Diseño y validación de un sistema de procesamiento de imágenes para el reconocimiento vehicular en intersecciones viales
| dc.contributor.advisor | Pedraza Bonilla, César Augusto | spa |
| dc.contributor.author | Morales Aguilar, Santiago | spa |
| dc.date.accessioned | 2020-03-16T16:08:49Z | spa |
| dc.date.available | 2020-03-16T16:08:49Z | spa |
| dc.date.issued | 2019-07-19 | spa |
| dc.description.abstract | Vehicular flow is an important measurement to design mobility strategies in cities such as traffic light configuration, civil engineering works, and others. This variable can be determined through different manual and automatic strategies. However, some street intersections, such as traffic circles are difficult to determine their origin-destination matrix. In the case of manual strategies, it is difficult to count every single car in a mid to large-size traffic circle. On the other hand, automatic strategies can be difficult to develop because it is necessary to detect, track and count vehicles that change its position inside an intersection. This chapter presents a vehicle counting method to determine origin-destination matrix for traffic circle intersections, using two main algorithms, ”Viola-Jones”for the detection and . O n-line Boosting”for the tracking. The method is validated with an implementation applied to a top view video of a traffic circle. The video is also processed manually and finally the comparison between both results is presented. | spa |
| dc.description.abstract | El flujo vehicular es una medida importante para diseñar estrategias de movilidad en ciudades como configuración de semáforos, obras de ingenierı́a civil entre otras. Esta variable se puede determinar a través de diferentes estrategias manuales y automáticas. Sin embargo, en algunas intersecciones, como las rotondas, es difı́cil determinar la matriz de origen destino. En el caso de las estrategias manuales, es difı́cil contar cada auto en una rotonda de tamaño mediano o grande. Por otro lado, puede ser difı́cil desarrollar estrategias automáticas porque es necesario detectar, rastrear y contar vehı́culos que cambian su posición dentro de la intersección. Este trabajo presenta un método de conteo de vehı́culos para determinar el volumen de tráfico y la matriz de origen-destino para rotondas, utilizando dos algoritmos principales, ”Viola-Jones”para la detección y . O n-line Boosting”para el seguimiento. El método se valida con una implementación aplicada a un video de vista superior de una rotonda de gran tamaño. El video también procesa manualmente y finalmente se presentan la comparación entre ambos resultados. | spa |
| dc.description.additional | Magíster en Ingeniería - Ingeniería de Sistemas y Computación. Líneas de Investigación: Procesamiento de Imágenes, Sistemas Inteligentes de Transporte | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 53 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/76092 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.relation.references | Federal Highway Administration, Traffic Monitoring Guide. No. October, Federal Highway Administration - U.S Department of Transportation, 2013. | spa |
| dc.relation.references | H. Tuydes-Yaman, O. Altintasi, and N. Sendil, “Better estimation of origin–destination matrix using automated intersection movement count data,” Canadian Journal of Civil Engineering, vol. 42, pp. 490–502, jul 2015. | spa |
| dc.relation.references | R. Gifford and L. Steg, “The Impact of Automobile Traffic on Quality of Life,” in Threats from Car Traffic to the Quality of Urban Life, pp. 33–51, Emerald Group Publishing Limited, apr 2016. | spa |
| dc.relation.references | E. de la Rocha, “Image-processing algorithms for detecting and counting vehicles waiting at a traffic light,” Journal of Electronic Imaging, vol. 19, p. 043025, oct 2010. | spa |
| dc.relation.references | S. P. Hoogendoorn and P. H. L. Bovy, “State-of-the-art of vehicular traffic flow modelling,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 215, pp. 283–303, jun 2001. | spa |
| dc.relation.references | Instituto Nacional de Vı́as (INVIAS), Volúmenes de Tránsito 2010-2011. República de Colombia, 2013. | spa |
| dc.relation.references | J. Suda, “Misstatements of GPS- location of public transport vehicles in Warsaw,” Transportation Overview - Przeglad Komunikacyjny, vol. 2017, pp. 37–45, feb 2017. | spa |
| dc.relation.references | C. Chen, J. Hu, J. Zhang, C. Sun, L. Zhao, and Z. Ren, “Information congestion control on intersections in VANETs: A bargaining game approach,” in IEEE Vehicular Technology Conference, vol. 2016-July, pp. 1–5, IEEE, may 2016. | spa |
| dc.relation.references | M. Saini, A. Alelaiwi, and A. E. Saddik, “How Close are We to Realizing a Pragmatic VA-NET Solution? A Meta-Survey,” ACM Computing Surveys, vol. 48, pp. 1–40, nov 2015. | spa |
| dc.relation.references | P. Viola and M. J. Jones, “Robust Real-Time Face Detection,” International Journal of Computer Vision, vol. 57, pp. 137–154, may 2004. | spa |
| dc.relation.references | A. Haar, “Zur Theorie der orthogonalen Funktionensysteme - Erste Mitteilung,” Mathematische Annalen, vol. 69, pp. 331–371, sep 1910. | spa |
| dc.relation.references | Y. Freund and R. E. Schapire, “A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting,” Journal of Computer and System Sciences, vol. 55, no. 1, pp. 119–139, 1997. | spa |
| dc.relation.references | T. Bouwmans, C. Silva, C. Marghes, M. S. Zitouni, H. Bhaskar, and C. Frelicot, “On the role and the importance of features for background modeling and foreground detection,” Computer Science Review, vol. 28, pp. 26–91, may 2018. | spa |
| dc.relation.references | C. Silva, T. Bouwmans, and C. Frélicot, “An eXtended Center-Symmetric Local Binary Pattern for Background Modeling and Subtraction in Videos,” Proceedings of the 10th International Conference on Computer Vision Theory and Applications, pp. 395–402, 2015. | spa |
| dc.relation.references | X. Wang, T. X. Han, and S. Yan, “An HOG-LBP human detector with partial occlusion handling,” in 2009 IEEE 12th International Conference on Computer Vision, pp. 32–39, IEEE, sep 2009. | spa |
| dc.relation.references | P. Dollar, Z. Tu, P. Perona, and S. Belongie, “Integral Channel Features,” in Procedings of the British Machine Vision Conference 2009, pp. 91.1–91.11, British Machine Vision Association, 2012. | spa |
| dc.relation.references | D. Lowe, “Object recognition from local scale-invariant features,” Proceedings of the Seventh IEEE International Conference on Computer Vision, pp. 1150–1157 vol.2, 1999. | spa |
| dc.relation.references | J. Luo, Y. Ma, E. Takikawa, S. Lao, M. Kawade, and B. L. Lu, “Person-specific SIFT features for face recognition,” in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, vol. 2, pp. 593–596, 2007. | spa |
| dc.relation.references | W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of deep neural network architectures and their applications,” Neurocomputing, vol. 234, pp. 11–26, apr 2017. | spa |
| dc.relation.references | P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks,” 2013. | spa |
| dc.relation.references | R. Girshick, “Fast R-CNN,” in 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448, IEEE, dec 2015. | spa |
| dc.relation.references | T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss for Dense Object Detection,” in 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2999–3007, IEEE, oct 2017. | spa |
| dc.relation.references | J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788, IEEE, jun 2016. | spa |
| dc.relation.references | J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” arXiv, apr 2018. | spa |
| dc.relation.references | H. Grabner, M. Grabner, and H. Bischof, “Real-Time Tracking via On-line Boosting,” Procedings of the British Machine Vision Conference 2006, pp. 6.1–6.10, 2006. | spa |
| dc.relation.references | J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed tracking with kernelized correlation filters,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583–596, 2015. | spa |
| dc.relation.references | Z. Kalal, K. Mikolajczyk, J. Matas, and C. Republic, “Forward-Backward Error : Autonomous Identification of Tracking Failures,” Proceedings of the 20th International Conference on Pattern Recognition, pp. 2756–2759, 2010. | spa |
| dc.relation.references | Z. Wang, S. Yoon, S. J. Xie, Y. Lu, and D. S. Park, “Visual tracking with semi-supervised online weighted multiple instance learning,” Visual Computer, vol. 32, no. 3, pp. 307–320, 2016. | spa |
| dc.relation.references | A. Lukežič, T. Vojı́ř, L. Čehovin, J. Matas, and M. Kristan, “Discriminative Correlation Filter Tracker with Channel and Spatial Reliability,” International Journal of Computer Vision, vol. 126, pp. 671–688, jul 2018. | spa |
| dc.relation.references | Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-Learning-Detection,” IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, vol. 6, no. 1, 2010. | spa |
| dc.relation.references | D. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual object tracking using adaptive correlation filters,” in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550, IEEE, jun 2010. | spa |
| dc.relation.references | D. Held, S. Thrun, and S. Savarese, “Learning to track at 100 FPS with deep regression networks,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9905 LNCS, pp. 749–765, Springer, Cham, 2016. | spa |
| dc.relation.references | A. S. A. Al-Sobky and I. H. Hashim, “A generalized mathematical model to determine the turning movement counts at roundabouts,” Alexandria Engineering Journal, vol. 53, pp. 669–675, sep 2014. | spa |
| dc.relation.references | B. Y. Lee, L. H. Liew, W. S. Cheah, and Y. C. Wang, “Occlusion handling in videos object tracking: A survey,” IOP Conference Series: Earth and Environmental Science, vol. 18, p. 012020, feb 2014. | spa |
| dc.relation.references | J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: A statistical view of boosting,” Annals of Statistics, vol. 28, pp. 337–407, apr 2000. | spa |
| dc.relation.references | V. Lehtola, H. Huttunen, F. Christophe, and T. Mikkonen, “Evaluation of visual tracking algorithms for embedded devices,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10269 LNCS, pp. 88–97, Springer, Cham, 2017. | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
| dc.subject.proposal | Intersetion | eng |
| dc.subject.proposal | Intersección | spa |
| dc.subject.proposal | Roundabout | eng |
| dc.subject.proposal | Rotonda | spa |
| dc.subject.proposal | O-D Matrix | eng |
| dc.subject.proposal | Matriz O-D | spa |
| dc.subject.proposal | Detection | eng |
| dc.subject.proposal | Detección | spa |
| dc.subject.proposal | Seguimiento | spa |
| dc.subject.proposal | Tracking | eng |
| dc.subject.proposal | Viola-Jones | spa |
| dc.subject.proposal | Viola-Jones | eng |
| dc.subject.proposal | On-line Boosting | spa |
| dc.subject.proposal | On-line Boosting | eng |
| dc.title | Diseño y validación de un sistema de procesamiento de imágenes para el reconocimiento vehicular en intersecciones viales | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |

