Método para la predicción de la intención de compra de los usuarios en línea utilizando técnicas de aprendizaje de máquina
| dc.contributor.advisor | Gutiérrez Betancur, Sergio Armando | |
| dc.contributor.advisor | John Willian, Branch Bedoya | |
| dc.contributor.author | Ortiz-Clavijo, Luis Felipe | |
| dc.contributor.cvlac | Ortiz-Clavijo, Luis Felipe [0000022139] | spa |
| dc.contributor.googlescholar | Ortiz-Clavijo, Luis Felipe [iYcLTZAAAAAJ&hl] | spa |
| dc.contributor.orcid | Ortiz-Clavijo, Luis Felipe [0000-0002-0800-0844] | spa |
| dc.contributor.researchgate | Ortiz-Clavijo, Luis Felipe [Luis-Felipe-Ortiz-Clavijo] | spa |
| dc.contributor.researchgroup | Grupo de I+D en Inteligencia Artificial –GIDIA | spa |
| dc.contributor.scopus | Ortiz-Clavijo, Luis Felipe [57219650176] | spa |
| dc.date.accessioned | 2025-01-16T16:39:05Z | |
| dc.date.available | 2025-01-16T16:39:05Z | |
| dc.date.issued | 2024-10-17 | |
| dc.description | Ilustraciones | spa |
| dc.description.abstract | El desafío de predecir la intención de compra de los usuarios en línea constituye un aspecto crítico en el dinámico mundo del comercio electrónico. En este contexto, comprender y anticipar el comportamiento del consumidor se ha vuelto una prioridad para las empresas con presencia digital. Esta investigación aborda dicho desafío desarrollando un método predictivo para la intención de compra de usuarios digitales, empleando técnicas de aprendizaje de máquina. A través de un conjunto de datos representativo, que incluye información detallada sobre las actividades de los usuarios en un sitio de comercio electrónico, se ajustan técnicas de aprendizaje de máquina, utilizando un enfoque de ensamble de Bosques Aleatorios y XGBoost. Los resultados obtenidos demuestran que el método propuesto alcanza una precisión general del 89.69%, demostrando su habilidad para identificar correctamente cuándo los usuarios tienen la intención de realizar una compra en línea y cuándo no. La investigación aporta al campo del comercio electrónico un enfoque predictivo que se centra en la precisión y la generalización, adaptándose a variaciones en el comportamiento de compra de los usuarios digitales. Este enfoque de generalización implica que el modelo no está restringido a un conjunto de datos específico o a condiciones de mercado particulares, sino que puede ajustarse y mantener su precisión ante los cambios dinámicos que presenta el comercio electrónico. (Texto tomado de la fuente) | spa |
| dc.description.abstract | The challenge of predicting online users' purchase intentions constitutes a critical aspect in the dynamic world of e-commerce. In this context, understanding and anticipating consumer behavior has become a priority for companies with a digital presence. This research addresses this challenge by developing a predictive method for predicting purchase intentions of digital users, employing machine learning techniques. Through a representative dataset, which includes detailed information about users' activities on an e-commerce site, machine learning techniques are adjusted, using an ensemble approach of Random Forests and XGBoost. The results obtained demonstrate an overall accuracy of 89.69%, proving its ability to correctly identify when users intend to make an online purchase and when they do not. The research contributes to the field of e-commerce a predictive approach that focuses on accuracy and generalization, adapting to variations in the purchasing behavior of digital users. This generalization approach implies that the model is not restricted to a specific dataset or market conditions but can be adjusted and maintain its accuracy amidst the dynamic changes presented in e-commerce. | eng |
| dc.description.curriculararea | Área Curricular de Ingeniería de Sistemas e Informática | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Ingeniería - Analítica | spa |
| dc.description.researcharea | Redes Neuronales Artificiales, Computación Evolutiva, y Reconocimiento de Patrones | spa |
| dc.format.extent | 79 páginas | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87327 | |
| dc.language.iso | spa | spa |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
| dc.publisher.faculty | Facultad de Minas | spa |
| dc.publisher.place | Medellín, Colombia | spa |
| dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Analítica | spa |
| dc.relation.references | Abdullah-All-Tanvir, Ali Khandokar, I., Muzahidul Islam, A. K. M., Islam, S., & Shatabda, S. (2023). A gradient boosting classifier for purchase intention prediction of online shoppers. Heliyon, 9(4), e15163. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e15163 | spa |
| dc.relation.references | Agustyaningrum, C. I., Haris, M., Aryanti, R., & Misriati, T. (2021). Online shopper intention analysis using conventional machine learning and deep neural network classification algorithm. Jurnal Penelitian Pos Dan Informatika, 11(1), 89–100. | spa |
| dc.relation.references | Ahn, T., Ryu, S., & Han, I. (2004). The impact of the online and offline features on the user acceptance of Internet shopping malls. Electronic Commerce Research and Applications, 3(4), 405–420. https://doi.org/10.1016/j.elerap.2004.05.001 | spa |
| dc.relation.references | Alghanam, O. A., Al-Khatib, S. N., & Hiari, M. O. (2022). Data Mining Model for Predicting Customer Purchase Behavior in E-Commerce Context. International Journal of Advanced Computer Science and Applications, 13(2). https://doi.org/10.14569/IJACSA.2022.0130249 | spa |
| dc.relation.references | Alpaydin, E. (2020). Introduction to machine learning. MIT press. | spa |
| dc.relation.references | Alsaad, A., & Taamneh, A. (2019). The effect of international pressures on the cross-national diffusion of business-to-business e-commerce. Technology in Society, 59, 101158. | spa |
| dc.relation.references | Baati, K., & Mohsil, M. (2020). Real-Time Prediction of Online Shoppers’ Purchasing Intention Using Random Forest. In I. Maglogiannis, L. Iliadis, & E. Pimenidis (Eds.), Artificial Intelligence Applications and Innovations (pp. 43–51). Springer International Publishing. | spa |
| dc.relation.references | Babenko, V., Kulczyk, Z., Perevosova, I., Syniavska, O., & Davydova, O. (2019). Factors of the development of international e-commerce under the conditions of globalization. SHS Web of Conferences, 65, 04016. | spa |
| dc.relation.references | Bansal, M., & Vyas, V. (2023). Analysis and Prediction of Purchase Intention of Online Customers with Deep Learning. In A. Khanna, Z. Polkowski, & O. Castillo (Eds.), Proceedings of Data Analytics and Management (pp. 173–182). Springer Nature Singapore. | spa |
| dc.relation.references | Bawack, R. E., Wamba, S. F., Carillo, K. D. A., & Akter, S. (2022). Artificial intelligence in E-Commerce: a bibliometric study and literature review. Electronic Markets, 32(1), 297–338. https://doi.org/10.1007/s12525-022-00537-z | spa |
| dc.relation.references | Blackwell, R. D., Miniard, P. W., & Engel, J. F. (2006). Consumer Behavior. Thomson South-Western. https://books.google.com.co/books?id=96TxAAAAMAAJ | spa |
| dc.relation.references | Bouza-Herrera, C. N. (2021). Las curvas ROC teoría y herramientas para su uso. In Universidad de La Habana. | spa |
| dc.relation.references | Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. | spa |
| dc.relation.references | Chaudhuri, N., Gupta, G., Vamsi, V., & Bose, I. (2021). On the platform but will they buy? Predicting customers’ purchase behavior using deep learning. Decision Support Systems, 149. https://doi.org/10.1016/j.dss.2021.113622 | spa |
| dc.relation.references | Cheba, K., Kiba-Janiak, M., Baraniecka, A., & Kołakowski, T. (2021). Impact of external factors on e-commerce market in cities and its implications on environment. Sustainable Cities and Society, 72, 103032. | spa |
| dc.relation.references | Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297. | spa |
| dc.relation.references | Dhali, S., Pati, M., Ghosh, S., & Banerjee, C. (2020). An Efficient Predictive Analysis Model of Customer Purchase Behavior using Random Forest and XGBoost Algorithm. 2020 IEEE 1st International Conference for Convergence in Engineering (ICCE), 416–421. https://doi.org/10.1109/ICCE50343.2020.9290576 | spa |
| dc.relation.references | Dong, Y., & Jiang, W. (2019). Brand purchase prediction based on time-evolving user behaviors in e-commerce. Concurrency and Computation: Practice and Experience, 31(1), e4882. https://doi.org/10.1002/cpe.4882 | spa |
| dc.relation.references | Du, X., Liu, B., & Zhang, J. (2019). Application of Business Intelligence Based on Big Data in E-commerce Data Analysis. Journal of Physics: Conference Series, 1395(1), 012011. https://doi.org/10.1088/1742-6596/1395/1/012011 | spa |
| dc.relation.references | Esmeli, R., Bader-El-Den, M., & Abdullahi, H. (2021). Towards early purchase intention prediction in online session based retailing systems. Electronic Markets, 31(3), 697–715. https://doi.org/10.1007/s12525-020-00448-x | spa |
| dc.relation.references | Frazier, A., Maloku, F., Li, X., Chen, Y., Jung, Y., & Zohuri, B. (2022). Data Analysis of Online Shopper’s Purchasing Intention Machine Learning for Prediction Analytics. Journal of Economics & Management Research. SRC/JESMR-191. DOI: Doi. Org/10.47363/JESMR/2022 (3), 162, 2–8. | spa |
| dc.relation.references | Friedman, J. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 1189–1232. | spa |
| dc.relation.references | Gupta, S., Nawaz, N., Alfalah, A. A., Naveed, R. T., Muneer, S., & Ahmad, N. (2021). The Relationship of CSR Communication on Social Media with Consumer Purchase Intention and Brand Admiration. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1217–1230. https://doi.org/10.3390/jtaer16050068 | spa |
| dc.relation.references | Harris, S., & Harris, D. (2015). Digital design and computer architecture. Morgan Kaufmann. | spa |
| dc.relation.references | Heidary, J., Raafat, R., Qorbani, A. R., & Daim, T. (2021). An intuitionistic fuzzy data-driven product ranking model using sentiment analysis and multi-criteria decision-making. Technological Forecasting and Social Change, 173, 121158. https://doi.org/10.1016/j.techfore.2021.121158 | spa |
| dc.relation.references | Huang, Z., & Benyoucef, M. (2015). User preferences of social features on social commerce websites: An empirical study. Technological Forecasting and Social Change, 95, 57–72. https://doi.org/10.1016/j.techfore.2014.03.005 | spa |
| dc.relation.references | Huseynov, F., & Özkan Yıldırım, S. (2019). Online Consumer Typologies and Their Shopping Behaviors in B2C E-Commerce Platforms. SAGE Open, 9(2), 215824401985463. https://doi.org/10.1177/2158244019854639 | spa |
| dc.relation.references | Islam, M. S., Naeem, J., Emon, A. S., Baten, A., Mamun, Md. A. Al, Waliullah, G. M., Rahman, Md. S., & Mridha, M. F. (2023). Prediction of Buying Intention: Factors Affecting Online Shopping. 2023 International Conference on Next-Generation Computing, IoT and Machine Learning (NCIM), 1–6. https://doi.org/10.1109/NCIM59001.2023.10212766 | spa |
| dc.relation.references | Islek, I., & Oguducu, S. G. (2022). A hierarchical recommendation system for E-commerce using online user reviews. Electronic Commerce Research and Applications, 52, 101131. https://doi.org/10.1016/j.elerap.2022.101131 | spa |
| dc.relation.references | James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). Springer. | spa |
| dc.relation.references | Jimenez, D., Valdes, S., & Salinas, M. (2019). Popularity comparison between e-commerce and traditional retail business. International Journal of Technology for Business, 1(1), 10–16. | spa |
| dc.relation.references | Kabir, M. R., Ashraf, F. Bin, & Ajwad, R. (2019). Analysis of Different Predicting Model for Online Shoppers’ Purchase Intention from Empirical Data. 2019 22nd International Conference on Computer and Information Technology (ICCIT), 1–6. https://doi.org/10.1109/ICCIT48885.2019.9038521 | spa |
| dc.relation.references | Khan, M. M., Sohrab, M. G., & Yousuf, M. A. (2020). Customer gender prediction system on hierarchical E-commerce data. Beni-Suef University Journal of Basic and Applied Sciences, 9(1), 10. https://doi.org/10.1186/s43088-020-0035-7 | spa |
| dc.relation.references | Kim, S., Shin, W., & Kim, H.-W. (2024). Predicting online customer purchase: The integration of customer characteristics and browsing patterns. Decision Support Systems, 177, 114105. https://doi.org/https://doi.org/10.1016/j.dss.2023.114105 | spa |
| dc.relation.references | Kotler, P., & Keller, K. L. (2016). A Framework for Marketing Management. Pearson. https://books.google.com.co/books?id=vv-yoQEACAAJ | spa |
| dc.relation.references | Kurniawan, I., Abdussomad, Akbar, M. F., Saepudin, D. F., Azis, M. S., & Tabrani, M. (2020). Improving The Effectiveness of Classification Using The Data Level Approach and Feature Selection Techniques in Online Shoppers Purchasing Intention Prediction. Journal of Physics: Conference Series, 1641(1), 012083. https://doi.org/10.1088/1742-6596/1641/1/012083 | spa |
| dc.relation.references | Laudon, K. C., & Traver, C. G. (2013). E-commerce. Pearson Boston, MA. | spa |
| dc.relation.references | Lilhore, U. K., Simaiya, S., Prasad, D., & Verma, D. K. (2021). Hybrid Weighted Random Forests Method for Prediction & Classification of Online Buying Customers. Journal of Information Technology Management, 13(2), 245–259. https://doi.org/10.22059/jitm.2021.310062.2607 | spa |
| dc.relation.references | Liu, Y., Li, B., Yang, S., & Li, Z. (2024). Handling missing values and imbalanced classes in machine learning to predict consumer preference: Demonstrations and comparisons to prominent methods. Expert Systems with Applications, 237, 121694. https://doi.org/https://doi.org/10.1016/j.eswa.2023.121694 | spa |
| dc.relation.references | Lu, C.-W., Lin, G.-H., Wu, T.-J., Hu, I.-H., & Chang, Y.-C. (2021). Influencing Factors of Cross-Border E-Commerce Consumer Purchase Intention Based on Wireless Network and Machine Learning. Security and Communication Networks, 2021, 9984213. https://doi.org/10.1155/2021/9984213 | spa |
| dc.relation.references | Mannering, F., Bhat, C. R., Shankar, V., & Abdel-Aty, M. (2020). Big data, traditional data and the tradeoffs between prediction and causality in highway-safety analysis. Analytic Methods in Accident Research, 25, 100113. | spa |
| dc.relation.references | Marceda, T., da Silva, W. V., Mendonça Souza, A., Kudlawicz-Franco, C., & da Veiga, C. P. (2020). Online customer behavior: perceptions regarding the types of risks incurred through online purchases. Palgrave Communications, 6(1), 13. https://doi.org/10.1057/s41599-020-0389-4 | spa |
| dc.relation.references | Miao, M., Jalees, T., Zaman, S. I., Khan, S., Hanif, N.-A., & Javed, M. K. (2021). The influence of e-customer satisfaction, e-trust and perceived value on consumer’s repurchase intention in B2C e-commerce segment. Asia Pacific Journal of Marketing and Logistics, ahead-of-print(ahead-of-print). https://doi.org/10.1108/APJML-03-2021-0221 | spa |
| dc.relation.references | Micol, L., da Silveira, D. E., da Rosa Righi, R., Antunes Stoffel, R., da Costa, C. A., Victória Barbosa, J. L., Scorsatto, R., & Arcot, T. (2021). Machine learning through the lens of e-commerce initiatives: An up-to-date systematic literature review. Computer Science Review, 41, 100414. https://doi.org/https://doi.org/10.1016/j.cosrev.2021.100414 | spa |
| dc.relation.references | Mokryn, O., Bogina, V., & Kuflik, T. (2019). Will this session end with a purchase? Inferring current purchase intent of anonymous visitors. Electronic Commerce Research and Applications, 34, 100836. https://doi.org/10.1016/j.elerap.2019.100836 | spa |
| dc.relation.references | Mootha, S., Sridhar, S., & Devi, M. S. K. (2020). A Stacking Ensemble of Multi Layer Perceptrons to Predict Online Shoppers’ Purchasing Intention. 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), 721–726. https://doi.org/10.1109/ISRITI51436.2020.9315447 | spa |
| dc.relation.references | Naik, P., Naik, G., & Patil, M. (2022). Conceptualizing Python in Google COLAB. India: Shashwat Publication. | spa |
| dc.relation.references | Padmavathy, C., Swapana, M., & Paul, J. (2019). Online second-hand shopping motivation – Conceptualization, scale development, and validation. Journal of Retailing and Consumer Services, 51, 19–32. https://doi.org/10.1016/j.jretconser.2019.05.014 | spa |
| dc.relation.references | Pallathadka, H., Ramirez-Asis, E. H., Loli-Poma, T. P., Kaliyaperumal, K., Ventayen, R. J. M., & Naved, M. (2023). Applications of artificial intelligence in business management, e-commerce and finance. Materials Today: Proceedings, 80, 2610–2613. https://doi.org/https://doi.org/10.1016/j.matpr.2021.06.419 | spa |
| dc.relation.references | Pamuksuz, U., Yun, J. T., & Humphreys, A. (2021). A Brand-New Look at You: Predicting Brand Personality in Social Media Networks with Machine Learning. Journal of Interactive Marketing, 56, 55–69. https://doi.org/10.1016/j.intmar.2021.05.001 | spa |
| dc.relation.references | Peña-García, N., Gil-Saura, I., Rodríguez-Orejuela, A., & Siqueira-Junior, J. R. (2020). Purchase intention and purchase behavior online: A cross-cultural approach. Heliyon, 6(6), e04284. | spa |
| dc.relation.references | Quintero, J. P. C. (2021). Conectividad de Internet en Colombia y su relación con los Objetivos de Desarrollo Sostenible (2015-2020). Ciencia y Poder Aéreo, 16(1), 39–54. | spa |
| dc.relation.references | Rasheed, A., Farhan, M., Zahid, M., Javed, N., & Rizwan, M. (2014). Customer’s Purchase Intention of Counterfeit Mobile Phones in Pakistan. Journal of Public Administration and Governance, 4(3), 39. https://doi.org/10.5296/jpag.v4i3.5848 | spa |
| dc.relation.references | Rath, M. (2020). Machine Learning and Its Use in E-Commerce and E-Business (pp. 111–127). https://doi.org/10.4018/978-1-5225-9902-9.ch007 | spa |
| dc.relation.references | Ricci, P. A. G. (2022). Estado del arte de la inteligencia artificial en marketing y el comportamiento del consumidor. Revista de Ciencias Empresariales │Universidad Blas Pascal, 7(2022), 60–69. https://doi.org/10.37767/2468-9785(2022)005 | spa |
| dc.relation.references | Rico, D. F., Sayani, H. H., & Field, R. F. (2008). History of computers, electronic commerce and agile methods. Advances in Computers, 73, 1–55. | spa |
| dc.relation.references | Rosário, A., & Raimundo, R. (2021). Consumer Marketing Strategy and E-Commerce in the Last Decade: A Literature Review. Journal of Theoretical and Applied Electronic Commerce Research, 16(7), 3003–3024. | spa |
| dc.relation.references | Sakar, C., & Kastro, Y. (2018). Online Shoppers Purchasing Intention Dataset. https://doi.org/10.24432/C5F88Q | spa |
| dc.relation.references | Sakar, C. O., Polat, S. O., Katircioglu, M., & Kastro, Y. (2019). Real-time prediction of online shoppers’ purchasing intention using multilayer perceptron and LSTM recurrent neural networks. Neural Computing and Applications, 31(10), 6893–6908. https://doi.org/10.1007/s00521-018-3523-0 | spa |
| dc.relation.references | Sang, G., & Wu, S. (2022). Predicting the Intention of Online Shoppers’ Purchasing. 2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), 333–337. https://doi.org/10.1109/AEMCSE55572.2022.00074 | spa |
| dc.relation.references | Shi, X. (2021). The Application of Machine Learning in Online Purchasing Intention Prediction. Proceedings of the 6th International Conference on Big Data and Computing, 21–29. https://doi.org/10.1145/3469968.3469972 | spa |
| dc.relation.references | Sindhu Meena, K., & Suriya, S. (2020). A survey on supervised and unsupervised learning techniques. Proceedings of International Conference on Artificial Intelligence, Smart Grid and Smart City Applications: AISGSC 2019, 627–644. | spa |
| dc.relation.references | Sokolova, K., & Kefi, H. (2020). Instagram and YouTube bloggers promote it, why should I buy? How credibility and parasocial interaction influence purchase intentions. Journal of Retailing and Consumer Services, 53, 101742. https://doi.org/10.1016/j.jretconser.2019.01.011 | spa |
| dc.relation.references | Solomon, M. R. (2017). Consumer Behavior: Buying, Having, and Being. Pearson. https://books.google.com.co/books?id=kYJajwEACAAJ | spa |
| dc.relation.references | Song, Y., Li, G., & Ergu, D. (2020). Recommending Products by Fusing Online Product Scores and Objective Information Based on Prospect Theory. IEEE Access, 8, 58995–59006. https://doi.org/10.1109/ACCESS.2020.2982933 | spa |
| dc.relation.references | Suárez, S. J. L. (2020). El comercio electrónico (e-commerce) un aliado estratégico para las empresas en Colombia. Revista Ibérica De Sistemas e Tecnologias De Informação, E34, 235–251. | spa |
| dc.relation.references | Svobodová, Z., & Rajchlová, J. (2020). Strategic Behavior of E-Commerce Businesses in Online Industry of Electronics from a Customer Perspective. Administrative Sciences, 10(4), 78. https://doi.org/10.3390/admsci10040078 | spa |
| dc.relation.references | Tahir, M., Enam, R. N., & Mustafa, S. M. N. (2021). E-commerce platform based on Machine Learning Recommendation System. 2021 6th International Multi-Topic ICT Conference (IMTIC), 1–4. | spa |
| dc.relation.references | Trivedi, J., & Sama, R. (2020). The Effect of Influencer Marketing on Consumers’ Brand Admiration and Online Purchase Intentions: An Emerging Market Perspective. Journal of Internet Commerce, 19(1), 103–124. https://doi.org/10.1080/15332861.2019.1700741 | spa |
| dc.relation.references | Turban, E., Outland, J., King, D., Lee, J. K., Liang, T.-P., & Turban, D. C. (2018). Electronic Commerce 2018. https://doi.org/10.1007/978-3-319-58715-8 | spa |
| dc.relation.references | Utku, A., & Akcayol, M. A. (2020). Deep Learning Based Prediction Model for the Next Purchase. Advances in Electrical and Computer Engineering, 20(2), 35–44. https://doi.org/10.4316/AECE.2020.02005 | spa |
| dc.relation.references | Viu-Roig, M., & Alvarez-Palau, E. J. (2020). The impact of E-Commerce-related last-mile logistics on cities: A systematic literature review. Sustainability, 12(16), 6492. | spa |
| dc.relation.references | Wang, P. (2024). Impact of Brand Marketing Strategies Based on Consumer Purchase Intention Mining. Computer-Aided Design and Applications, 21(S12), 205–219. https://doi.org/10.14733/cadaps.2024.S12.205-219 | spa |
| dc.relation.references | Wang, Q., Cai, R., & Zhao, M. (2020). WITHDRAWN: E-commerce brand marketing based on FPGA and machine learning. Microprocessors and Microsystems, 103446. https://doi.org/https://doi.org/10.1016/j.micpro.2020.103446 | spa |
| dc.relation.references | Wang, S., & Yang, Y. (2021). M-GAN-XGBOOST model for sales prediction and precision marketing strategy making of each product in online stores. Data Technologies and Applications, 55(5), 749–770. https://doi.org/10.1108/DTA-11-2020-0286 | spa |
| dc.relation.references | Wu, J., Shi, L., Yang, L., Niu, X., Li, Y., Cui, X., Tsai, S.-B., & Zhang, Y. (2021). User Value Identification Based on Improved RFM Model and -Means++ Algorithm for Complex Data Analysis. Wireless Communications and Mobile Computing, 2021, 1–8. https://doi.org/10.1155/2021/9982484 | spa |
| dc.relation.references | Xiao, L., Guo, F., Yu, F., & Liu, S. (2019). The Effects of Online Shopping Context Cues on Consumers’ Purchase Intention for Cross-Border E-Commerce Sustainability. Sustainability, 11(10), 2777. https://doi.org/10.3390/su11102777 | spa |
| dc.relation.references | Zhao, Y., Xu, X., & Wang, M. (2019). Predicting overall customer satisfaction: Big data evidence from hotel online textual reviews. International Journal of Hospitality Management, 76, 111–121. https://doi.org/10.1016/j.ijhm.2018.03.017 | spa |
| dc.relation.references | Zhou, Z. H., & Liu, S. (2021). Machine Learning. Springer Nature Singapore. https://books.google.com.co/books?id=ctM-EAAAQBAJ | spa |
| dc.relation.references | Zozalbo, F., & Astuti, R. (2022). The Effect of Specific Discount Pattern and Product Type on Customers’ Purchase Intention in E-commerce Platform. Proceedings of the 4th International Conference on Economics, Business and Economic Education Science, ICE-BEES 2021, 27-28 July 2021, Semarang, Indonesia. https://doi.org/10.4108/eai.27-7-2021.2316875 | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Reconocimiento 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
| dc.subject.armarc | Aprendizaje automático (Inteligencia artificial) | |
| dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores | spa |
| dc.subject.lemb | Comercio electrónico | |
| dc.subject.proposal | Aprendizaje de máquina | spa |
| dc.subject.proposal | Predicción de compra en línea | spa |
| dc.subject.proposal | Comercio electrónico | spa |
| dc.subject.proposal | Análisis predictivo | spa |
| dc.subject.proposal | Comportamiento del consumidor | spa |
| dc.subject.proposal | Machine learning | eng |
| dc.subject.proposal | Online purchase prediction | eng |
| dc.subject.proposal | E-commerce | eng |
| dc.subject.proposal | Random forests | eng |
| dc.subject.proposal | XGBoost | eng |
| dc.subject.proposal | Predictive analysis | eng |
| dc.subject.proposal | Consumer behavior | eng |
| dc.title | Método para la predicción de la intención de compra de los usuarios en línea utilizando técnicas de aprendizaje de máquina | spa |
| dc.title.translated | Method for predicting online users' purchase intention using machine learning techniques | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| dcterms.audience.professionaldevelopment | Administradores | spa |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| dcterms.audience.professionaldevelopment | Maestros | spa |
| dcterms.audience.professionaldevelopment | Público general | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Metodo para la predicción de la intencion de compra_Luis Felipe Ortiz Clavijo.pdf
- Tamaño:
- 1.01 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Analítica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

