Diseño y validación de un sistema de procesamiento de imágenes para el reconocimiento vehicular en intersecciones viales

dc.contributor.advisorPedraza Bonilla, César Augustospa
dc.contributor.authorMorales Aguilar, Santiagospa
dc.date.accessioned2020-03-16T16:08:49Zspa
dc.date.available2020-03-16T16:08:49Zspa
dc.date.issued2019-07-19spa
dc.description.abstractVehicular flow is an important measurement to design mobility strategies in cities such as traffic light configuration, civil engineering works, and others. This variable can be determined through different manual and automatic strategies. However, some street intersections, such as traffic circles are difficult to determine their origin-destination matrix. In the case of manual strategies, it is difficult to count every single car in a mid to large-size traffic circle. On the other hand, automatic strategies can be difficult to develop because it is necessary to detect, track and count vehicles that change its position inside an intersection. This chapter presents a vehicle counting method to determine origin-destination matrix for traffic circle intersections, using two main algorithms, ”Viola-Jones”for the detection and . O n-line Boosting”for the tracking. The method is validated with an implementation applied to a top view video of a traffic circle. The video is also processed manually and finally the comparison between both results is presented.spa
dc.description.abstractEl flujo vehicular es una medida importante para diseñar estrategias de movilidad en ciudades como configuración de semáforos, obras de ingenierı́a civil entre otras. Esta variable se puede determinar a través de diferentes estrategias manuales y automáticas. Sin embargo, en algunas intersecciones, como las rotondas, es difı́cil determinar la matriz de origen destino. En el caso de las estrategias manuales, es difı́cil contar cada auto en una rotonda de tamaño mediano o grande. Por otro lado, puede ser difı́cil desarrollar estrategias automáticas porque es necesario detectar, rastrear y contar vehı́culos que cambian su posición dentro de la intersección. Este trabajo presenta un método de conteo de vehı́culos para determinar el volumen de tráfico y la matriz de origen-destino para rotondas, utilizando dos algoritmos principales, ”Viola-Jones”para la detección y . O n-line Boosting”para el seguimiento. El método se valida con una implementación aplicada a un video de vista superior de una rotonda de gran tamaño. El video también procesa manualmente y finalmente se presentan la comparación entre ambos resultados.spa
dc.description.additionalMagíster en Ingeniería - Ingeniería de Sistemas y Computación. Líneas de Investigación: Procesamiento de Imágenes, Sistemas Inteligentes de Transportespa
dc.description.degreelevelMaestríaspa
dc.format.extent53spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/76092
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.relation.referencesFederal Highway Administration, Traffic Monitoring Guide. No. October, Federal Highway Administration - U.S Department of Transportation, 2013.spa
dc.relation.referencesH. Tuydes-Yaman, O. Altintasi, and N. Sendil, “Better estimation of origin–destination matrix using automated intersection movement count data,” Canadian Journal of Civil Engineering, vol. 42, pp. 490–502, jul 2015.spa
dc.relation.referencesR. Gifford and L. Steg, “The Impact of Automobile Traffic on Quality of Life,” in Threats from Car Traffic to the Quality of Urban Life, pp. 33–51, Emerald Group Publishing Limited, apr 2016.spa
dc.relation.referencesE. de la Rocha, “Image-processing algorithms for detecting and counting vehicles waiting at a traffic light,” Journal of Electronic Imaging, vol. 19, p. 043025, oct 2010.spa
dc.relation.referencesS. P. Hoogendoorn and P. H. L. Bovy, “State-of-the-art of vehicular traffic flow modelling,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 215, pp. 283–303, jun 2001.spa
dc.relation.referencesInstituto Nacional de Vı́as (INVIAS), Volúmenes de Tránsito 2010-2011. República de Colombia, 2013.spa
dc.relation.referencesJ. Suda, “Misstatements of GPS- location of public transport vehicles in Warsaw,” Transportation Overview - Przeglad Komunikacyjny, vol. 2017, pp. 37–45, feb 2017.spa
dc.relation.referencesC. Chen, J. Hu, J. Zhang, C. Sun, L. Zhao, and Z. Ren, “Information congestion control on intersections in VANETs: A bargaining game approach,” in IEEE Vehicular Technology Conference, vol. 2016-July, pp. 1–5, IEEE, may 2016.spa
dc.relation.referencesM. Saini, A. Alelaiwi, and A. E. Saddik, “How Close are We to Realizing a Pragmatic VA-NET Solution? A Meta-Survey,” ACM Computing Surveys, vol. 48, pp. 1–40, nov 2015.spa
dc.relation.referencesP. Viola and M. J. Jones, “Robust Real-Time Face Detection,” International Journal of Computer Vision, vol. 57, pp. 137–154, may 2004.spa
dc.relation.referencesA. Haar, “Zur Theorie der orthogonalen Funktionensysteme - Erste Mitteilung,” Mathematische Annalen, vol. 69, pp. 331–371, sep 1910.spa
dc.relation.referencesY. Freund and R. E. Schapire, “A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting,” Journal of Computer and System Sciences, vol. 55, no. 1, pp. 119–139, 1997.spa
dc.relation.referencesT. Bouwmans, C. Silva, C. Marghes, M. S. Zitouni, H. Bhaskar, and C. Frelicot, “On the role and the importance of features for background modeling and foreground detection,” Computer Science Review, vol. 28, pp. 26–91, may 2018.spa
dc.relation.referencesC. Silva, T. Bouwmans, and C. Frélicot, “An eXtended Center-Symmetric Local Binary Pattern for Background Modeling and Subtraction in Videos,” Proceedings of the 10th International Conference on Computer Vision Theory and Applications, pp. 395–402, 2015.spa
dc.relation.referencesX. Wang, T. X. Han, and S. Yan, “An HOG-LBP human detector with partial occlusion handling,” in 2009 IEEE 12th International Conference on Computer Vision, pp. 32–39, IEEE, sep 2009.spa
dc.relation.referencesP. Dollar, Z. Tu, P. Perona, and S. Belongie, “Integral Channel Features,” in Procedings of the British Machine Vision Conference 2009, pp. 91.1–91.11, British Machine Vision Association, 2012.spa
dc.relation.referencesD. Lowe, “Object recognition from local scale-invariant features,” Proceedings of the Seventh IEEE International Conference on Computer Vision, pp. 1150–1157 vol.2, 1999.spa
dc.relation.referencesJ. Luo, Y. Ma, E. Takikawa, S. Lao, M. Kawade, and B. L. Lu, “Person-specific SIFT features for face recognition,” in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, vol. 2, pp. 593–596, 2007.spa
dc.relation.referencesW. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of deep neural network architectures and their applications,” Neurocomputing, vol. 234, pp. 11–26, apr 2017.spa
dc.relation.referencesP. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks,” 2013.spa
dc.relation.referencesR. Girshick, “Fast R-CNN,” in 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448, IEEE, dec 2015.spa
dc.relation.referencesT.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss for Dense Object Detection,” in 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2999–3007, IEEE, oct 2017.spa
dc.relation.referencesJ. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788, IEEE, jun 2016.spa
dc.relation.referencesJ. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” arXiv, apr 2018.spa
dc.relation.referencesH. Grabner, M. Grabner, and H. Bischof, “Real-Time Tracking via On-line Boosting,” Procedings of the British Machine Vision Conference 2006, pp. 6.1–6.10, 2006.spa
dc.relation.referencesJ. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed tracking with kernelized correlation filters,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583–596, 2015.spa
dc.relation.referencesZ. Kalal, K. Mikolajczyk, J. Matas, and C. Republic, “Forward-Backward Error : Autonomous Identification of Tracking Failures,” Proceedings of the 20th International Conference on Pattern Recognition, pp. 2756–2759, 2010.spa
dc.relation.referencesZ. Wang, S. Yoon, S. J. Xie, Y. Lu, and D. S. Park, “Visual tracking with semi-supervised online weighted multiple instance learning,” Visual Computer, vol. 32, no. 3, pp. 307–320, 2016.spa
dc.relation.referencesA. Lukežič, T. Vojı́ř, L. Čehovin, J. Matas, and M. Kristan, “Discriminative Correlation Filter Tracker with Channel and Spatial Reliability,” International Journal of Computer Vision, vol. 126, pp. 671–688, jul 2018.spa
dc.relation.referencesZ. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-Learning-Detection,” IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, vol. 6, no. 1, 2010.spa
dc.relation.referencesD. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual object tracking using adaptive correlation filters,” in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550, IEEE, jun 2010.spa
dc.relation.referencesD. Held, S. Thrun, and S. Savarese, “Learning to track at 100 FPS with deep regression networks,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9905 LNCS, pp. 749–765, Springer, Cham, 2016.spa
dc.relation.referencesA. S. A. Al-Sobky and I. H. Hashim, “A generalized mathematical model to determine the turning movement counts at roundabouts,” Alexandria Engineering Journal, vol. 53, pp. 669–675, sep 2014.spa
dc.relation.referencesB. Y. Lee, L. H. Liew, W. S. Cheah, and Y. C. Wang, “Occlusion handling in videos object tracking: A survey,” IOP Conference Series: Earth and Environmental Science, vol. 18, p. 012020, feb 2014.spa
dc.relation.referencesJ. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: A statistical view of boosting,” Annals of Statistics, vol. 28, pp. 337–407, apr 2000.spa
dc.relation.referencesV. Lehtola, H. Huttunen, F. Christophe, and T. Mikkonen, “Evaluation of visual tracking algorithms for embedded devices,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10269 LNCS, pp. 88–97, Springer, Cham, 2017.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalIntersetioneng
dc.subject.proposalIntersecciónspa
dc.subject.proposalRoundabouteng
dc.subject.proposalRotondaspa
dc.subject.proposalO-D Matrixeng
dc.subject.proposalMatriz O-Dspa
dc.subject.proposalDetectioneng
dc.subject.proposalDetecciónspa
dc.subject.proposalSeguimientospa
dc.subject.proposalTrackingeng
dc.subject.proposalViola-Jonesspa
dc.subject.proposalViola-Joneseng
dc.subject.proposalOn-line Boostingspa
dc.subject.proposalOn-line Boostingeng
dc.titleDiseño y validación de un sistema de procesamiento de imágenes para el reconocimiento vehicular en intersecciones vialesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TesisSantiagoMorales.pdf
Tamaño:
6.87 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: