 133–145. https://doi.org/10.1016/S0924-0136(02)00060-2.
dc.relation.referencesJ. Musil, P. Zeman, P. Baroch, Hard Nanocomposite Coatings, in: Comprehensive Materials Processing, Elsevier, 2014: pp. 325–353. https://doi.org/10.1016/B978-0-08-096532-1.00416-7.
dc.relation.referencesB. Warcholinski, A. Gilewicz, Mechanical properties of multilayer TiAlN/CrN coatings deposited by cathodic arc evaporation, Surface Engineering 27 (2011) 491–497. https://doi.org/10.1179/026708410X12786785573355.
dc.relation.referencesC. He, J. Zhang, G. Song, G. Ma, Z. Du, J. Wang, D. Zhao, Microstructure and mechanical properties of reactive sputtered nanocrystalline (Ti,Al)N films, Thin Solid Films 584 (2015) 192–197. https://doi.org/10.1016/j.tsf.2014.12.027.
dc.relation.referencesX. Chen, Y. Du, Y.W. Chung, Commentary on using H/E and H3/E2 as proxies for fracture toughness of hard coatings, Thin Solid Films 688 (2019) 10–12. https://doi.org/10.1016/j.tsf.2019.04.040.
dc.relation.referencesJ. Guo, H. Wang, F. Meng, X. Liu, F. Huang, Tuning the H/E* ratio and E* of AlN coatings by copper addition, Surf Coat Technol 228 (2013) 68–75. https://doi.org/10.1016/j.surfcoat.2013.04.008.
dc.relation.referencesB.D. Beake, The influence of the H/E ratio on wear resistance of coating systems – Insights from small-scale testing, Surf Coat Technol 442 (2022) 128272. https://doi.org/10.1016/j.surfcoat.2022.128272.
dc.relation.referencesA. Erdemir, G. Ramirez, O.L. Eryilmaz, B. Narayanan, Y. Liao, G. Kamath, S.K.R.S. Sankaranarayanan, Carbon-based tribofilms from lubricating oils, Nature 536 (2016) 67–71. https://doi.org/10.1038/nature18948.
dc.relation.referencesV. Ezirmik, E. Senel, K. Kazmanli, A. Erdemir, M. Ürgen, Effect of copper addition on the temperature dependent reciprocating wear behaviour of CrN coatings, Surf Coat Technol 202 (2007) 866–870. https://doi.org/10.1016/j.surfcoat.2007.05.049.
dc.relation.referencesZ.F. Zhou, P.L. Tam, P.W. Shum, K.Y. Li, High temperature oxidation of CrTiAlN hard coatings prepared by unbalanced magnetron sputtering, Thin Solid Films 517 (2009) 5243–5247. https://doi.org/10.1016/j.tsf.2009.03.115.
dc.relation.referencesJ. Kohlscheen, H.R. Stock, P. Mayr, Substoichiometric titanium nitride coatings as machinable surfaces in ultraprecision cutting, Surf Coat Technol 120–121 (1999) 740–745. https://doi.org/10.1016/S0257-8972(99)00368-0.
dc.relation.referencesY. Igasaki, H. Mitsuhashi, K. Azuma, T. Muto, Structure and Electrical Properties of Titanium Nitride Films, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers 17 (1978) 85–96. https://doi.org/10.1143/JJAP.17.85.
dc.relation.referencesS. Zhang, F. Yan, Y. Yang, M. Yan, Y. Zhang, J. Guo, H. Li, Effects of sputtering gas on microstructure and tribological properties of titanium nitride films, Appl Surf Sci 488 (2019) 61–69. https://doi.org/10.1016/j.apsusc.2019.05.148.
dc.relation.referencesJ. Pelleg, L.Z. Zevin, S. Lungo, N. Croitoru, Reactive-sputter-deposited TiN films on glass substrates, Thin Solid Films 197 (1991) 117–128. https://doi.org/10.1016/0040-6090(91)90225-M.
dc.relation.referencesJ.T. Chen, J. Wang, F. Zhang, G.A. Zhang, X.Y. Fan, Z.G. Wu, P.X. Yan, Characterization and temperature controlling property of TiAlN coatings deposited by reactive magnetron co-sputtering, J Alloys Compd 472 (2009) 91–96. https://doi.org/10.1016/j.jallcom.2008.04.083.
dc.relation.referencesC. He, J. Zhang, J. Wang, G. Ma, D. Zhao, Q. Cai, Effect of structural defects on corrosion initiation of TiN nanocrystalline films, Appl Surf Sci 276 (2013) 667–671. https://doi.org/10.1016/j.apsusc.2013.03.151.
dc.relation.referencesJ.D. Castro, M.J. Lima, S. Carvalho, Corrosion resistance of Cu-Zr(O) N films in a simulated seawater environment, Surf Coat Technol 451 (2022) 129050. https://doi.org/10.1016/j.surfcoat.2022.129050.
dc.relation.referencesH. Zhou, J. Zheng, B. Gui, D. Geng, Q. Wang, AlTiCrN coatings deposited by hybrid HIPIMS/DC magnetron co-sputtering, Vacuum 136 (2017) 129–136. https://doi.org/10.1016/j.vacuum.2016.11.021.
dc.relation.referencesA. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour, Wear 246 (2000) 1–11. https://doi.org/10.1016/S0043-1648(00)00488-9.
dc.relation.referencesG. Ramirez, O.L. Eryilmaz, G. Fatti, M.C. Righi, J. Wen, A. Erdemir, Tribochemical Conversion of Methane to Graphene and Other Carbon Nanostructures: Implications for Friction and Wear, ACS Appl Nano Mater 3 (2020) 8060–8067. https://doi.org/10.1021/acsanm.0c01527.
dc.relation.referencesP. Basnyat, B. Luster, Z. Kertzman, S. Stadler, P. Kohli, S. Aouadi, J. Xu, S.R. Mishra, O.L. Eryilmaz, A. Erdemir, Mechanical and tribological properties of CrAlN-Ag self-lubricating films, Surf Coat Technol 202 (2007) 1011–1016. https://doi.org/10.1016/j.surfcoat.2007.05.088.
dc.relation.referencesH.S. Myung, H.M. Lee, L.R. Shaginyan, J.G. Han, Microstructure and mechanical properties of Cu doped TiN superhard nanocomposite coatings, Surf Coat Technol 163–164 (2003) 591–596. https://doi.org/10.1016/S0257-8972(02)00627-8.
dc.relation.referencesJ.W. Lee, Y.C. Kuo, Y.C. Chang, Microstructure and mechanical properties of pulsed DC magnetron sputtered nanocomposite Cr-Cu-N thin films, Surf Coat Technol 201 (2006) 4078–4082. https://doi.org/10.1016/j.surfcoat.2006.08.092.
dc.relation.referencesC. Liu, Q. Bi, A. Matthews, EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution, Corros Sci 43 (2001) 1953–1961. https://doi.org/10.1016/S0010-938X(00)00188-8.
dc.relation.referencesH. Elmkhah, F. Attarzadeh, A. Fattah-alhosseini, K.H. Kim, Microstructural and electrochemical comparison between TiN coatings deposited through HIPIMS and DCMS techniques, J Alloys Compd 735 (2018) 422–429. https://doi.org/10.1016/j.jallcom.2017.11.162.
dc.relation.referencesC. Liu, Q. Bi, A. Leyland, A. Matthews, An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II., Corros Sci 45 (2003) 1257–1273. https://doi.org/10.1016/S0010-938X(02)00214-7.
dc.relation.referencesC. Liu, Q. Bi, A. Leyland, A. Matthews, An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modelling, Corros Sci 45 (2003) 1243–1256. https://doi.org/10.1016/S0010-938X(02)00213-5.
dc.relation.referencesA.M. Echavarría, J.A. Calderón, G. Gilberto Bejarano, Characterization of the structure and electrochemical behavior of Ag-TaN nanostructured composite coating for biomedical applications, Surf Coat Technol 345 (2018) 1–12. https://doi.org/10.1016/j.surfcoat.2018.04.012.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembREVESTIMIENTOS METALICOS
dc.subject.lembMetal coating
dc.subject.lembREVESTIMIENTOS PROTECTORES
dc.subject.lembProtective coatings
dc.subject.lembPULVERIZACION CATODICA (METALIZACION)
dc.subject.lembCathode sputtering (plating process)
dc.subject.lembPELICULAS METALICAS
dc.subject.lembMetallic films
dc.subject.lembRESISTENCIA DE MATERIALES
dc.subject.lembStrength of materials
dc.subject.lembFATIGA DE MATERIALES
dc.subject.lembMaterials - fatigue
dc.subject.lembDESCARGAS ELECTRICAS A TRAVES DE GASES
dc.subject.lembElectric discharges through gases
dc.subject.lembIONIZACION DE CAPAS INTERNAS
dc.subject.lembInner-shell ionization
dc.subject.proposalTiCrAlN-Cu
dc.subject.proposalSputtering
dc.subject.proposalHiPIMS
dc.subject.proposalRecubrimiento nanoestructurado
dc.subject.proposalDesgaste
dc.subject.proposalCoeficiente de fricción
dc.subject.proposalNanocompositos
dc.subject.proposalNanostructure coating
dc.subject.proposalWear
dc.subject.proposalCoefficient of friction
dc.subject.proposalNanocomposites
dc.title.translatedWear resistance of AlCrTiN-Cu coatings deposited by reactive magnetron co-sputtering
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dc.contributor.orcidVallejo Bastidas, Fabio Fernando [0000000164272054]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit