Caracterización molecular de arveja arbustiva (Pisum sativum L) en la zona cerealista del departamento de Nariño, Colombia
| dc.contributor.advisor | Muñoz Florez, Jaime Eduardo | spa |
| dc.contributor.advisor | Checa Coral, Oscar Eduardo | spa |
| dc.contributor.author | Duque Zapata, Juan Diego | spa |
| dc.contributor.researchgroup | Diversidad Biológica | spa |
| dc.coverage.sucursal | Universidad Nacional de Colombia - Sede Palmira | spa |
| dc.date.accessioned | 2020-01-30T20:52:05Z | spa |
| dc.date.available | 2023-02-01 | spa |
| dc.date.available | 2020-01-30T20:52:05Z | spa |
| dc.date.issued | 2020-01-30 | spa |
| dc.date.issued | 2020-01-30 | spa |
| dc.description.abstract | La arveja (Pisum sativum L.) es uno de los cultivos domesticados más antiguos, altamente valorados y ampliamente cultivados en todo el mundo. Sin embargo, en Colombia esta especie carece de estudios genéticos que permitan establecer la variabilidad total. Se estudió la estructura y diversidad genética en una colección de 50 introducciones de arveja arbustiva provenientes del departamento de Nariño con 16 marcadores de repetición de secuencia simple (SSR). El promedio del contenido de información polimórfica (PIC) fue 0,62 con un total de 28 alelos y un promedio de 4 alelos por locus, siendo el locus AB71 y D21 los que amplificaron el mayor número de alelos (6). La Heterocigosidad observada (Ho) fue 0.09± 0.08 y la esperada (He) 0.42± 0.33, indicando un alto nivel de endogamia (Fis= 0.60) demostrando la naturaleza homocigota de P. sativum. Se infirieron las relaciones genéticas por medio de un análisis de similitud y un análisis Bayesiano (STRUCTURE) detectando dos agrupaciones para los genotipos de arveja analizados, con una alta similitud con las características agromorfológicas de cada genotipo. A pesar de la baja heterocigosis, los valores de heterocigosidad espera de la población total (He = 0.60) y de la agrupación 2 (He = 0.70) así como la presencia de alelos únicos y raros, muestran un nivel de variabilidad genética en la colección. Los resultados del presente estudio serán útiles para programas de pre - mejoramiento de la misma. | spa |
| dc.description.abstract | The pea (Pisum sativum L.) is one of the oldest domesticated crops, which is highly valued and widely cultivated throughout the world. The structure and genetic diversity were studied in a collection of 50 pea shrubs accessions from department of Nariño with 16 simple sequence repeats (SSR) markers, whose average polymorphic information content (PIC) was 0.62. SSR markers amplified 28 alleles with an average of 4 alleles per locus, with locus AB71 and D21 being the ones which amplified the largest number of alleles (6). The observed heterozygosity (Ho) was 0.09 and the expected heterozygosity (He) 0.42, indicating an elevated level of inbreeding (FIS = 0.60) and demonstrating the homozygous nature of P. sativum. Genetic relationships were inferred by a similarity index (DICE) and a Bayesian Analysis (STRUCTURE), detecting two clusters for the analyzed peas’ genotypes and presenting high similarity in the agromorphological characteristics of each genotype. The combined discrimination power, using seven microsatellites molecular markers, was 99.99% indicating that these markers are very useful for genetic studies in peas. The results of this study are useful for P. Sativum pre-breeding programs. | spa |
| dc.description.additional | Línea de Investigación: Biotecnología Vegetal | spa |
| dc.description.comments | Se solicito restringir el acceso hasta el 2023, debido a que se tienen varios artículos derivados en proceso de publicación. | spa |
| dc.format.extent | 62 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.citation | (Zhang et al., 2016) | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/75544 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Palmira | spa |
| dc.publisher.department | Maestría en Ciencias Biológicas | spa |
| dc.relation.references | Abdurakhmonov, I. Y. (2016). Introduction to Microsatellites: Basics, Trends and Highlights. In Microsatellite Markers (Vol. i, p. 13). InTech. https://doi.org/10.5772/66446 | spa |
| dc.relation.references | Ahmad, R., Struss, D., & Southwick, S. M. (2003). Development and characterization of microsatellite markers in Citrus. Journal of the American Society for Horticultural Science, 128(4), 584–590. Retrieved from http://www.ashs.org | spa |
| dc.relation.references | Ahmad, S., Singh, M., Lefsrud, M., Singh, J., & Lamb-Palmer, N. D. (2012). Assessment of genetic diversity in 35 Pisum sativum accessions using microsatellite markers. Canadian Journal of Plant Science, 92(6), 1075–1081. https://doi.org/10.4141/cjps2011-261 | spa |
| dc.relation.references | Amarakoon, D., Thavarajah, D., McPhee, K., & Thavarajah, P. (2012). Iron-, zinc-, and magnesium-rich field peas (Pisum sativum L.) with naturally low phytic acid: A potential food-based solution to global micronutrient malnutrition. Journal of Food Composition and Analysis, 27(1), 8–13. https://doi.org/10.1016/j.jfca.2012.05.007 | spa |
| dc.relation.references | Archak, S. (2000). Plant DNA fingerprinting : an overview. AgBiotechNet, 2. | spa |
| dc.relation.references | Baranger, A., Aubert, G., Arnau, G., Lain, A. L., Deniot, G., Potier, J., … Burstin, J. (2004). Genetic diversity within Pisum sativum using protein- and PCR-based markers, 1309–1321. https://doi.org/10.1007/s00122-003-1540-5 | spa |
| dc.relation.references | Bogdanova, V. S., & Berdnikov, V. A. (2000). A study of potential ability for cross-pollination in pea originating from different parts of the world. Pisum Genetics, 32, 16–17. | spa |
| dc.relation.references | Bordat, A., Savois, V., Nicolas, M., Salse, J., Chauveau, A., Bourgeois, M., … Burstin, J. (2011). Translational Genomics in Legumes Allowed Placing In Silico 5460 Unigenes on the Pea Functional Map and Identi fi ed Candidate Genes in Pisum sativum L ., 1(July), 93–103. | spa |
| dc.relation.references | Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a Genetic Linkage Map in Man Using Restriction Fragment Length Polymorphisms, 314–331. | spa |
| dc.relation.references | Casanova, L., Solarte, J., & Checa-Coral, O. E. (2012). EVALUATION OF FOUR DENSITIES OF SOWING IN SEVEN PROMISSORY LINES OF BUSH PEA (Pisum sativum L.). Sciencia, 29(2), 129–140. | spa |
| dc.relation.references | Castro, A. M. (2007). Uso De Marcadores Microsatélites Para Evaluar El Nivel De Heterocigosidad En Líneas Endogámicas S1 De Yuca. | spa |
| dc.relation.references | Castro, A. M. (2007). Uso De Marcadores Microsatélites Para Evaluar El Nivel De Heterocigosidad En Líneas Endogámicas S1 De Yuca. | spa |
| dc.relation.references | Caujape-Castells, J. (2006). Brújula para botánicos desorientados en la genética de poblaciones. (Exegen Ediciones, Ed.). Las Palmas. | spa |
| dc.relation.references | Checa-Coral, O. (2014). Investigación para el mejoramiento de la tecnología de producción de arveja (Pisum sati-vum L.) en el departamento de Nariño. Retrieved from http://www.ucc.edu.co/pasto/pren-sa/2014/Documents/1Resumen_Proyecto_L%AD-neas Arveja.pdf | spa |
| dc.relation.references | Checa-Coral, O. E., Bastidas Acosta, J. E., & Narváez Taimal, O. . (2017). Evaluación agronómica y económica de arveja arbustiva (Pisum sativum L.) en diferentes épocas de siembra y sistemas de tutorado, 279–288. | spa |
| dc.relation.references | Checa-Coral, O., & Rodriguez, M. (2015). Resistance to powdery mildew ( Erysiphe polygoni ) and yield on afila pea (Pisum sativum L), 20(2). | spa |
| dc.relation.references | Cieslarová, J., Hanáček, P., Fialová, E., Hýbl, M., & Smýkal, P. (2011). Estimation of pea (Pisum sativum L.) microsatellite mutation rate based on pedigree and single-seed descent analyses. Journal of Applied Genetics, 52(4), 391–401. https://doi.org/10.1007/s13353-011-0058-9 | spa |
| dc.relation.references | Cupic, T., Tucak, M., Popovic, S., Bolaric, S., Grljusic, S., & Kozumplik, V. (2009). Genetic diversity of pea (Pisum sativum L.) genotypes assessed by pedigree, morphological and molecular data. Journal of Food, Agriculture and Environment, 7(3–4), 343–348. | spa |
| dc.relation.references | DANE. (2015). El cultivo de la arveja en Colombia. Boletín Mensual Insumos y Factores Asociados a La Producción Agropecuaria, 33, 78. Retrieved https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos31_mar_2015.pdf | spa |
| dc.relation.references | DANE. (2017). Encuesta Nacional Agropecuaria (ENA) 2017. | spa |
| dc.relation.references | Delseny, M., Laroche, M., & Penon, P. (1983). Detection of sequences with Z-DNA forming potential in higher plants, 116(1), 113–120. https://doi.org/10.1360/zd-2013-43-6-1064 | spa |
| dc.relation.references | Duke, J. A. (1981). Handbook of Legumes of World Economic. New York: Plenum Press. https://doi.org/10.1007/978-1-4684-8151-8 | spa |
| dc.relation.references | Ellis, T. H. N., & Poyser, S. J. (2002). An integrated and comparative view of pea genetic and cytogenetic maps. New Phytologist, 153(1), 17–25. https://doi.org/10.1046/j.0028-646X.2001.00302.x | spa |
| dc.relation.references | Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x | spa |
| dc.relation.references | Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x | spa |
| dc.relation.references | FAO, F. and A. O. of the U. N. (2018). FAOSTAT Databases. Retrieved from http://www.fao.org/faostat/en/#data/QC | spa |
| dc.relation.references | FENALCE. (2006). Federación Nacional de Cultivadores de Cereales y Leguminosas,FENALCE. El cultivo de Arveja en Colombia. | spa |
| dc.relation.references | FENALCE. (2015). Federación Nacional de Cultivadores de Cereales y Leguminosas. Área, producción y rendimiento cereales y leguminosas. | spa |
| dc.relation.references | Ferreira, M. E., & Grattapaglia, D. (1998). Introdução Ao Uso De Marcadores Moleculares Em Analise Genetica. | spa |
| dc.relation.references | Fondevilla, S., Torres, A. M., Moreno, M. T., & Rubiales, D. (2007). Identification of a New Gene for Resistance to Powdery Mildew in Pisum fulvum , a Wild Relative of Pea, 184, 181–184. | spa |
| dc.relation.references | Gil-Ariza, D. J., Amaya, I., López-Aranda, J. M., Sánchez-Sevilla, J. F., Ángel Botella, M., & Valpuesta, V. (2009). Impact of Plant Breeding on the Genetic Diversity of Cultivated Strawberry as Revealed by Expressed Sequence Tag-derived Simple Sequence Repeat Markers. Journal of the American Society for Horticultural Science, 134(3), 337–347. Retrieved from http://journal.ashspublications.org/content/134/3/337.abstract | spa |
| dc.relation.references | Gomez, E. (2005). Transformación y mejora del valor nutritivo de la harina de guisante mediante la adición de enzima fitasa. Universidad de Granada. | spa |
| dc.relation.references | Gustafson, P., Shoemaker, R. C., Grant, D., Olson, T., Warren, W. C., Wing, R., … Jackson, S. (2008). Microsatellite discovery from BAC end sequences and genetic mapping to anchor the soybean physical and genetic maps. Genome, 51(4), 294–302. https://doi.org/10.1139/G08-010 | spa |
| dc.relation.references | Hagenblad, J., Bostrom, E., Nygards, L., & Leino, M. (2014). Genetic diversity in local cultivars of garden pea ( Pisum sativum L .) conserved ‘ on farm ’ and in historical collections. Genetic Resources and Crop Evolution, 61(2), 413–422. https://doi.org/10.1007/s10722-013-0046-5 | spa |
| dc.relation.references | Hamada, H., Petrino, M. G., & Kakunaga, T. (1982). Z-DNA-forming found evolutionarily. Pnas, 79(21), 6465–6469. | spa |
| dc.relation.references | Hamon, C., Baranger, A., Coyne, C. J., McGee, R. J., Le Goff, I., L’Anthoene, V., … Pilet-Nayel, M.-L. (2011). New consistent QTL in pea associated with partial resistance to Aphanomyces euteiches in multiple French and American environments, 261–281. https://doi.org/10.1007/s00122-011-1582-z | spa |
| dc.relation.references | Handerson, C., Noren, S. K., Wricha, T., Meetei, N. T., Khanna, V. K., Pattanayak, A., … Kumar, M. (2014). Assessment of genetic diversity in pea (pisumsativum l.) using morphological and molecular markers. Indian Journal of Genetics and Plant Breeding, 74(2), 205–212. https://doi.org/10.5958/0975-6906.2014.00157.6 | spa |
| dc.relation.references | Inoue, E., Ning, L., Hiromichi, H., Ruan, S., & Anzai, H. (2009). Development of Simple Sequence Repeat Markers in Chinese Chestnut and Their Characterization in Diverse Chestnut Cultivars. Journal of the American Society for Hoticultural Science, 134(6), 610–617. | spa |
| dc.relation.references | IRGSP, I. R. G. S. P. (2005). The map-based sequence of the rice genome. Nature, 436(7052), 793–800. https://doi.org/10.1038/nature03895 | spa |
| dc.relation.references | Jing, R., Flavell, A. J., Ambrose, M. A., Smykal, P., Ellis, T. H. N., Pereira, M. G., … Hybl, M. (2012). Genetic diversity in European Pisum germplasm collections. Theoretical and Applied Genetics, 125(2), 367–380. https://doi.org/10.1007/s00122-012-1839-1 | spa |
| dc.relation.references | Jing, Runchun, Johnson, R., Seres, A., Kiss, G., Ambrose, M. J., Knox, M. R., … Flavell, A. J. (2007). Gene-Based Sequence Diversity Analysis of Field Pea (Pisum). https://doi.org/10.1534/genetics.107.081323 | spa |
| dc.relation.references | Jones, R. C., Steane, D. A., Potts, B. M., & Vaillancourt, R. E. (2001). Microsatellite and morphological analysis of Eucalyptus globulus populations. Canadian Journal of Forest Research, 32(1), 59–66. https://doi.org/10.1139/x01-172 | spa |
| dc.relation.references | Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., … Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. CEUR Workshop Proceedings, 78(12), 69–83. https://doi.org/10.1093/bioinformatics/bts199 | spa |
| dc.relation.references | Kesawat, M. S., & Das Kumar, B. (2009). Molecular markers: It’s application in crop improvement. Journal of Crop Science and Biotechnology, 12(4), 169–181. https://doi.org/10.1007/s12892-009-0124-6 | spa |
| dc.relation.references | Kirst, M., Cordeiro, C. M., Rezende, G. D. S. P., & Grattapaglia, D. (2005). Power of microsatellite markers for fingerprinting and parentage analysis in Eucalyptus grandis breeding populations. Journal of Heredity, 96(2), 161–166. https://doi.org/10.1093/jhered/esi023 | spa |
| dc.relation.references | Kordrostami, M., & Rahimi, M. (2015). Molecular Markers in Plants: Concepts and Applications. Genetics in the 3rd Millenium, 13(2), 4022–4029. https://doi.org/10.1017/CBO9781107415324.004 | spa |
| dc.relation.references | Kosterin, O. E., & Bogdanova, V. S. (2014). Efficiency of hand pollination in different pea (Pisum) species and subspecies. Indian Journal of Genetics and Plant Breeding, 74(1), 50–55. https://doi.org/10.5958/j.0975-6906.74.1.007 | spa |
| dc.relation.references | Kulaeva, O., Zhernakov, A. I., Afonin, A. M., Boikov, S. S., Sulima, A. S., Tikhonovich, I. A., & Zhukov, V. A. (2017). Pea Marker Database (PMD)–A new online database combining known pea (Pisum sativum L.) gene-based markers. PloS One, 1–16. Retrieved from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0186713 | spa |
| dc.relation.references | Kulaeva, O., Zhernakov, A. I., Afonin, A. M., Boikov, S. S., Sulima, A. S., Tikhonovich, I. A., & Zhukov, V. A. (2017). Pea Marker Database (PMD)–A new online database combining known pea (Pisum sativum L.) gene-based markers. PloS One, 1–16. Retrieved from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0186713 | spa |
| dc.relation.references | Kumar, V., & Shukla, Y. M. (2014). Pre-breeding : breeding : its applications in crop improvement. Research News For U, 16, 199–202. | spa |
| dc.relation.references | Laucou, V., Haurogné, K., Ellis, N., & Rameau, C. (1998). Genetic mapping in pea. 1. RAPD-based genetic linkage map of Pisum sativum. Theoretical and Applied Genetics, 97(5–6), 905–915. https://doi.org/10.1007/s001220050971 | spa |
| dc.relation.references | Loridon, K., McPhee, K., Morin, J., Dubreuil, P., Pilet-Nayel, M. L., Aubert, G., … Burstin, J. (2005). Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theoretical and Applied Genetics, 111(6), 1022–1031. https://doi.org/10.1007/s00122-005-0014-3 | spa |
| dc.relation.references | Lynch, M., & Milligan, B. G. (1994). Analysis of population genetic structure with RAPD markers. Molecular Ecology, 3(2), 91–99. https://doi.org/10.1111/j.1365-294X.1994.tb00109.x | spa |
| dc.relation.references | Margheim, J. F., Baltensperger, D. D., G., W. R., Lyon, D. J., Hein, G. L., Harveson, R. M., … Hansen, B. J. (2004). Chickpea Production in the High Plains, (Figure 1), EC04-183. Retrieved from https://digitalcommons.unl.edu/cgi/viewcontent.cgi?referer=https://scholar.google.com/&httpsredir=1&article=1766&context=extensionhist | spa |
| dc.relation.references | Martinez, M. F. (2013). Caracterización Molecular De Genotipos De Mandarinas Citrus spp. Mediante Marcadores RAM´s (Microsatélites amplificados al azar) Y Microsatélites. Universidad Nacional de Colombia. https://doi.org/10.1002/jez.550 | spa |
| dc.relation.references | Masclef, A. (1891). Atlas de plantes de France, utilites nuisibles et ornementales. (L. des S. Naturelles, Ed.). | spa |
| dc.relation.references | Moreno-Chirinos, Z. E., Valdez-Núñez, R. A., Soriano-Bernilla, B. S., & Ruesta-Campoverde, N. A. (2016). Nodulation efficiency by native rhizobia from nodules of Pisum sativum “pea” collected from different Departments of Peru. Scientia Agropecuaria, 7(3), 165–172. https://doi.org/10.17268/sci.agropecu.2016.03.02 | spa |
| dc.relation.references | Mullis, K. B. (1990). The unusual origin of the polymerase chain reaction. Scientific American, 262(4), 56–65. https://doi.org/10.1038/scientificamerican0490-56 | spa |
| dc.relation.references | Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Comertpay, G., Yıldız, M., … Baloch, F. S. (2018). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology and Biotechnological Equipment, 32(2), 261–285. https://doi.org/10.1080/13102818.2017.1400401 | spa |
| dc.relation.references | Naeem, S., Ahmad, S., Hassan, M., Adil, M., Younis, M. A., Azeem, M., & Ibrahim, M. (2018). Role of pollinators in pea (Pisum sativum) yield at Peshawar valley. Journal of Entomology and Zoology Studies, 6(2), 1280–1282. | spa |
| dc.relation.references | Naeem, S., Ahmad, S., Sohail, K., Dad, R., & Shah, B. (2016). Insect pollinators and their relative abundance on pea (pisum sativum) at Peshawar. Journal of Entomology and Zoology Studies, 4(1), 112–117. | spa |
| dc.relation.references | Naresh, V., Yamini, K. N., Rajendrakumar, P., & Kumar, V. D. (2009). EST-SSR marker-based assay for the genetic purity assessment of safflower hybrids. Euphytica, 170(3), 347–353. https://doi.org/10.1007/s10681-009-9995-3 | spa |
| dc.relation.references | Nasiri, J., Haghnazari, A., & Saba, J. (2009). Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on SSR markers. African Journal of Biotechnology, 8(15), 3405–3417. Retrieved from http://www.ajol.info/index.php/ajb/article/view/61821 | spa |
| dc.relation.references | Nass, L. L., & Paterniani, E. (2000). Pre-breeding: a link between genetic resources and maize breeding. Scientia Agricola, 57(3), 581–587. https://doi.org/10.1590/s0103-90162000000300035 | spa |
| dc.relation.references | Navarro, Q. A. (1999). Estructura genética y procesos de especiación de Agave cerulata (Trel) y Agave subsimplex (Trel.) en el desierto sonorense a partir de RAPDs. | spa |
| dc.relation.references | Nisar, M., Khan, A., Wadood, S. F., Shah, A. A., & Hanci, F. (2017). Molecular characterization of edible pea through EST-SSR markers. Turkish Journal of Botany, 41(4), 338–346. https://doi.org/10.3906/bot-1608-17 | spa |
| dc.relation.references | Ocampo, J., Acosta-Barón, N., & Hernández-Fernández, J. (2017). Variabilidad y estructura genética del maracuyá (Passiflora edulis f. flavicarpa Degener) en Colombia por medio de marcadores microsatélite. Agronomia Colombiana, 35(2), 135–149. https://doi.org/10.15446/agron.colomb.v35n2.59973 | spa |
| dc.relation.references | Olvera-Luna, A., Gama-López, S., & Delgado-Salinas, A. (2011). Flora del valle de TEHÚACAN-CUICATLÁN. | spa |
| dc.relation.references | Pantoja, D., Muñoz, K., & Checa-Coral, O. (2014). Evaluation and correlation of yield componentsin advanced lines of pea (Pisum sativum) with afila gene. Revista De Ciencias Agrícolas, 31(2), 24–39. Retrieved from http://www.scielo.org.co/pdf/rcia/v31n2/v31n2a03.pdf | spa |
| dc.relation.references | Parida, S. K., Kalia, S. K., Kaul, S., Dalal, V., Hemaprabha, G., Selvi, A., … Mohapatra, T. (2009). Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theoretical and Applied Genetics, 118(2), 327–338. https://doi.org/10.1007/s00122-008-0902-4 | spa |
| dc.relation.references | Peralta, E., Murillo, A., Marzon, N., Pinzon, J., & Villacres, E. (2010). Manual Agrícola de Frijol y otras Leguminosas. Cultivos, variedades y costos de producción. Variedades de Papa Cultivadas En El Ecuador, 35. https://doi.org/10.1016/j.jssc.2004.06.034 | spa |
| dc.relation.references | Pereira, G., Marques, C., Ribeiro, R., Formiga, S., Tavares Sousa, M., Damaso, M., … Farinho, M. (2010). Identification of DNA markers linked to an induced mutated gene conferring resistance to powdery mildew in pea ( Pisum sativum L .), 327–335. https://doi.org/10.1007/s10681-009-0003-8 | spa |
| dc.relation.references | Ponnaiah, M., Shiferaw, E., Pè, M. E., & Porceddu, E. (2011). Development and application of EST-SSRs for diversity analysis in Ethiopian grass pea. Plant Genetic Resources: Characterisation and Utilisation, 9(2), 276–280. https://doi.org/10.1017/S1479262111000426 | spa |
| dc.relation.references | Porras-Hurtado, L., Ruiz, Y., Santos, C., Phillips, C., Carracedo, Á., & Lareu, M. V. (2013). An overview of STRUCTURE: applications, parameter settings, and supporting software. Frontiers in Genetics, 4(May), 1–13. https://doi.org/10.3389/fgene.2013.00098 | spa |
| dc.relation.references | Posso-Terranova, A. (2011). Diversidad genética y estructura poblacional de Guadua angustifolia Kunth en el Eje Cafetero colombiano. Universidad Nacional de Colombia. | spa |
| dc.relation.references | Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics Society of America, 155(2), 945–959. https://doi.org/10.1111/j.1471-8286.2007.01758.x | spa |
| dc.relation.references | Rameau, C., Dénoue, D., Fraval, F., Haurogné, K., Josserand, J., Laucou, V., … Murfet, I. C. (1998). Genetic mapping in pea. 2. Identification of RAPD and SCAR markers linked to genes affecting plant architecture. Theoretical and Applied Genetics, 97(5–6), 916–928. https://doi.org/10.1007/s001220050972 | spa |
| dc.relation.references | Rana, J. C., Rana, M., Sharma, V., Nag, A., Chahota, R. K., & Sharma, T. R. (2017). Genetic Diversity and Structure of Pea (Pisum sativum L.) Germplasm Based on Morphological and SSR Markers. Plant Molecular Biology Reporter, 35(1), 118–129. https://doi.org/10.1007/s11105-016-1006-y | spa |
| dc.relation.references | Renfrew, J. M. (1973). Palaeoethnobotany. The prehistoric food plants of the Near East and Europe. New York: Columbia University Press. | spa |
| dc.relation.references | Rocha, M., González, A., & Aguirre, X. (2014). ADN polimórfico amplificado al azar (RAPD) y regiones intermedias entre secuencias simples repetidas (ISSR). Herramientas Moleculares Aplicadas En Ecología: Aspectos Teóricos y Prácticos, (8701), 256. | spa |
| dc.relation.references | Rohlf, F. J. (2006). NTSYS-pc: Microcomputer Programs for Numerical Taxonomy and Multivariate Analysis. The American Statistician, 41(4), 330. https://doi.org/10.2307/2684761 | spa |
| dc.relation.references | Rosenberg, N. A., & Jakobsson, M. (2008). The Relationship Between Homozygosity and the Frequency of the Most Frequent Allele. Genetics, 179(4), 2027–2036. https://doi.org/10.1534/genetics.107.084772 | spa |
| dc.relation.references | Rosero, V. (2019). Caracterización morfológica y clasificación jerárquica de 40 genotipos de arveja arbustiva (Pisum sativum L). San Juan de Pasto. | spa |
| dc.relation.references | Sauer, J. (1993). Historical Geography of Crop Plants A Selecter Roster. New York: Routledge. | spa |
| dc.relation.references | Saunders, J. A., Mischke, S., Leamy, E. A., & Hemeida, A. A. (2004). Selection of international molecular standards for DNA fingerprinting of Theobroma cacao. Theoretical and Applied Genetics, 110(1), 41–47. https://doi.org/10.1007/s00122-004-1762-1 | spa |
| dc.relation.references | Selvakumari, E., Jenifer, J., Priyadharshini, S., & Vinodhini, R. (2017). Application of DNA Fingerprinting for Plant Identification. Journal of Academia and Industrial Research, 5(10), 149–151. | spa |
| dc.relation.references | Smýkal, P., Aubert, G., Burstin, J., Coyne, C. J., Ellis, N. T. H., Flavell, A. J., …Warkentin, T. D. (2012). Pea (Pisum sativum L.) in the Genomic Era, 74–115. https://doi.org/10.3390/agronomy2020074 | spa |
| dc.relation.references | Smýkal, P., Hýbl, M., Corander, J., Jarkovský, J., Flavell, A. J., & Griga, M. (2008). Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theoretical and Applied Genetics, 117(3), 413–424. https://doi.org/10.1007/s00122-008-0785-4 | spa |
| dc.relation.references | Szwejkowska, B., Winnicki, T., & Duchovskis, P. (2008). Economic aspects of field pea ( Pisum sativum L .) cultivation methods – an evaluation, 27(4), 241–252. | spa |
| dc.relation.references | Tautz, D., & Renz, M. (1984). Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research, 12(10), 4127–4138. https://doi.org/10.1093/nar/12.10.4127 | spa |
| dc.relation.references | Teshome, A., Bryngelsson, T., Dagne, K., & Geleta, M. (2015). Assessment of genetic diversity in Ethiopian field pea (Pisum sativum L.) accessions with newly developed EST-SSR markers. BMC Genetics, 16(1), 102. https://doi.org/10.1186/s12863-015-0261-5 | spa |
| dc.relation.references | Tyrka, M., Perovic, D., Wardyńska, A., & Ordon, F. (2008). A new diagnostic SSR marker for selection of the Rym4/Rym5 locus in barley breeding. Journal of Applied Genetics, 49(2), 127–134. https://doi.org/10.1007/BF03195605 | spa |
| dc.relation.references | United Nations. (1992). Convention on biological diversity united nations 1992. Un, 30. | spa |
| dc.relation.references | UPOV, I. U. F. T. P. O. N. V. O. P. (2009). Guideline for The Conduct of Tests for Distinctness,Uniformity, and Stability of Pisum Sativum L., UPOV (TG 7((TG 7/10)), 1–52. Retrieved from https://www.upov.int/edocs/tgdocs/en/tg007.pdf | spa |
| dc.relation.references | Vallejo, F. A., & Estrada, E. I. (2002). Mejoramiento genetico en plantas. Palmira: Universidad Nacional de Colombia. | spa |
| dc.relation.references | Vieira, M. L. C., Santini, L., Diniz, A. L., & Munhoz, C. de F. (2016). Microsatellite markers: What they mean and why they are so useful. Genetics and Molecular Biology, 39(3), 312–328. https://doi.org/10.1590/1678-4685-GMB-2016-0027 | spa |
| dc.relation.references | Waits, L. P., Luikart, G., & Taberlet, P. (2001). Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Molecular Ecology, 10(1), 249–256. https://doi.org/10.1046/j.1365-294X.2001.01185.x | spa |
| dc.relation.references | Williams, J. G. ., Kubelik, A. ., & Livak, K. . (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, 18(22), 6531–6535. | spa |
| dc.relation.references | Winter, P., & Kahl, G. (1995). Molecular marker technologies for plant improvement. World Journal of Microbiology & Biotechnology, 11(4), 438–448. https://doi.org/10.1007/BF00364619 | spa |
| dc.relation.references | Xu, S. X., Liu, J., & Liu, G. S. (2004). The use of SSRs for predicting the hybrid yield and yield heterosis in 15 key inbred lines of Chinese maize. Hereditas, 141(3), 207–215. https://doi.org/10.1111/j.1601-5223.2004.01865.x | spa |
| dc.relation.references | Zamorano, C., López, H., & Alzate, G. (2008). Evaluación de la competencia de arvenses en el cultivo de arveja (Pisum sativum) en Fusagasugá, Cundinamarca (Colombia). Revista Agronomia Colombiana, 26(3), 443–450. Retrieved from http://www.scielo.org.co/pdf/agc/v26n3/v26n3a09.pdf | spa |
| dc.relation.references | Zhang, X., Wan, S., Hao, J., Hu, J., Yang, T., & Zong, X. (2016). Large-scale evaluation of pea (Pisum sativum L.) germplasm for cold tolerance in the field during winter in Qingdao. Crop Journal, 4(5), 377–383. https://doi.org/10.1016/j.cj.2016.06.016 | spa |
| dc.relation.references | Zhu, C., Gore, M., Buckler, E. S., & Yu, J. (2008). Status and Prospects of Association Mapping in Plants. The Plant Genome Journal (Vol. 1). https://doi.org/10.3835/plantgenome2008.02.0089 | spa |
| dc.relation.references | Zong, X., Redden, R. J., Liu, Q., Wang, S., Guan, J., Liu, J., … Ford, R. (2009). Analysis of a diverse global Pisum sp . collection and comparison to a Chinese local P . sativum collection with microsatellite markers, 193–204. https://doi.org/10.1007/s00122-008-0887-z | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.spa | Acceso restringido | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | Agricultura y tecnologías relacionadas | spa |
| dc.subject.proposal | Diversidad genética | spa |
| dc.subject.proposal | Genetic diversity | eng |
| dc.subject.proposal | Estructura genética | spa |
| dc.subject.proposal | Genetic structure | eng |
| dc.subject.proposal | SSR markers | eng |
| dc.subject.proposal | Marcadores SSR | spa |
| dc.title | Caracterización molecular de arveja arbustiva (Pisum sativum L) en la zona cerealista del departamento de Nariño, Colombia | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_f1cf | spa |

