Método para la predicción de la intención de compra de los usuarios en línea utilizando técnicas de aprendizaje de máquina

dc.contributor.advisorGutiérrez Betancur, Sergio Armando
dc.contributor.advisorJohn Willian, Branch Bedoya
dc.contributor.authorOrtiz-Clavijo, Luis Felipe
dc.contributor.cvlacOrtiz-Clavijo, Luis Felipe [0000022139]spa
dc.contributor.googlescholarOrtiz-Clavijo, Luis Felipe [iYcLTZAAAAAJ&hl]spa
dc.contributor.orcidOrtiz-Clavijo, Luis Felipe [0000-0002-0800-0844]spa
dc.contributor.researchgateOrtiz-Clavijo, Luis Felipe [Luis-Felipe-Ortiz-Clavijo]spa
dc.contributor.researchgroupGrupo de I+D en Inteligencia Artificial –GIDIAspa
dc.contributor.scopusOrtiz-Clavijo, Luis Felipe [57219650176]spa
dc.date.accessioned2025-01-16T16:39:05Z
dc.date.available2025-01-16T16:39:05Z
dc.date.issued2024-10-17
dc.descriptionIlustracionesspa
dc.description.abstractEl desafío de predecir la intención de compra de los usuarios en línea constituye un aspecto crítico en el dinámico mundo del comercio electrónico. En este contexto, comprender y anticipar el comportamiento del consumidor se ha vuelto una prioridad para las empresas con presencia digital. Esta investigación aborda dicho desafío desarrollando un método predictivo para la intención de compra de usuarios digitales, empleando técnicas de aprendizaje de máquina. A través de un conjunto de datos representativo, que incluye información detallada sobre las actividades de los usuarios en un sitio de comercio electrónico, se ajustan técnicas de aprendizaje de máquina, utilizando un enfoque de ensamble de Bosques Aleatorios y XGBoost. Los resultados obtenidos demuestran que el método propuesto alcanza una precisión general del 89.69%, demostrando su habilidad para identificar correctamente cuándo los usuarios tienen la intención de realizar una compra en línea y cuándo no. La investigación aporta al campo del comercio electrónico un enfoque predictivo que se centra en la precisión y la generalización, adaptándose a variaciones en el comportamiento de compra de los usuarios digitales. Este enfoque de generalización implica que el modelo no está restringido a un conjunto de datos específico o a condiciones de mercado particulares, sino que puede ajustarse y mantener su precisión ante los cambios dinámicos que presenta el comercio electrónico. (Texto tomado de la fuente)spa
dc.description.abstractThe challenge of predicting online users' purchase intentions constitutes a critical aspect in the dynamic world of e-commerce. In this context, understanding and anticipating consumer behavior has become a priority for companies with a digital presence. This research addresses this challenge by developing a predictive method for predicting purchase intentions of digital users, employing machine learning techniques. Through a representative dataset, which includes detailed information about users' activities on an e-commerce site, machine learning techniques are adjusted, using an ensemble approach of Random Forests and XGBoost. The results obtained demonstrate an overall accuracy of 89.69%, proving its ability to correctly identify when users intend to make an online purchase and when they do not. The research contributes to the field of e-commerce a predictive approach that focuses on accuracy and generalization, adapting to variations in the purchasing behavior of digital users. This generalization approach implies that the model is not restricted to a specific dataset or market conditions but can be adjusted and maintain its accuracy amidst the dynamic changes presented in e-commerce.eng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Analíticaspa
dc.description.researchareaRedes Neuronales Artificiales, Computación Evolutiva, y Reconocimiento de Patronesspa
dc.format.extent79 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87327
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.referencesAbdullah-All-Tanvir, Ali Khandokar, I., Muzahidul Islam, A. K. M., Islam, S., & Shatabda, S. (2023). A gradient boosting classifier for purchase intention prediction of online shoppers. Heliyon, 9(4), e15163. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e15163spa
dc.relation.referencesAgustyaningrum, C. I., Haris, M., Aryanti, R., & Misriati, T. (2021). Online shopper intention analysis using conventional machine learning and deep neural network classification algorithm. Jurnal Penelitian Pos Dan Informatika, 11(1), 89–100.spa
dc.relation.referencesAhn, T., Ryu, S., & Han, I. (2004). The impact of the online and offline features on the user acceptance of Internet shopping malls. Electronic Commerce Research and Applications, 3(4), 405–420. https://doi.org/10.1016/j.elerap.2004.05.001spa
dc.relation.referencesAlghanam, O. A., Al-Khatib, S. N., & Hiari, M. O. (2022). Data Mining Model for Predicting Customer Purchase Behavior in E-Commerce Context. International Journal of Advanced Computer Science and Applications, 13(2). https://doi.org/10.14569/IJACSA.2022.0130249spa
dc.relation.referencesAlpaydin, E. (2020). Introduction to machine learning. MIT press.spa
dc.relation.referencesAlsaad, A., & Taamneh, A. (2019). The effect of international pressures on the cross-national diffusion of business-to-business e-commerce. Technology in Society, 59, 101158.spa
dc.relation.referencesBaati, K., & Mohsil, M. (2020). Real-Time Prediction of Online Shoppers’ Purchasing Intention Using Random Forest. In I. Maglogiannis, L. Iliadis, & E. Pimenidis (Eds.), Artificial Intelligence Applications and Innovations (pp. 43–51). Springer International Publishing.spa
dc.relation.referencesBabenko, V., Kulczyk, Z., Perevosova, I., Syniavska, O., & Davydova, O. (2019). Factors of the development of international e-commerce under the conditions of globalization. SHS Web of Conferences, 65, 04016.spa
dc.relation.referencesBansal, M., & Vyas, V. (2023). Analysis and Prediction of Purchase Intention of Online Customers with Deep Learning. In A. Khanna, Z. Polkowski, & O. Castillo (Eds.), Proceedings of Data Analytics and Management (pp. 173–182). Springer Nature Singapore.spa
dc.relation.referencesBawack, R. E., Wamba, S. F., Carillo, K. D. A., & Akter, S. (2022). Artificial intelligence in E-Commerce: a bibliometric study and literature review. Electronic Markets, 32(1), 297–338. https://doi.org/10.1007/s12525-022-00537-zspa
dc.relation.referencesBlackwell, R. D., Miniard, P. W., & Engel, J. F. (2006). Consumer Behavior. Thomson South-Western. https://books.google.com.co/books?id=96TxAAAAMAAJspa
dc.relation.referencesBouza-Herrera, C. N. (2021). Las curvas ROC teoría y herramientas para su uso. In Universidad de La Habana.spa
dc.relation.referencesBreiman, L. (2001). Random forests. Machine Learning, 45, 5–32.spa
dc.relation.referencesChaudhuri, N., Gupta, G., Vamsi, V., & Bose, I. (2021). On the platform but will they buy? Predicting customers’ purchase behavior using deep learning. Decision Support Systems, 149. https://doi.org/10.1016/j.dss.2021.113622spa
dc.relation.referencesCheba, K., Kiba-Janiak, M., Baraniecka, A., & Kołakowski, T. (2021). Impact of external factors on e-commerce market in cities and its implications on environment. Sustainable Cities and Society, 72, 103032.spa
dc.relation.referencesCortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.spa
dc.relation.referencesDhali, S., Pati, M., Ghosh, S., & Banerjee, C. (2020). An Efficient Predictive Analysis Model of Customer Purchase Behavior using Random Forest and XGBoost Algorithm. 2020 IEEE 1st International Conference for Convergence in Engineering (ICCE), 416–421. https://doi.org/10.1109/ICCE50343.2020.9290576spa
dc.relation.referencesDong, Y., & Jiang, W. (2019). Brand purchase prediction based on time-evolving user behaviors in e-commerce. Concurrency and Computation: Practice and Experience, 31(1), e4882. https://doi.org/10.1002/cpe.4882spa
dc.relation.referencesDu, X., Liu, B., & Zhang, J. (2019). Application of Business Intelligence Based on Big Data in E-commerce Data Analysis. Journal of Physics: Conference Series, 1395(1), 012011. https://doi.org/10.1088/1742-6596/1395/1/012011spa
dc.relation.referencesEsmeli, R., Bader-El-Den, M., & Abdullahi, H. (2021). Towards early purchase intention prediction in online session based retailing systems. Electronic Markets, 31(3), 697–715. https://doi.org/10.1007/s12525-020-00448-xspa
dc.relation.referencesFrazier, A., Maloku, F., Li, X., Chen, Y., Jung, Y., & Zohuri, B. (2022). Data Analysis of Online Shopper’s Purchasing Intention Machine Learning for Prediction Analytics. Journal of Economics & Management Research. SRC/JESMR-191. DOI: Doi. Org/10.47363/JESMR/2022 (3), 162, 2–8.spa
dc.relation.referencesFriedman, J. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 1189–1232.spa
dc.relation.referencesGupta, S., Nawaz, N., Alfalah, A. A., Naveed, R. T., Muneer, S., & Ahmad, N. (2021). The Relationship of CSR Communication on Social Media with Consumer Purchase Intention and Brand Admiration. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1217–1230. https://doi.org/10.3390/jtaer16050068spa
dc.relation.referencesHarris, S., & Harris, D. (2015). Digital design and computer architecture. Morgan Kaufmann.spa
dc.relation.referencesHeidary, J., Raafat, R., Qorbani, A. R., & Daim, T. (2021). An intuitionistic fuzzy data-driven product ranking model using sentiment analysis and multi-criteria decision-making. Technological Forecasting and Social Change, 173, 121158. https://doi.org/10.1016/j.techfore.2021.121158spa
dc.relation.referencesHuang, Z., & Benyoucef, M. (2015). User preferences of social features on social commerce websites: An empirical study. Technological Forecasting and Social Change, 95, 57–72. https://doi.org/10.1016/j.techfore.2014.03.005spa
dc.relation.referencesHuseynov, F., & Özkan Yıldırım, S. (2019). Online Consumer Typologies and Their Shopping Behaviors in B2C E-Commerce Platforms. SAGE Open, 9(2), 215824401985463. https://doi.org/10.1177/2158244019854639spa
dc.relation.referencesIslam, M. S., Naeem, J., Emon, A. S., Baten, A., Mamun, Md. A. Al, Waliullah, G. M., Rahman, Md. S., & Mridha, M. F. (2023). Prediction of Buying Intention: Factors Affecting Online Shopping. 2023 International Conference on Next-Generation Computing, IoT and Machine Learning (NCIM), 1–6. https://doi.org/10.1109/NCIM59001.2023.10212766spa
dc.relation.referencesIslek, I., & Oguducu, S. G. (2022). A hierarchical recommendation system for E-commerce using online user reviews. Electronic Commerce Research and Applications, 52, 101131. https://doi.org/10.1016/j.elerap.2022.101131spa
dc.relation.referencesJames, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). Springer.spa
dc.relation.referencesJimenez, D., Valdes, S., & Salinas, M. (2019). Popularity comparison between e-commerce and traditional retail business. International Journal of Technology for Business, 1(1), 10–16.spa
dc.relation.referencesKabir, M. R., Ashraf, F. Bin, & Ajwad, R. (2019). Analysis of Different Predicting Model for Online Shoppers’ Purchase Intention from Empirical Data. 2019 22nd International Conference on Computer and Information Technology (ICCIT), 1–6. https://doi.org/10.1109/ICCIT48885.2019.9038521spa
dc.relation.referencesKhan, M. M., Sohrab, M. G., & Yousuf, M. A. (2020). Customer gender prediction system on hierarchical E-commerce data. Beni-Suef University Journal of Basic and Applied Sciences, 9(1), 10. https://doi.org/10.1186/s43088-020-0035-7spa
dc.relation.referencesKim, S., Shin, W., & Kim, H.-W. (2024). Predicting online customer purchase: The integration of customer characteristics and browsing patterns. Decision Support Systems, 177, 114105. https://doi.org/https://doi.org/10.1016/j.dss.2023.114105spa
dc.relation.referencesKotler, P., & Keller, K. L. (2016). A Framework for Marketing Management. Pearson. https://books.google.com.co/books?id=vv-yoQEACAAJspa
dc.relation.referencesKurniawan, I., Abdussomad, Akbar, M. F., Saepudin, D. F., Azis, M. S., & Tabrani, M. (2020). Improving The Effectiveness of Classification Using The Data Level Approach and Feature Selection Techniques in Online Shoppers Purchasing Intention Prediction. Journal of Physics: Conference Series, 1641(1), 012083. https://doi.org/10.1088/1742-6596/1641/1/012083spa
dc.relation.referencesLaudon, K. C., & Traver, C. G. (2013). E-commerce. Pearson Boston, MA.spa
dc.relation.referencesLilhore, U. K., Simaiya, S., Prasad, D., & Verma, D. K. (2021). Hybrid Weighted Random Forests Method for Prediction & Classification of Online Buying Customers. Journal of Information Technology Management, 13(2), 245–259. https://doi.org/10.22059/jitm.2021.310062.2607spa
dc.relation.referencesLiu, Y., Li, B., Yang, S., & Li, Z. (2024). Handling missing values and imbalanced classes in machine learning to predict consumer preference: Demonstrations and comparisons to prominent methods. Expert Systems with Applications, 237, 121694. https://doi.org/https://doi.org/10.1016/j.eswa.2023.121694spa
dc.relation.referencesLu, C.-W., Lin, G.-H., Wu, T.-J., Hu, I.-H., & Chang, Y.-C. (2021). Influencing Factors of Cross-Border E-Commerce Consumer Purchase Intention Based on Wireless Network and Machine Learning. Security and Communication Networks, 2021, 9984213. https://doi.org/10.1155/2021/9984213spa
dc.relation.referencesMannering, F., Bhat, C. R., Shankar, V., & Abdel-Aty, M. (2020). Big data, traditional data and the tradeoffs between prediction and causality in highway-safety analysis. Analytic Methods in Accident Research, 25, 100113.spa
dc.relation.referencesMarceda, T., da Silva, W. V., Mendonça Souza, A., Kudlawicz-Franco, C., & da Veiga, C. P. (2020). Online customer behavior: perceptions regarding the types of risks incurred through online purchases. Palgrave Communications, 6(1), 13. https://doi.org/10.1057/s41599-020-0389-4spa
dc.relation.referencesMiao, M., Jalees, T., Zaman, S. I., Khan, S., Hanif, N.-A., & Javed, M. K. (2021). The influence of e-customer satisfaction, e-trust and perceived value on consumer’s repurchase intention in B2C e-commerce segment. Asia Pacific Journal of Marketing and Logistics, ahead-of-print(ahead-of-print). https://doi.org/10.1108/APJML-03-2021-0221spa
dc.relation.referencesMicol, L., da Silveira, D. E., da Rosa Righi, R., Antunes Stoffel, R., da Costa, C. A., Victória Barbosa, J. L., Scorsatto, R., & Arcot, T. (2021). Machine learning through the lens of e-commerce initiatives: An up-to-date systematic literature review. Computer Science Review, 41, 100414. https://doi.org/https://doi.org/10.1016/j.cosrev.2021.100414spa
dc.relation.referencesMokryn, O., Bogina, V., & Kuflik, T. (2019). Will this session end with a purchase? Inferring current purchase intent of anonymous visitors. Electronic Commerce Research and Applications, 34, 100836. https://doi.org/10.1016/j.elerap.2019.100836spa
dc.relation.referencesMootha, S., Sridhar, S., & Devi, M. S. K. (2020). A Stacking Ensemble of Multi Layer Perceptrons to Predict Online Shoppers’ Purchasing Intention. 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), 721–726. https://doi.org/10.1109/ISRITI51436.2020.9315447spa
dc.relation.referencesNaik, P., Naik, G., & Patil, M. (2022). Conceptualizing Python in Google COLAB. India: Shashwat Publication.spa
dc.relation.referencesPadmavathy, C., Swapana, M., & Paul, J. (2019). Online second-hand shopping motivation – Conceptualization, scale development, and validation. Journal of Retailing and Consumer Services, 51, 19–32. https://doi.org/10.1016/j.jretconser.2019.05.014spa
dc.relation.referencesPallathadka, H., Ramirez-Asis, E. H., Loli-Poma, T. P., Kaliyaperumal, K., Ventayen, R. J. M., & Naved, M. (2023). Applications of artificial intelligence in business management, e-commerce and finance. Materials Today: Proceedings, 80, 2610–2613. https://doi.org/https://doi.org/10.1016/j.matpr.2021.06.419spa
dc.relation.referencesPamuksuz, U., Yun, J. T., & Humphreys, A. (2021). A Brand-New Look at You: Predicting Brand Personality in Social Media Networks with Machine Learning. Journal of Interactive Marketing, 56, 55–69. https://doi.org/10.1016/j.intmar.2021.05.001spa
dc.relation.referencesPeña-García, N., Gil-Saura, I., Rodríguez-Orejuela, A., & Siqueira-Junior, J. R. (2020). Purchase intention and purchase behavior online: A cross-cultural approach. Heliyon, 6(6), e04284.spa
dc.relation.referencesQuintero, J. P. C. (2021). Conectividad de Internet en Colombia y su relación con los Objetivos de Desarrollo Sostenible (2015-2020). Ciencia y Poder Aéreo, 16(1), 39–54.spa
dc.relation.referencesRasheed, A., Farhan, M., Zahid, M., Javed, N., & Rizwan, M. (2014). Customer’s Purchase Intention of Counterfeit Mobile Phones in Pakistan. Journal of Public Administration and Governance, 4(3), 39. https://doi.org/10.5296/jpag.v4i3.5848spa
dc.relation.referencesRath, M. (2020). Machine Learning and Its Use in E-Commerce and E-Business (pp. 111–127). https://doi.org/10.4018/978-1-5225-9902-9.ch007spa
dc.relation.referencesRicci, P. A. G. (2022). Estado del arte de la inteligencia artificial en marketing y el comportamiento del consumidor. Revista de Ciencias Empresariales │Universidad Blas Pascal, 7(2022), 60–69. https://doi.org/10.37767/2468-9785(2022)005spa
dc.relation.referencesRico, D. F., Sayani, H. H., & Field, R. F. (2008). History of computers, electronic commerce and agile methods. Advances in Computers, 73, 1–55.spa
dc.relation.referencesRosário, A., & Raimundo, R. (2021). Consumer Marketing Strategy and E-Commerce in the Last Decade: A Literature Review. Journal of Theoretical and Applied Electronic Commerce Research, 16(7), 3003–3024.spa
dc.relation.referencesSakar, C., & Kastro, Y. (2018). Online Shoppers Purchasing Intention Dataset. https://doi.org/10.24432/C5F88Qspa
dc.relation.referencesSakar, C. O., Polat, S. O., Katircioglu, M., & Kastro, Y. (2019). Real-time prediction of online shoppers’ purchasing intention using multilayer perceptron and LSTM recurrent neural networks. Neural Computing and Applications, 31(10), 6893–6908. https://doi.org/10.1007/s00521-018-3523-0spa
dc.relation.referencesSang, G., & Wu, S. (2022). Predicting the Intention of Online Shoppers’ Purchasing. 2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), 333–337. https://doi.org/10.1109/AEMCSE55572.2022.00074spa
dc.relation.referencesShi, X. (2021). The Application of Machine Learning in Online Purchasing Intention Prediction. Proceedings of the 6th International Conference on Big Data and Computing, 21–29. https://doi.org/10.1145/3469968.3469972spa
dc.relation.referencesSindhu Meena, K., & Suriya, S. (2020). A survey on supervised and unsupervised learning techniques. Proceedings of International Conference on Artificial Intelligence, Smart Grid and Smart City Applications: AISGSC 2019, 627–644.spa
dc.relation.referencesSokolova, K., & Kefi, H. (2020). Instagram and YouTube bloggers promote it, why should I buy? How credibility and parasocial interaction influence purchase intentions. Journal of Retailing and Consumer Services, 53, 101742. https://doi.org/10.1016/j.jretconser.2019.01.011spa
dc.relation.referencesSolomon, M. R. (2017). Consumer Behavior: Buying, Having, and Being. Pearson. https://books.google.com.co/books?id=kYJajwEACAAJspa
dc.relation.referencesSong, Y., Li, G., & Ergu, D. (2020). Recommending Products by Fusing Online Product Scores and Objective Information Based on Prospect Theory. IEEE Access, 8, 58995–59006. https://doi.org/10.1109/ACCESS.2020.2982933spa
dc.relation.referencesSuárez, S. J. L. (2020). El comercio electrónico (e-commerce) un aliado estratégico para las empresas en Colombia. Revista Ibérica De Sistemas e Tecnologias De Informação, E34, 235–251.spa
dc.relation.referencesSvobodová, Z., & Rajchlová, J. (2020). Strategic Behavior of E-Commerce Businesses in Online Industry of Electronics from a Customer Perspective. Administrative Sciences, 10(4), 78. https://doi.org/10.3390/admsci10040078spa
dc.relation.referencesTahir, M., Enam, R. N., & Mustafa, S. M. N. (2021). E-commerce platform based on Machine Learning Recommendation System. 2021 6th International Multi-Topic ICT Conference (IMTIC), 1–4.spa
dc.relation.referencesTrivedi, J., & Sama, R. (2020). The Effect of Influencer Marketing on Consumers’ Brand Admiration and Online Purchase Intentions: An Emerging Market Perspective. Journal of Internet Commerce, 19(1), 103–124. https://doi.org/10.1080/15332861.2019.1700741spa
dc.relation.referencesTurban, E., Outland, J., King, D., Lee, J. K., Liang, T.-P., & Turban, D. C. (2018). Electronic Commerce 2018. https://doi.org/10.1007/978-3-319-58715-8spa
dc.relation.referencesUtku, A., & Akcayol, M. A. (2020). Deep Learning Based Prediction Model for the Next Purchase. Advances in Electrical and Computer Engineering, 20(2), 35–44. https://doi.org/10.4316/AECE.2020.02005spa
dc.relation.referencesViu-Roig, M., & Alvarez-Palau, E. J. (2020). The impact of E-Commerce-related last-mile logistics on cities: A systematic literature review. Sustainability, 12(16), 6492.spa
dc.relation.referencesWang, P. (2024). Impact of Brand Marketing Strategies Based on Consumer Purchase Intention Mining. Computer-Aided Design and Applications, 21(S12), 205–219. https://doi.org/10.14733/cadaps.2024.S12.205-219spa
dc.relation.referencesWang, Q., Cai, R., & Zhao, M. (2020). WITHDRAWN: E-commerce brand marketing based on FPGA and machine learning. Microprocessors and Microsystems, 103446. https://doi.org/https://doi.org/10.1016/j.micpro.2020.103446spa
dc.relation.referencesWang, S., & Yang, Y. (2021). M-GAN-XGBOOST model for sales prediction and precision marketing strategy making of each product in online stores. Data Technologies and Applications, 55(5), 749–770. https://doi.org/10.1108/DTA-11-2020-0286spa
dc.relation.referencesWu, J., Shi, L., Yang, L., Niu, X., Li, Y., Cui, X., Tsai, S.-B., & Zhang, Y. (2021). User Value Identification Based on Improved RFM Model and -Means++ Algorithm for Complex Data Analysis. Wireless Communications and Mobile Computing, 2021, 1–8. https://doi.org/10.1155/2021/9982484spa
dc.relation.referencesXiao, L., Guo, F., Yu, F., & Liu, S. (2019). The Effects of Online Shopping Context Cues on Consumers’ Purchase Intention for Cross-Border E-Commerce Sustainability. Sustainability, 11(10), 2777. https://doi.org/10.3390/su11102777spa
dc.relation.referencesZhao, Y., Xu, X., & Wang, M. (2019). Predicting overall customer satisfaction: Big data evidence from hotel online textual reviews. International Journal of Hospitality Management, 76, 111–121. https://doi.org/10.1016/j.ijhm.2018.03.017spa
dc.relation.referencesZhou, Z. H., & Liu, S. (2021). Machine Learning. Springer Nature Singapore. https://books.google.com.co/books?id=ctM-EAAAQBAJspa
dc.relation.referencesZozalbo, F., & Astuti, R. (2022). The Effect of Specific Discount Pattern and Product Type on Customers’ Purchase Intention in E-commerce Platform. Proceedings of the 4th International Conference on Economics, Business and Economic Education Science, ICE-BEES 2021, 27-28 July 2021, Semarang, Indonesia. https://doi.org/10.4108/eai.27-7-2021.2316875spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.armarcAprendizaje automático (Inteligencia artificial)
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.lembComercio electrónico
dc.subject.proposalAprendizaje de máquinaspa
dc.subject.proposalPredicción de compra en líneaspa
dc.subject.proposalComercio electrónicospa
dc.subject.proposalAnálisis predictivospa
dc.subject.proposalComportamiento del consumidorspa
dc.subject.proposalMachine learningeng
dc.subject.proposalOnline purchase predictioneng
dc.subject.proposalE-commerceeng
dc.subject.proposalRandom forestseng
dc.subject.proposalXGBoosteng
dc.subject.proposalPredictive analysiseng
dc.subject.proposalConsumer behavioreng
dc.titleMétodo para la predicción de la intención de compra de los usuarios en línea utilizando técnicas de aprendizaje de máquinaspa
dc.title.translatedMethod for predicting online users' purchase intention using machine learning techniqueseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Metodo para la predicción de la intencion de compra_Luis Felipe Ortiz Clavijo.pdf
Tamaño:
1.01 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: