Show simple item record

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorMaría Claudia, Díez Gómez
dc.contributor.advisorThomas, Evert
dc.contributor.authorRivera Agudelo, Claudia Marcela
dc.date.accessioned2025-05-08T16:53:30Z
dc.date.available2025-05-08T16:53:30Z
dc.date.issued2019-10
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88155
dc.descriptionIlustraciones, fotografías, mapas
dc.description.abstractEl bosque seco tropical es un bioma de tierras bajas que se caracteriza por tener un periodo de sequía muy marcado al año. Su distribución natural ha disminuido considerablemente y solo queda el 8% de su cobertura original en Colombia. Por tanto, son de suma importancia proponer estrategias de conservación y restauración de este ecosistema. Nuestros objetivos fueron cuantificar la variabilidad inter e intraespecífica de rasgos funcionales de especies arbóreas en el bosque seco tropical de Colombia y evaluar las correlaciones de rasgos funcionales y la integridad fenotípica con variables ambientales. Para esto, medimos tres rasgos funcionales (área foliar específica, contenido foliar de materia seca y densidad de madera en fuste) y dos rasgos arquitectónicos (profundidad y diámetro de copa) a 14 especies arbóreas del bosque seco tropical en 17 sitios de seis bioregiones en Colombia. Nuestros resultados muestran que para la mayoría de los rasgos la variación intraespecífica fue más alta en las especies evaluadas. También se encontró que a pesar de la existencia de varias correlaciones significativas estadísticamente entre ambiente y rasgos e integridad el patrón de relacionamiento no fue muy claro. (Tomado de la fuente)
dc.description.abstractThe tropical dry forest is a lowland biome that is characterized by a very marked drought period every year. Its natural distribution has decreased considerably and only 8% of its original cover remains in Colombia. Therefore, conservation strategies and restoration of this ecosystem are very important. Our objectives were to quantify the inter and intraspecific variability of functional traits of tree species in the tropical dry forest of Colombia and evaluate the correlations of functional traits and phenotypic integrity with environmental variables. For this, we measured 3 functional traits (specific leaf area, leaf dry matter content and wood density) and 2 architectural features (depth and canopy diameter) to 14 tree species of the tropical dry forest at 17 sites of 6 bioregions in Colombia. Our results show that for most traits the intraspecific variability was higher in the species evaluated. It was also found that despite the existence of several statistically significant correlations between environment and traits and integrity the relationship pattern was not very clear.
dc.description.sponsorshipEcopetrol, Empresas Públicas de Medellín (EPM) y la Gobernación de Antioquia, administrado por Bioversity International y apoyado por Forestpa
dc.format.extent76 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc570 - Biología::577 - Ecología
dc.subject.ddc580 - Plantas
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energía
dc.titleVariabilidad de rasgos funcionales en especies arbóreas del bosque seco tropical de Colombia
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental
dc.coverage.countryColombia
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Bosques y Conservación ambiental
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesAlbert, C.H., Bello, F. De, Boulangeat, I., Pellet, G., Lavorel, S., 2012. On the importance of intraspecific variability for the quantification of functional diversity 116–126. https://doi.org/10.1111/j.1600-0706.2011.19672.x
dc.relation.referencesAlbert, C.H., Grassein, F., Schurr, F.M., Vieilledent, G., Violle, C., 2011. When and how should intraspecific variability be considered in trait-based plant ecology? Perspect. Plant Ecol. Evol. Syst. 217.
dc.relation.referencesAlbert, C.H., Thuiller, W., Yoccoz, N.G., Douzet, R., Aubert, S., Lavorel, S., 2010a. A multi-trait approach reveals the structure and the relative importance of intra-vs. interspecific variability in plant traits. Funct. Ecol. 24, 1192.
dc.relation.referencesAlbert, C.H., Thuiller, W., Yoccoz, N.G., Soudant, A., Boucher, F., Saccone, P., Lavorel, S., 2010b. Intraspecific functional variability: extent, structure and sources of variation. J. Ecol. 98, 604.
dc.relation.referencesAlzate-Marin, A., Ferreira-Ramos, R., Guidugli, M., Martinez, C., Mestriner, M., 2011. Genetic diversity assessed in individuals of Aspidosperma polyneuron and Cariniana estrellensis used as seed donors in an forest gene bank. BMC Proc. 5, P8. https://doi.org/10.1186/1753-6561-5-S7-P8
dc.relation.referencesArmbruster, W.S., Pélabon, C., Bolstad, G.H., Hansen, T.F., 2014. Integrated phenotypes: Understanding trait covariation in plants and animals. Philos. Trans. R. Soc. B Biol. Sci. 369. https://doi.org/10.1098/rstb.2013.0245
dc.relation.referencesBanin, L., Feldpausch, T.R., Phillips, O.L., Baker, T.R., Lloyd, J., Affum‐Baffoe, K., Arets, E.J.M.M., Berry, N.J., Bradford, M., Brienen, R.J.W., Davies, S., Drescher, M., Higuchi, N., Hilbert, D.W., Hladik, A., Iida, Y., Salim, K.A., Kassim, A.R., King, D.A., Lopez‐Gonzalez, G., Metcalfe, D., Nilus, R., Peh, K.S. ‐H., Reitsma, J.M., Sonké, B., Taedoumg, H., Tan, S., White, L., Wöll, H., Lewis, S.L., 2012. What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Glob. Ecol. Biogeogr. 21, 1179–1190. https://doi.org/10.1111/j.1466-8238.2012.00778.x
dc.relation.referencesBarrientos-Ramírez, L., Vargas-Radillo, J.J., Segura-Nieto, M., Manríquez-González, R., López-Dellamary Toral, F.A., 2015. Nutritional evaluation of mature seeds of Enterolobium cyclocarpum (parota) from diverse ecological zones in western Mexico. Bosque (Valdivia) 36, 95–103. https://doi.org/10.4067/S0717-92002015000100010
dc.relation.referencesBecknell, J.M., Powers, J.S., 2014. Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest. Can. J. For. Res. 613, 604–613. https://doi.org/10.1139/cjfr-2013-0331
dc.relation.referencesBorchert, R., 1994. Soil and Stem Water Storage Determine Phenology and Distribution of Tropical Dry Forest Trees. Ecology 75, 1437–1449. https://doi.org/10.2307/1937467
dc.relation.referencesBurns, R.M., Honkala, B.H., 1990. Silvics of North America - Volume 2, Hardwoods.
dc.relation.referencesButterfield, B.J., Suding, K.N., 2013. Single‐trait functional indices outperform multi‐trait indices in linking environmental gradients and ecosystem services in a complex landscape. J. Ecol. 101, 9–17. https://doi.org/10.1111/1365-2745.12013
dc.relation.referencesCárdenas-Henao, M., Londoño-Lemos, V., Llano-Almario, M., González-Colorado, Á.M., Rivera-Hernández, K.L., Vargas-Figueroa, J.A., Palacio, O.L.D.-, Torres-González, A.M., Jiménez-Taquinas, Á.C., Moreno-Cavazos, M.P., 2015. Fenología de cuatro especies arbóreas de bosque seco tropical en el Jardín Botánico Universitario, Universidad del Valle (Cali), Colombia. Actual. Biológicas, Vol 37, Iss 103, Pp 121-130 VO - 37 121. https://doi.org/10.17533/udea.acbi.v37n103a01
dc.relation.referencesCárdenas L, D., Salinas, N.R., 2006. Libro Rojo de las Plantas de Colombia. Especies maderables amenazadas I parte. Libr. rojo plantas Colomb. 234.
dc.relation.referencesCarvalho, P.E.R. De, 2004. Peroba-rosa - Aspidosperma polyneuron. Circ. Técnica 12.
dc.relation.referencesCastaño-Arboleda, N., Cárdenas, D., Rodriguez, E.O., 2007. Ecología, aprovechamiento y manejo sostenible de nueve especies de plantas del departamento del Amazonas, generadoras de productos maderables y no maderables. Convenio marco de cooperación interadministrativo No/002/2005.
dc.relation.referencesCavers, S., Navarro, C., Lowe, A.J., 2004. Targeting genetic resource conservation in widespread species: A case study of Cedrela odorata L. For. Ecol. Manage. 197, 285–294. https://doi.org/10.1016/j.foreco.2004.05.019
dc.relation.referencesChave, Coomes, D., Jansen, S., Sl, L., Ng, S., Ae, Z., 2009. Towards a worldwide wood economics spectrum.
dc.relation.referencesCole, T.G., Ewel, J.J., 2006. Allometric equations for four valuable tropical tree species. For. Ecol. Manage. 229, 351–360. https://doi.org/10.1016/j.foreco.2006.04.017
dc.relation.referencesCornelissen, J.H.C.A., Lavorel, S.B., Garnier, E.B., Díaz, S.C., Buchmann, N.D., Gurvich, D.E.C., Reich, P.B.E., Steege, H.F., Morgan, H.D.G., A, M.G.A.V.D.H., Pausas, J.G.H., Poorter, H.I., 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide 335–380.
dc.relation.referencesDamasceno, J.O., Ruas, E.A., Rodrigues, L.A., Ruas, C.F., Bianchini, E., Pimenta, J.A., Ruas, P.M., 2011. Genetic differentiation in Aspidosperma polyneuron (Apocynaceae) over a short geographic distance as assessed by AFLP markers. Genet. Mol. Res. 10, 1180–1187. https://doi.org/10.4238/vol10-2gmr1126
dc.relation.referencesDíaz, S., Hodgson, J.G., Thompson, K., Cabido, M., Cornelissen, J.H.C., Jalili, A., Montserrat-Martí, G., Grime, J.P., Zarrinkamar, F., Asri, Y., Band, S.R., Basconcelo, S., Castro-Díez, P., Funes, G., Hamzehee, B., Khoshnevi, M., Pérez-Harguindeguy, N., Pérez-Rontomé, M.C., Shirvany, F.A., Vendramini, F., Yazdani, S., Abbas-Azimi, R., Bogaard, A., Boustani, S., Charles, M., Dehghan, M., Torres-Espuny, L. de, Falczuk, V., Guerrero-Campo, J., Hynd, A., Jones, G., Kowsary, E., Kazemi-Saeed, F., Maestro-Martínez, M., Romo-Díez, A., Shaw, S., Siavash, B., Villar-Salvador, P., Zak, M.R., 2004. The Plant Traits That Drive Ecosystems: Evidence from Three Continents. J. Veg. Sci. 15, 295.
dc.relation.referencesDick, C.W., Bermingham, E., Lemes, M.R., Gribel, R., 2007. Extreme long-distance dispersal of the lowland tropical rainforest tree Ceiba pentandra L. (Malvaceae) in Africa and the Neotropics. Mol. Ecol. 16, 3039–3049. https://doi.org/10.1111/j.1365-294X.2007.03341.x
dc.relation.referencesDirzo, R., Young, H.S., Mooney, H. a., Ceballos, G., 2011. Seasonallly Dry Tropical Forests - Ecology and Conservation.
dc.relation.referencesDonovan, L.A., Maherali, H., Caruso, C.M., Huber, H., Kroon, H. De, 2011. The evolution of the worldwide leaf economics spectrum 26. https://doi.org/10.1016/j.tree.2010.11.011
dc.relation.referencesDurr, P.A., 2001. The biology, ecology and agroforestry potential of the raintree, Samanea saman (Jacq.) Merr. Agrofor. Syst. 51, 223–237. https://doi.org/10.1023/A:1010765022497
dc.relation.referencesEamus, D., 1999. Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics. https://doi.org/10.1016/S0169-5347(98)01532-8
dc.relation.referencesFonseca, M.G., Martini, a M.Z., dos Santos, F. a M., 2004. Spatial structure of Aspidosperma polyneuron in two semi-deciduous forests in Southeast Brazil. J. Veg. Sci. 15, 41–48. https://doi.org/10.1658/1100-9233(2004)015[0041:SSOAPI]2.0.CO;2
dc.relation.referencesForoughbakhch, R., Alvarado-V??zquez, M.A., Hern??ndez-Pi??ero, J.L., Rocha-Estrada, A., Guzm??n-Lucio, M.A., Trevi??o-Garza, E.J., 2006. Establishment, growth and biomass production of 10 tree woody species introduced for reforestation and ecological restoration in northeastern Mexico. For. Ecol. Manage. 235, 194–201. https://doi.org/10.1016/j.foreco.2006.08.012
dc.relation.referencesFrancis, J.K., Lowe, C.A., Trabanino, S., 2000a. Bioecología de Arboles Nativos y Exóticos de Puerto Rico y las Indias Occidentales Silvics of Native and Exotic Trees of Puerto Rico and the Caribbean Islands.
dc.relation.referencesFrancis, J.K., Lowe, C.A., Trabanino, S., 2000b. Enterolobium cyclocarpum (Jacq.) Griseb, in: Bioecología de Árboles Nativos y Exóticos de Puerto Rico y Las Indias Occidentales. Departamento de Agricultura de los Estados Unidos, Río Piedras, Puerto Rico, pp. 195–199.
dc.relation.referencesFreschet, T., Cornelissen, J.H.C., Logtestijn, R.S.P. Van, 2010. Evidence of the ‘ plant economics spectrum ’ in a subarctic flora 362–373. https://doi.org/10.1111/j.1365-2745.2009.01615.x
dc.relation.referencesGardarin, A., Dürr, C., Colbach, N., 2011. Prediction of germination rates of weed species: Relationships between germination speed parameters and species traits. Ecol. Modell. 222, 626–636. https://doi.org/10.1016/j.ecolmodel.2010.10.005
dc.relation.referencesGómez Restrepo, M.L., Toro Murillo, J.L., Piedrahita Cardona, E., 2013. Propagación y conservación de especies arbóreas nativas.
dc.relation.referencesGonzález-M, R., Garcia, H., Isaacs, P., Cuadros, H., López-Camacho, R., Rodriguez, N., Pérez, K., Mijares, F., Castano-Naranjo, A., Jurado, R., Idárraga-Piedrahita, A., Rojas, A., Vergara, H., Pizano, C., 2018. Disentangling the environmental heterogeneity, floristic distinctiveness and current threats of tropical dry forests in Colombia. Environ. Res. Lett. 13. https://doi.org/10.1088/1748-9326/aaad74
dc.relation.referencesGourlet-fleury, S., Rossi, V., Rejou-mechain, M., Freycon, V., Cornu, G., Ge, J., Fayolle, A., Saint-andre, L., Billand, A., Fauvet, N., Sarrailh, J., Flores, O., Gally, M., Henry, M., Hubert, D., Pasquier, A., 2011. Environmental filtering of dense-wooded species controls above-ground biomass stored in African moist forests 981–990. https://doi.org/10.1111/j.1365-2745.2011.01829.x
dc.relation.referencesHavermaet, R. Van, 2015. Faculty Bioscience Engineering Characterization of functional diversity of priority tree species across their distribution ranges in Colombian tropical dry forest to inform ecological restoration practice and in situ conservation strategies Master in Bios.
dc.relation.referencesHulshof, C.M., Swenson, N.G., 2010. Variation in leaf functional trait values within and across individuals and species: An example from a Costa Rican dry forest. Funct. Ecol. 24, 217–223. https://doi.org/10.1111/j.1365-2435.2009.01614.x
dc.relation.referencesIAvH, 2014. El Bosque Seco Tropical en Colombia. https://doi.org/10.1007/s13398-014-0173-7.2
dc.relation.referencesIdowy, A.B., Babaloa, O.D., Ademolu, K.O., 2006. The Physiological Impact on the consumption of Albizia saman Pods by Albino Rats. J. Anim. Vet. Adv. 7, 585–589.
dc.relation.referencesJager, M.M., Richardson, S.J., Bellingham, P.J., Clearwater, M.J., Laughlin, D.C., 2015. Soil fertility induces coordinated responses of multiple independent functional traits. J. Ecol. 103, 374–385. https://doi.org/10.1111/1365-2745.12366
dc.relation.referencesJanzen, D.H., 1981. Enterolobium Cyclocarpum Seed Passage Rate and Survival in Horses , Costa Rican Pleistocene Seed Dispersal Agents. Ecology 62, 593–601.
dc.relation.referencesJiménez-Escobar, N.D., Estupiñán-González, A.C., de Albuquerque, U.P., Alves, R.R.N., 2011. Useful trees of the Caribbean Region of Colombia. Bioremediation, Biodivers. Bioavailab. 5, 65–79.
dc.relation.referencesJopaul, G., Panzou, L., Ligot, G., Fleury, S.G., Louis, J., Eric, D., Jean, F., Loumeto, J., Fayolle, A., 2018. Architectural differences associated with functional traits among 45 coexisting tree species in Central Africa 2583–2593. https://doi.org/10.1111/1365-2435.13198
dc.relation.referencesJung, V., Albert, C.H., Violle, C., Kunstler, G., Loucougaray, G., Spiegelberger, T., 2014. Intraspecific trait variability mediates the response of subalpine grassland communities to extreme drought events. J. Ecol. 102, 45–53. https://doi.org/10.1111/1365-2745.12177
dc.relation.referencesJung, V., Violle, C., Mondy, C., Hoffmann, L., Muller, S., 2010. Intraspecific variability and trait‐based community assembly. J. Ecol. 98, 1134–1140. https://doi.org/10.1111/j.1365-2745.2010.01687.x
dc.relation.referencesKasthurirengan, S., Xie, L., Li, C.H., Fong, Y.K., Hong, Y., 2013. In vitro propagation and assessment of genetic stability of micropropagated Samanea saman (rain tree) using microsatellite markers. Acta Physiol. Plant. 35, 2467–2474. https://doi.org/10.1007/s11738-013-1281-2
dc.relation.referencesKeddy, P.A., 1992. Assembly and Response Rules: Two Goals for Predictive Community Ecology. J. Veg. Sci. 3, 157.
dc.relation.referencesKhurana, E., Singh, J.S., 2001. Ecology of tree seed and seedlings: Implications for tropical forest conservation and restoration. Curr. Sci. 80, 748–757. https://doi.org/10.1177/0263276402019004003
dc.relation.referencesKichenin, E., Wardle, D.A., Peltzer, D.A., Morse, C.W., Freschet, G.T., 2013. Contrasting effects of plant inter‐ and intraspecific variation on community‐level trait measures along an environmental gradient. Funct. Ecol. 27, 1254–1261. https://doi.org/10.1111/1365-2435.12116
dc.relation.referencesLaborde, J., Corrales-Ferrayola, I., 2012. Direct seeding of Brosimum alicastrum Sw. (Moraceae) and Enterolobium cyclocarpum (Jacq.) Griseb. (mimosaceae) in different habitats in the dry tropics of Central Veracruz. Acta Bot. Mex. 100, 107–134.
dc.relation.referencesLacerda, A.E.B. de, Kanashiro, M., Sebbenn, A.M., 2008. Effects of Reduced Impact Logging on genetic diversity and spatial genetic structure of a Hymenaea courbaril population in the Brazilian Amazon Forest. For. Ecol. Manage. 255, 1034–1043. https://doi.org/10.1016/j.foreco.2007.10.009
dc.relation.referencesLasky, J.R., Uriarte, M., Muscarella, R., 2016. Synchrony, compensatory dynamics, and the functional trait basis of phenological diversity in a tropical dry forest tree community: effects of rainfall seasonality. Environ. Res. Lett. 11, 115003. https://doi.org/10.1088/1748-9326/11/11/115003
dc.relation.referencesLecerf, A., Chauvet, E., 2008. Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic Appl. Ecol. 9, 598–605. https://doi.org/https://doi.org/10.1016/j.baae.2007.11.003
dc.relation.referencesLohbeck, M., Lebrija-Trejos, E., Martínez-Ramos, M., Meave, J.A., Poorter, L., Bongers, F., 2015. Functional Trait Strategies of Trees in Dry and Wet Tropical Forests Are Similar but Differ in Their Consequences for Succession. PLoS One 10, e0123741. https://doi.org/10.1371/journal.pone.0123741
dc.relation.referencesLongui, E.L., Gondo, C.C.S., de Lima, I.L., Freitas, M.L.M., Florsheim, S.M.B., Zanatto, A.C.S., Garcia, J.N., 2016. Some properties of Astronium graveolens wood along the stem. Floresta e Ambient. 23, 142–149. https://doi.org/10.1590/2179-8087.109714
dc.relation.referencesMarkesteijn, L., 2010. Drought tolerance of tropical trees species: Functional Traits , Trade-offs and Species Distribution. Wageningen University.
dc.relation.referencesMartinez Pacheco, M.M., Del Rio, R.E., Flores Garcia, A., Martinez Muñoz, R.E., Ron Echeverria, O.A., Raya Gonzalez, D., 2012. Enterolobium cyclocarpum (Jacq.) Griseb.: The biotechnological profile of a tropical tree . Bol. Latinoam. y del Caribe Plantas Med. y Aromat. 11, 385–399.
dc.relation.referencesMéndez-Toribio, M., Ibarra-Manríquez, G., Navarrete-Segueda, A., Paz, H., 2017. Topographic position, but not slope aspect, drives the dominance of functional strategies of tropical dry forest trees. Environ. Res. Lett. 12.
dc.relation.referencesMéndez-Toribio, M., Zermeño-Hernández, I., Ibarra-Manríquez, G.(, Meave, J.A., 2016. Effects of slope aspect and topographic position on environmental variables, disturbance regime and tree community attributes in a seasonal tropical dry forest. J. Veg. Sci. 27, 1094–1103. https://doi.org/10.1111/jvs.12455
dc.relation.referencesMessier, J., Lechowicz, M.J., McGill, B.J., Violle, C., Enquist, B.J., 2017a. Interspecific integration of trait dimensions at local scales: the plant phenotype as an integrated network. J. Ecol. 105, 1775–1790. https://doi.org/10.1111/1365-2745.12755
dc.relation.referencesMessier, J., McGill, B.J., Enquist, B.J., Lechowicz, M.J., 2017b. Trait variation and integration across scales: is the leaf economic spectrum present at local scales? Ecography (Cop.). 40, 685–697. https://doi.org/10.1111/ecog.02006
dc.relation.referencesMessier, J., McGill, B.J., Lechowicz, M.J., 2010. How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 13, 838–848. https://doi.org/10.1111/j.1461-0248.2010.01476.x
dc.relation.referencesMessier, J., Violle, C., Enquist, B.J., Lechowicz, M.J., McGill, B.J., 2018. Similarities and differences in intrapopulation trait correlations of co‐occurring tree species: consistent water‐use relationships amid widely different correlation patterns. Am. J. Bot. 105, 1477–1490. https://doi.org/10.1002/ajb2.1146
dc.relation.referencesMiles, L., Newton, A.C., DeFries, R.S., Ravilious, C., May, I., Blyth, S., Kapos, V., Gordon, J.E., 2006. A global overview of the conservation status of tropical dry forests. J. Biogeogr. 33, 491–505. https://doi.org/10.1111/j.1365-2699.2005.01424.x
dc.relation.referencesMurphy, P.G., Lugo, A.E., 1986. Ecology of Tropical Dry Forest. Ann. Rev. Ecol. Syst. 17, 67–88.
dc.relation.referencesMurren, C.J., 2002. Phenotypic integration in plants. Plant Species Biol. 17, 89–99. https://doi.org/10.1046/j.1442-1984.2002.00079.x
dc.relation.referencesNavarro, C., Montagnini, F., Hernández, G., 2004. Genetic variability of Cedrela odorata Linnaeus: Results of early performance of provenances and families from Mesoamerica grown in association with coffee. For. Ecol. Manage. 192, 217–227. https://doi.org/10.1016/j.foreco.2004.01.037
dc.relation.referencesNiklas, K.J., 1995. Size-dependent Allometry of Tree Height, Diameter and Trunk-taper. Ann. Bot. 75, 217.
dc.relation.referencesNoguchi, D.K., Nunes, G.P., Sartori, Â.L.B., 2009. Florística e síndromes de dispersão de espécies arbóreas em remanescentes de Chaco de Porto Murtinho, Mato Grosso do Sul, Brasil. Rodriguésia, 60.
dc.relation.referencesOkolie, P.N., Uaboi-Egbenni, P.O., Ajekwene, a E., 2012. Extraction and Quality Evaluation of Sandbox Tree Seed ( Hura crepitan ) Oil. World J. Agric. Sci. 8, 359–365. https://doi.org/10.5829/idosi.wjas.2012.8.4.1119
dc.relation.referencesOni, A.O., Onkuwa, C.F.I., Oduguwa, O.O., Onifade, O.S., Arigbede, O.M., Oni, O.O., Anele, U.Y., 2006. Nutrients intake and digestibility by West African dwarf goats fed Enterolobium cyclocarpum (Jacq.) Griseb. Basal diet and citrus pulp-based diets. J. Anim. Vet. Adv. 5, 828–831.
dc.relation.referencesPandey, S.K., Singh, H., Singh, J.S., 2013. Contrasting leaf phenology of woody species of dry tropical forest. Plant Biosyst. - An Int. J. Deal. with all Asp. Plant Biol. 148, 655–665. https://doi.org/10.1080/11263504.2013.788092
dc.relation.referencesPennington, R., Lewis, G., Ratter, J., 2006. Neotropical Savannas and Seasonally Dry Forests: Plant diversity, biogeography, and conservation. https://doi.org/10.1201/9781420004496
dc.relation.referencesPérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M.S., Cornwell, W.K., Craine, J.M., Gurvich, D.E., Urcelay, C., Veneklaas, E.J., Reich, P.B., Poorter, L., Wright, I.J., Ray, P., Enrico, L., Pausas, J.G., De Vos, a. C., Buchmann, N., Funes, G., Quétier, F., Hodgson, J.G., Thompson, K., Morgan, H.D., Ter Steege, H., Van Der Heijden, M.G. a, Sack, L., Blonder, B., Poschlod, P., Vaieretti, M. V., Conti, G., Staver, a. C., Aquino, S., Cornelissen, J.H.C., 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234. https://doi.org/10.1071/BT12225
dc.relation.referencesPigliucci, M., 2003. Phenotypic integration: studying the ecology and evolution of complex phenotypes. Ecol. Lett. VO - 6 265.
dc.relation.referencesPizano, C., García, H., 2014. El bosque seco tropical en Colombia. Bogotá Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt Ministerio de Ambiente y Desarrollo Sostenible, 2014.
dc.relation.referencesPoorter, L., 2009. Leaf Traits Show Different Relationships with Shade Tolerance in Moist versus Dry Tropical Forests. New Phytol. 181, 890. https://doi.org/10.1111/j.1469-8137.2008.02715.x
dc.relation.referencesPoorter, L., Bongers, F., Sterck, F.J., Wöll, H., 2003. Architecture of 53 Rain Forest Tree Species Differing in Adult Stature and Shade Tolerance. Ecology 84, 602.
dc.relation.referencesPoorter, L., Bongers, L., Bongers, F., 2006. Architecture of 54 moist-forest tree species: Traits, trade-offs, and functional groups. Ecology 87, 1289–1301. https://doi.org/10.1890/0012-9658(2006)87[1289:AOMTST]2.0.CO;2
dc.relation.referencesPoorter, L., Castilho, C. V, Schietti, J., Oliveira, R.S., 2018. Can traits predict individual growth performance ? A test in a hyperdiverse tropical forest 109–121. https://doi.org/10.1111/nph.15206
dc.relation.referencesPoorter, L., Markesteijn, L., 2008. Seedling Traits Determine Drought Tolerance of Tropical Tree Species 40, 321–331.
dc.relation.referencesPoorter, L., McDonald, I., Alarcón, A., Fichtler, E., Licona, J.C., Peña-Claros, M., Sterck, F., Villegas, Z., Sass-Klaassen, U., 2010. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol. 185, 481–492. https://doi.org/10.1111/j.1469-8137.2009.03092.x
dc.relation.referencesPoorter, L., Rozendaal, D.M.A., Bongers, F., de Almeida-Cortez, J.S., Almeyda Zambrano, A.M., Álvarez, F.S., Andrade, J.L., Villa, L.F.A., Balvanera, P., Becknell, J.M., Bentos, T. V, Bhaskar, R., Boukili, V., Brancalion, P.H.S., Broadbent, E.N., César, R.G., Chave, J., Chazdon, R.L., Colletta, G.D., Craven, D., de Jong, B.H.J., Denslow, J.S., Dent, D.H., DeWalt, S.J., García, E.D., Dupuy, J.M., Durán, S.M., Espírito Santo, M.M., Fandiño, M.C., Fernandes, G.W., Finegan, B., Moser, V.G., Hall, J.S., Hernández-Stefanoni, J.L., Jakovac, C.C., Junqueira, A.B., Kennard, D., Lebrija-Trejos, E., Letcher, S.G., Lohbeck, M., Lopez, O.R., Marín-Spiotta, E., Martínez-Ramos, M., Martins, S. V, Massoca, P.E.S., Meave, J.A., Mesquita, R., Mora, F., de Souza Moreno, V., Müller, S.C., Muñoz, R., Muscarella, R., de Oliveira Neto, S.N., Nunes, Y.R.F., Ochoa-Gaona, S., Paz, H., Peña-Claros, M., Piotto, D., Ruíz, J., Sanaphre-Villanueva, L., Sanchez-Azofeifa, A., Schwartz, N.B., Steininger, M.K., Thomas, W.W., Toledo, M., Uriarte, M., Utrera, L.P., van Breugel, M., van der Sande, M.T., van der Wal, H., Veloso, M.D.M., Vester, H.F.M., Vieira, I.C.G., Villa, P.M., Williamson, G.B., Wright, S.J., Zanini, K.J., Zimmerman, J.K., Westoby, M., 2019. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-019-0882-6
dc.relation.referencesPowers, J.S., Becknell, J.M., Irving, J., Pèrez-Aviles, D., 2009. Diversity and structure of regenerating tropical dry forests in Costa Rica: Geographic patterns and environmental drivers. For. Ecol. Manage. 258, 959–970. https://doi.org/10.1016/j.foreco.2008.10.036
dc.relation.referencesQuesada, M., Sanchez-Azofeifa, G.A., Alvarez-Añorve, M., Stoner, K.E., Avila-Cabadilla, L., Calvo-Alvarado, J., Castillo, A., Espírito-Santo, M.M., Fagundes, M., Fernandes, G.W., Gamon, J., Lopezaraiza-Mikel, M., Lawrence, D., Morellato, L.P.C., Powers, J.S., Neves, F.D.S., Rosas-Guerrero, V., Sayago, R., Sanchez-Montoya, G., 2009. Succession and management of tropical dry forests in the Americas: Review and new perspectives. For. Ecol. Manage. 258, 1014–1024. https://doi.org/10.1016/j.foreco.2009.06.023
dc.relation.referencesReich, P.B., Wright, I.J., Cavender‐Bares, J., Craine, J.M., Oleksyn, J., Westoby, M., Walters, M.B., 2003. The Evolution of Plant Functional Variation: Traits, Spectra, and Strategies. Int. J. Plant Sci. 164, S143–S164. https://doi.org/10.1086/374368
dc.relation.referencesRk, C., Sk, P., Bhadouria, R., Singh, S., As, R., 2018. Woody species in tropical dry forest exhibit plasticity in physiological traits in response to variations in soil properties. https://doi.org/10.15406/mojes.2018.03.00114
dc.relation.referencesRomán, F., De Liones, R., Sautu, A., Deago, J., Hall, J.S., 2012. Guía para la propagación de 120 especies de árboles nativos de Panamá y el Neotrópico. Environmental Leadership and Training Iniative - ELTI.
dc.relation.referencesSalgado-Negret, B., Paz, H., 2015. Escalando de los rasgos funcionales a procesos poblacionales, comunitarios y ecosistémicos, La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones.
dc.relation.referencesSalgado Negret, B., 2016. La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad : protocolos y aplicaciones. Bogotá Instituto Alexander von Humboldt, 2016.
dc.relation.referencesSalinas-Melgoza, M., Skutsch, M., Lovett, J., 2018. Predicting aboveground forest biomass with topographic variables in human-impacted tropical dry forest landscapes. Ecosphere 9. https://doi.org/10.1002/ecs2.2063
dc.relation.referencesSánchez-Azofeifa, A., Powers, J.S., Fernandes, G.W., Quesada, M., 2014. Tropical dry forests in the Americas : ecology, conservation, and management. Boca Raton, Fl CRC Press, ©2014.
dc.relation.referencesSchöb, C., Armas, C., Guler, M., Prieto, I., Pugnaire, F.I., 2013. Variability in functional traits mediates plant interactions along stress gradients. J. Ecol. 101, 753–762. https://doi.org/10.1111/1365-2745.12062
dc.relation.referencesShipley, B., Vu, T., 2002. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytol. 153, 359–364. https://doi.org/10.1046/j.0028-646X.2001.00320.x
dc.relation.referencesSiefert, A., Ritchie, M.E., 2016. Intraspecific trait variation drives functional responses of old-field plant communities to nutrient enrichment. Oecologia 181, 245–255. https://doi.org/10.1007/s00442-016-3563-z
dc.relation.referencesSiefert, A., Violle, C., Chalmandrier, L., Albert, C.H., Taudiere, A., Fajardo, A., Aarssen, L.W., Baraloto, C., Carlucci, M.B., Cianciaruso, M. V, Dantas, V.L., Bello, F., Duarte, L.D.S., Fonseca, C.R., Freschet, G.T., Gaucherand, S., Gross, N., Hikosaka, K., Jackson, B., Jung, V., Kamiyama, C., Katabuchi, M., Kembel, S.W., Kichenin, E., Kraft, N.J.B., Lagerström, A., Bagousse‐Pinguet, Y. Le, Li, Y., Mason, N., Messier, J., Nakashizuka, T., Overton, J.M., Peltzer, D.A., Pérez‐Ramos, I.M., Pillar, V.D., Prentice, H.C., Richardson, S., Sasaki, T., Schamp, B.S., Schöb, C., Shipley, B., Sundqvist, M., Sykes, M.T., Vandewalle, M., Wardle, D.A., 2015. A global meta‐analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18, 1406–1419. https://doi.org/10.1111/ele.12508
dc.relation.referencesSlot, M., Poorter, L., 2007. Diversity of Tropical Tree Seedling Responses to Drought 39, 683–690. https://doi.org/doi:10.1111/j.1744-7429.2007.00328.x
dc.relation.referencesThomas, E., Jalonen, R., Loo, J., Boshier, D., Gallo, L., Cavers, S., Bordács, S., Smith, P., Bozzano, M., 2014. Genetic considerations in ecosystem restoration using native tree species. For. Ecol. Manage. 2020. https://doi.org/10.1016/j.foreco.2014.07.015
dc.relation.referencesUlibarri, E.A., 1996. Sipnosis de Caesalpinia y Hoffmannseggia (Leguminosae-Caesalpinoideae) de Sudamérica. Darwiniana 34, 299–348.
dc.relation.referencesVillacís, J., Casanoves, F., Hang, S., Keesstra, S., Armas, C., 2016. Selection of forest species for the rehabilitation of disturbed soils in oil fields in the Ecuadorian Amazon. Sci. Total Environ. 566–567, 761–770. https://doi.org/http://dx.doi.org/10.1016/j.scitotenv.2016.05.102
dc.relation.referencesViolle, C., Navas, M., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E., 2007. Let the concept of trait be functional! Oikos 116, 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x
dc.relation.referencesWright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.-L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., Villar, R., 2004. The worldwide leaf economics spectrum. Nature 428, 821–827. https://doi.org/10.1038/nature02403
dc.relation.referencesXu, X., Medvigy, D., Powers, J.S., Becknell, J.M., Guan, K., 2016. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests.
dc.relation.referencesZahawi, R.A., Holl, K.D., 2009. Comparing the performance of tree stakes and seedlings to restore abandoned tropical pastures. Restor. Ecol. 17, 854–864. https://doi.org/10.1111/j.1526-100X.2008.00423.x
dc.relation.referencesZuur, A.F., Ieno, E.N., Elphick, C.S., 2010. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembBosques tropicales - Colombia
dc.subject.lembEcosistemas vulnerables - Colombia
dc.subject.lembConservación de los recursos naturales - Colombia
dc.subject.lembGestión de ecosistemas - Colombia
dc.subject.lembArboles - Colombia
dc.subject.proposalBosque seco tropical
dc.subject.proposalrasgos funcionales
dc.subject.proposalvariabilidad interespecífica e intraespecífica
dc.subject.proposalvariables ambientales
dc.subject.proposalTropical dry forest
dc.subject.proposalfunctional traits
dc.subject.proposalinterspecific and intraspecific variability
dc.subject.proposalenvironmental variables
dc.title.translatedVariability of functional traits in tree species of the tropical dry forest of Colombia
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleDesarrollo de protocolos de restauración ecológica de la diversidad florística y genética del bosque seco tropical de Colombia
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaBosques Y Conservación Ambiental.Sede Medellín
dc.contributor.orcidRivera Agudelo, Claudia Marcela [0009-0000-0235-6033]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit