Caracterización molecular de arveja arbustiva (Pisum sativum L) en la zona cerealista del departamento de Nariño, Colombia

dc.contributor.advisorMuñoz Florez, Jaime Eduardospa
dc.contributor.advisorCheca Coral, Oscar Eduardospa
dc.contributor.authorDuque Zapata, Juan Diegospa
dc.contributor.researchgroupDiversidad Biológicaspa
dc.coverage.sucursalUniversidad Nacional de Colombia - Sede Palmiraspa
dc.date.accessioned2020-01-30T20:52:05Zspa
dc.date.available2023-02-01spa
dc.date.available2020-01-30T20:52:05Zspa
dc.date.issued2020-01-30spa
dc.date.issued2020-01-30spa
dc.description.abstractLa arveja (Pisum sativum L.) es uno de los cultivos domesticados más antiguos, altamente valorados y ampliamente cultivados en todo el mundo. Sin embargo, en Colombia esta especie carece de estudios genéticos que permitan establecer la variabilidad total. Se estudió la estructura y diversidad genética en una colección de 50 introducciones de arveja arbustiva provenientes del departamento de Nariño con 16 marcadores de repetición de secuencia simple (SSR). El promedio del contenido de información polimórfica (PIC) fue 0,62 con un total de 28 alelos y un promedio de 4 alelos por locus, siendo el locus AB71 y D21 los que amplificaron el mayor número de alelos (6). La Heterocigosidad observada (Ho) fue 0.09± 0.08 y la esperada (He) 0.42± 0.33, indicando un alto nivel de endogamia (Fis= 0.60) demostrando la naturaleza homocigota de P. sativum. Se infirieron las relaciones genéticas por medio de un análisis de similitud y un análisis Bayesiano (STRUCTURE) detectando dos agrupaciones para los genotipos de arveja analizados, con una alta similitud con las características agromorfológicas de cada genotipo. A pesar de la baja heterocigosis, los valores de heterocigosidad espera de la población total (He = 0.60) y de la agrupación 2 (He = 0.70) así como la presencia de alelos únicos y raros, muestran un nivel de variabilidad genética en la colección. Los resultados del presente estudio serán útiles para programas de pre - mejoramiento de la misma.spa
dc.description.abstractThe pea (Pisum sativum L.) is one of the oldest domesticated crops, which is highly valued and widely cultivated throughout the world. The structure and genetic diversity were studied in a collection of 50 pea shrubs accessions from department of Nariño with 16 simple sequence repeats (SSR) markers, whose average polymorphic information content (PIC) was 0.62. SSR markers amplified 28 alleles with an average of 4 alleles per locus, with locus AB71 and D21 being the ones which amplified the largest number of alleles (6). The observed heterozygosity (Ho) was 0.09 and the expected heterozygosity (He) 0.42, indicating an elevated level of inbreeding (FIS = 0.60) and demonstrating the homozygous nature of P. sativum. Genetic relationships were inferred by a similarity index (DICE) and a Bayesian Analysis (STRUCTURE), detecting two clusters for the analyzed peas’ genotypes and presenting high similarity in the agromorphological characteristics of each genotype. The combined discrimination power, using seven microsatellites molecular markers, was 99.99% indicating that these markers are very useful for genetic studies in peas. The results of this study are useful for P. Sativum pre-breeding programs.spa
dc.description.additionalLínea de Investigación: Biotecnología Vegetalspa
dc.description.commentsSe solicito restringir el acceso hasta el 2023, debido a que se tienen varios artículos derivados en proceso de publicación.spa
dc.format.extent62spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citation(Zhang et al., 2016)spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75544
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.departmentMaestría en Ciencias Biológicasspa
dc.relation.referencesAbdurakhmonov, I. Y. (2016). Introduction to Microsatellites: Basics, Trends and Highlights. In Microsatellite Markers (Vol. i, p. 13). InTech. https://doi.org/10.5772/66446spa
dc.relation.referencesAhmad, R., Struss, D., & Southwick, S. M. (2003). Development and characterization of microsatellite markers in Citrus. Journal of the American Society for Horticultural Science, 128(4), 584–590. Retrieved from http://www.ashs.orgspa
dc.relation.referencesAhmad, S., Singh, M., Lefsrud, M., Singh, J., & Lamb-Palmer, N. D. (2012). Assessment of genetic diversity in 35 Pisum sativum accessions using microsatellite markers. Canadian Journal of Plant Science, 92(6), 1075–1081. https://doi.org/10.4141/cjps2011-261spa
dc.relation.referencesAmarakoon, D., Thavarajah, D., McPhee, K., & Thavarajah, P. (2012). Iron-, zinc-, and magnesium-rich field peas (Pisum sativum L.) with naturally low phytic acid: A potential food-based solution to global micronutrient malnutrition. Journal of Food Composition and Analysis, 27(1), 8–13. https://doi.org/10.1016/j.jfca.2012.05.007spa
dc.relation.referencesArchak, S. (2000). Plant DNA fingerprinting : an overview. AgBiotechNet, 2.spa
dc.relation.referencesBaranger, A., Aubert, G., Arnau, G., Lain, A. L., Deniot, G., Potier, J., … Burstin, J. (2004). Genetic diversity within Pisum sativum using protein- and PCR-based markers, 1309–1321. https://doi.org/10.1007/s00122-003-1540-5spa
dc.relation.referencesBogdanova, V. S., & Berdnikov, V. A. (2000). A study of potential ability for cross-pollination in pea originating from different parts of the world. Pisum Genetics, 32, 16–17.spa
dc.relation.referencesBordat, A., Savois, V., Nicolas, M., Salse, J., Chauveau, A., Bourgeois, M., … Burstin, J. (2011). Translational Genomics in Legumes Allowed Placing In Silico 5460 Unigenes on the Pea Functional Map and Identi fi ed Candidate Genes in Pisum sativum L ., 1(July), 93–103.spa
dc.relation.referencesBotstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a Genetic Linkage Map in Man Using Restriction Fragment Length Polymorphisms, 314–331.spa
dc.relation.referencesCasanova, L., Solarte, J., & Checa-Coral, O. E. (2012). EVALUATION OF FOUR DENSITIES OF SOWING IN SEVEN PROMISSORY LINES OF BUSH PEA (Pisum sativum L.). Sciencia, 29(2), 129–140.spa
dc.relation.referencesCastro, A. M. (2007). Uso De Marcadores Microsatélites Para Evaluar El Nivel De Heterocigosidad En Líneas Endogámicas S1 De Yuca.spa
dc.relation.referencesCastro, A. M. (2007). Uso De Marcadores Microsatélites Para Evaluar El Nivel De Heterocigosidad En Líneas Endogámicas S1 De Yuca.spa
dc.relation.referencesCaujape-Castells, J. (2006). Brújula para botánicos desorientados en la genética de poblaciones. (Exegen Ediciones, Ed.). Las Palmas.spa
dc.relation.referencesCheca-Coral, O. (2014). Investigación para el mejoramiento de la tecnología de producción de arveja (Pisum sati-vum L.) en el departamento de Nariño. Retrieved from http://www.ucc.edu.co/pasto/pren-sa/2014/Documents/1Resumen_Proyecto_L%AD-neas Arveja.pdfspa
dc.relation.referencesCheca-Coral, O. E., Bastidas Acosta, J. E., & Narváez Taimal, O. . (2017). Evaluación agronómica y económica de arveja arbustiva (Pisum sativum L.) en diferentes épocas de siembra y sistemas de tutorado, 279–288.spa
dc.relation.referencesCheca-Coral, O., & Rodriguez, M. (2015). Resistance to powdery mildew ( Erysiphe polygoni ) and yield on afila pea (Pisum sativum L), 20(2).spa
dc.relation.referencesCieslarová, J., Hanáček, P., Fialová, E., Hýbl, M., & Smýkal, P. (2011). Estimation of pea (Pisum sativum L.) microsatellite mutation rate based on pedigree and single-seed descent analyses. Journal of Applied Genetics, 52(4), 391–401. https://doi.org/10.1007/s13353-011-0058-9spa
dc.relation.referencesCupic, T., Tucak, M., Popovic, S., Bolaric, S., Grljusic, S., & Kozumplik, V. (2009). Genetic diversity of pea (Pisum sativum L.) genotypes assessed by pedigree, morphological and molecular data. Journal of Food, Agriculture and Environment, 7(3–4), 343–348.spa
dc.relation.referencesDANE. (2015). El cultivo de la arveja en Colombia. Boletín Mensual Insumos y Factores Asociados a La Producción Agropecuaria, 33, 78. Retrieved https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos31_mar_2015.pdfspa
dc.relation.referencesDANE. (2017). Encuesta Nacional Agropecuaria (ENA) 2017.spa
dc.relation.referencesDelseny, M., Laroche, M., & Penon, P. (1983). Detection of sequences with Z-DNA forming potential in higher plants, 116(1), 113–120. https://doi.org/10.1360/zd-2013-43-6-1064spa
dc.relation.referencesDuke, J. A. (1981). Handbook of Legumes of World Economic. New York: Plenum Press. https://doi.org/10.1007/978-1-4684-8151-8spa
dc.relation.referencesEllis, T. H. N., & Poyser, S. J. (2002). An integrated and comparative view of pea genetic and cytogenetic maps. New Phytologist, 153(1), 17–25. https://doi.org/10.1046/j.0028-646X.2001.00302.xspa
dc.relation.referencesEvanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.xspa
dc.relation.referencesExcoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.xspa
dc.relation.referencesFAO, F. and A. O. of the U. N. (2018). FAOSTAT Databases. Retrieved from http://www.fao.org/faostat/en/#data/QCspa
dc.relation.referencesFENALCE. (2006). Federación Nacional de Cultivadores de Cereales y Leguminosas,FENALCE. El cultivo de Arveja en Colombia.spa
dc.relation.referencesFENALCE. (2015). Federación Nacional de Cultivadores de Cereales y Leguminosas. Área, producción y rendimiento cereales y leguminosas.spa
dc.relation.referencesFerreira, M. E., & Grattapaglia, D. (1998). Introdução Ao Uso De Marcadores Moleculares Em Analise Genetica.spa
dc.relation.referencesFondevilla, S., Torres, A. M., Moreno, M. T., & Rubiales, D. (2007). Identification of a New Gene for Resistance to Powdery Mildew in Pisum fulvum , a Wild Relative of Pea, 184, 181–184.spa
dc.relation.referencesGil-Ariza, D. J., Amaya, I., López-Aranda, J. M., Sánchez-Sevilla, J. F., Ángel Botella, M., & Valpuesta, V. (2009). Impact of Plant Breeding on the Genetic Diversity of Cultivated Strawberry as Revealed by Expressed Sequence Tag-derived Simple Sequence Repeat Markers. Journal of the American Society for Horticultural Science, 134(3), 337–347. Retrieved from http://journal.ashspublications.org/content/134/3/337.abstractspa
dc.relation.referencesGomez, E. (2005). Transformación y mejora del valor nutritivo de la harina de guisante mediante la adición de enzima fitasa. Universidad de Granada.spa
dc.relation.referencesGustafson, P., Shoemaker, R. C., Grant, D., Olson, T., Warren, W. C., Wing, R., … Jackson, S. (2008). Microsatellite discovery from BAC end sequences and genetic mapping to anchor the soybean physical and genetic maps. Genome, 51(4), 294–302. https://doi.org/10.1139/G08-010spa
dc.relation.referencesHagenblad, J., Bostrom, E., Nygards, L., & Leino, M. (2014). Genetic diversity in local cultivars of garden pea ( Pisum sativum L .) conserved ‘ on farm ’ and in historical collections. Genetic Resources and Crop Evolution, 61(2), 413–422. https://doi.org/10.1007/s10722-013-0046-5spa
dc.relation.referencesHamada, H., Petrino, M. G., & Kakunaga, T. (1982). Z-DNA-forming found evolutionarily. Pnas, 79(21), 6465–6469.spa
dc.relation.referencesHamon, C., Baranger, A., Coyne, C. J., McGee, R. J., Le Goff, I., L’Anthoene, V., … Pilet-Nayel, M.-L. (2011). New consistent QTL in pea associated with partial resistance to Aphanomyces euteiches in multiple French and American environments, 261–281. https://doi.org/10.1007/s00122-011-1582-zspa
dc.relation.referencesHanderson, C., Noren, S. K., Wricha, T., Meetei, N. T., Khanna, V. K., Pattanayak, A., … Kumar, M. (2014). Assessment of genetic diversity in pea (pisumsativum l.) using morphological and molecular markers. Indian Journal of Genetics and Plant Breeding, 74(2), 205–212. https://doi.org/10.5958/0975-6906.2014.00157.6spa
dc.relation.referencesInoue, E., Ning, L., Hiromichi, H., Ruan, S., & Anzai, H. (2009). Development of Simple Sequence Repeat Markers in Chinese Chestnut and Their Characterization in Diverse Chestnut Cultivars. Journal of the American Society for Hoticultural Science, 134(6), 610–617.spa
dc.relation.referencesIRGSP, I. R. G. S. P. (2005). The map-based sequence of the rice genome. Nature, 436(7052), 793–800. https://doi.org/10.1038/nature03895spa
dc.relation.referencesJing, R., Flavell, A. J., Ambrose, M. A., Smykal, P., Ellis, T. H. N., Pereira, M. G., … Hybl, M. (2012). Genetic diversity in European Pisum germplasm collections. Theoretical and Applied Genetics, 125(2), 367–380. https://doi.org/10.1007/s00122-012-1839-1spa
dc.relation.referencesJing, Runchun, Johnson, R., Seres, A., Kiss, G., Ambrose, M. J., Knox, M. R., … Flavell, A. J. (2007). Gene-Based Sequence Diversity Analysis of Field Pea (Pisum). https://doi.org/10.1534/genetics.107.081323spa
dc.relation.referencesJones, R. C., Steane, D. A., Potts, B. M., & Vaillancourt, R. E. (2001). Microsatellite and morphological analysis of Eucalyptus globulus populations. Canadian Journal of Forest Research, 32(1), 59–66. https://doi.org/10.1139/x01-172spa
dc.relation.referencesKearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., … Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. CEUR Workshop Proceedings, 78(12), 69–83. https://doi.org/10.1093/bioinformatics/bts199spa
dc.relation.referencesKesawat, M. S., & Das Kumar, B. (2009). Molecular markers: It’s application in crop improvement. Journal of Crop Science and Biotechnology, 12(4), 169–181. https://doi.org/10.1007/s12892-009-0124-6spa
dc.relation.referencesKirst, M., Cordeiro, C. M., Rezende, G. D. S. P., & Grattapaglia, D. (2005). Power of microsatellite markers for fingerprinting and parentage analysis in Eucalyptus grandis breeding populations. Journal of Heredity, 96(2), 161–166. https://doi.org/10.1093/jhered/esi023spa
dc.relation.referencesKordrostami, M., & Rahimi, M. (2015). Molecular Markers in Plants: Concepts and Applications. Genetics in the 3rd Millenium, 13(2), 4022–4029. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesKosterin, O. E., & Bogdanova, V. S. (2014). Efficiency of hand pollination in different pea (Pisum) species and subspecies. Indian Journal of Genetics and Plant Breeding, 74(1), 50–55. https://doi.org/10.5958/j.0975-6906.74.1.007spa
dc.relation.referencesKulaeva, O., Zhernakov, A. I., Afonin, A. M., Boikov, S. S., Sulima, A. S., Tikhonovich, I. A., & Zhukov, V. A. (2017). Pea Marker Database (PMD)–A new online database combining known pea (Pisum sativum L.) gene-based markers. PloS One, 1–16. Retrieved from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0186713spa
dc.relation.referencesKulaeva, O., Zhernakov, A. I., Afonin, A. M., Boikov, S. S., Sulima, A. S., Tikhonovich, I. A., & Zhukov, V. A. (2017). Pea Marker Database (PMD)–A new online database combining known pea (Pisum sativum L.) gene-based markers. PloS One, 1–16. Retrieved from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0186713spa
dc.relation.referencesKumar, V., & Shukla, Y. M. (2014). Pre-breeding : breeding : its applications in crop improvement. Research News For U, 16, 199–202.spa
dc.relation.referencesLaucou, V., Haurogné, K., Ellis, N., & Rameau, C. (1998). Genetic mapping in pea. 1. RAPD-based genetic linkage map of Pisum sativum. Theoretical and Applied Genetics, 97(5–6), 905–915. https://doi.org/10.1007/s001220050971spa
dc.relation.referencesLoridon, K., McPhee, K., Morin, J., Dubreuil, P., Pilet-Nayel, M. L., Aubert, G., … Burstin, J. (2005). Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theoretical and Applied Genetics, 111(6), 1022–1031. https://doi.org/10.1007/s00122-005-0014-3spa
dc.relation.referencesLynch, M., & Milligan, B. G. (1994). Analysis of population genetic structure with RAPD markers. Molecular Ecology, 3(2), 91–99. https://doi.org/10.1111/j.1365-294X.1994.tb00109.xspa
dc.relation.referencesMargheim, J. F., Baltensperger, D. D., G., W. R., Lyon, D. J., Hein, G. L., Harveson, R. M., … Hansen, B. J. (2004). Chickpea Production in the High Plains, (Figure 1), EC04-183. Retrieved from https://digitalcommons.unl.edu/cgi/viewcontent.cgi?referer=https://scholar.google.com/&httpsredir=1&article=1766&context=extensionhistspa
dc.relation.referencesMartinez, M. F. (2013). Caracterización Molecular De Genotipos De Mandarinas Citrus spp. Mediante Marcadores RAM´s (Microsatélites amplificados al azar) Y Microsatélites. Universidad Nacional de Colombia. https://doi.org/10.1002/jez.550spa
dc.relation.referencesMasclef, A. (1891). Atlas de plantes de France, utilites nuisibles et ornementales. (L. des S. Naturelles, Ed.).spa
dc.relation.referencesMoreno-Chirinos, Z. E., Valdez-Núñez, R. A., Soriano-Bernilla, B. S., & Ruesta-Campoverde, N. A. (2016). Nodulation efficiency by native rhizobia from nodules of Pisum sativum “pea” collected from different Departments of Peru. Scientia Agropecuaria, 7(3), 165–172. https://doi.org/10.17268/sci.agropecu.2016.03.02spa
dc.relation.referencesMullis, K. B. (1990). The unusual origin of the polymerase chain reaction. Scientific American, 262(4), 56–65. https://doi.org/10.1038/scientificamerican0490-56spa
dc.relation.referencesNadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Comertpay, G., Yıldız, M., … Baloch, F. S. (2018). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology and Biotechnological Equipment, 32(2), 261–285. https://doi.org/10.1080/13102818.2017.1400401spa
dc.relation.referencesNaeem, S., Ahmad, S., Hassan, M., Adil, M., Younis, M. A., Azeem, M., & Ibrahim, M. (2018). Role of pollinators in pea (Pisum sativum) yield at Peshawar valley. Journal of Entomology and Zoology Studies, 6(2), 1280–1282.spa
dc.relation.referencesNaeem, S., Ahmad, S., Sohail, K., Dad, R., & Shah, B. (2016). Insect pollinators and their relative abundance on pea (pisum sativum) at Peshawar. Journal of Entomology and Zoology Studies, 4(1), 112–117.spa
dc.relation.referencesNaresh, V., Yamini, K. N., Rajendrakumar, P., & Kumar, V. D. (2009). EST-SSR marker-based assay for the genetic purity assessment of safflower hybrids. Euphytica, 170(3), 347–353. https://doi.org/10.1007/s10681-009-9995-3spa
dc.relation.referencesNasiri, J., Haghnazari, A., & Saba, J. (2009). Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on SSR markers. African Journal of Biotechnology, 8(15), 3405–3417. Retrieved from http://www.ajol.info/index.php/ajb/article/view/61821spa
dc.relation.referencesNass, L. L., & Paterniani, E. (2000). Pre-breeding: a link between genetic resources and maize breeding. Scientia Agricola, 57(3), 581–587. https://doi.org/10.1590/s0103-90162000000300035spa
dc.relation.referencesNavarro, Q. A. (1999). Estructura genética y procesos de especiación de Agave cerulata (Trel) y Agave subsimplex (Trel.) en el desierto sonorense a partir de RAPDs.spa
dc.relation.referencesNisar, M., Khan, A., Wadood, S. F., Shah, A. A., & Hanci, F. (2017). Molecular characterization of edible pea through EST-SSR markers. Turkish Journal of Botany, 41(4), 338–346. https://doi.org/10.3906/bot-1608-17spa
dc.relation.referencesOcampo, J., Acosta-Barón, N., & Hernández-Fernández, J. (2017). Variabilidad y estructura genética del maracuyá (Passiflora edulis f. flavicarpa Degener) en Colombia por medio de marcadores microsatélite. Agronomia Colombiana, 35(2), 135–149. https://doi.org/10.15446/agron.colomb.v35n2.59973spa
dc.relation.referencesOlvera-Luna, A., Gama-López, S., & Delgado-Salinas, A. (2011). Flora del valle de TEHÚACAN-CUICATLÁN.spa
dc.relation.referencesPantoja, D., Muñoz, K., & Checa-Coral, O. (2014). Evaluation and correlation of yield componentsin advanced lines of pea (Pisum sativum) with afila gene. Revista De Ciencias Agrícolas, 31(2), 24–39. Retrieved from http://www.scielo.org.co/pdf/rcia/v31n2/v31n2a03.pdfspa
dc.relation.referencesParida, S. K., Kalia, S. K., Kaul, S., Dalal, V., Hemaprabha, G., Selvi, A., … Mohapatra, T. (2009). Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theoretical and Applied Genetics, 118(2), 327–338. https://doi.org/10.1007/s00122-008-0902-4spa
dc.relation.referencesPeralta, E., Murillo, A., Marzon, N., Pinzon, J., & Villacres, E. (2010). Manual Agrícola de Frijol y otras Leguminosas. Cultivos, variedades y costos de producción. Variedades de Papa Cultivadas En El Ecuador, 35. https://doi.org/10.1016/j.jssc.2004.06.034spa
dc.relation.referencesPereira, G., Marques, C., Ribeiro, R., Formiga, S., Tavares Sousa, M., Damaso, M., … Farinho, M. (2010). Identification of DNA markers linked to an induced mutated gene conferring resistance to powdery mildew in pea ( Pisum sativum L .), 327–335. https://doi.org/10.1007/s10681-009-0003-8spa
dc.relation.referencesPonnaiah, M., Shiferaw, E., Pè, M. E., & Porceddu, E. (2011). Development and application of EST-SSRs for diversity analysis in Ethiopian grass pea. Plant Genetic Resources: Characterisation and Utilisation, 9(2), 276–280. https://doi.org/10.1017/S1479262111000426spa
dc.relation.referencesPorras-Hurtado, L., Ruiz, Y., Santos, C., Phillips, C., Carracedo, Á., & Lareu, M. V. (2013). An overview of STRUCTURE: applications, parameter settings, and supporting software. Frontiers in Genetics, 4(May), 1–13. https://doi.org/10.3389/fgene.2013.00098spa
dc.relation.referencesPosso-Terranova, A. (2011). Diversidad genética y estructura poblacional de Guadua angustifolia Kunth en el Eje Cafetero colombiano. Universidad Nacional de Colombia.spa
dc.relation.referencesPritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics Society of America, 155(2), 945–959. https://doi.org/10.1111/j.1471-8286.2007.01758.xspa
dc.relation.referencesRameau, C., Dénoue, D., Fraval, F., Haurogné, K., Josserand, J., Laucou, V., … Murfet, I. C. (1998). Genetic mapping in pea. 2. Identification of RAPD and SCAR markers linked to genes affecting plant architecture. Theoretical and Applied Genetics, 97(5–6), 916–928. https://doi.org/10.1007/s001220050972spa
dc.relation.referencesRana, J. C., Rana, M., Sharma, V., Nag, A., Chahota, R. K., & Sharma, T. R. (2017). Genetic Diversity and Structure of Pea (Pisum sativum L.) Germplasm Based on Morphological and SSR Markers. Plant Molecular Biology Reporter, 35(1), 118–129. https://doi.org/10.1007/s11105-016-1006-yspa
dc.relation.referencesRenfrew, J. M. (1973). Palaeoethnobotany. The prehistoric food plants of the Near East and Europe. New York: Columbia University Press.spa
dc.relation.referencesRocha, M., González, A., & Aguirre, X. (2014). ADN polimórfico amplificado al azar (RAPD) y regiones intermedias entre secuencias simples repetidas (ISSR). Herramientas Moleculares Aplicadas En Ecología: Aspectos Teóricos y Prácticos, (8701), 256.spa
dc.relation.referencesRohlf, F. J. (2006). NTSYS-pc: Microcomputer Programs for Numerical Taxonomy and Multivariate Analysis. The American Statistician, 41(4), 330. https://doi.org/10.2307/2684761spa
dc.relation.referencesRosenberg, N. A., & Jakobsson, M. (2008). The Relationship Between Homozygosity and the Frequency of the Most Frequent Allele. Genetics, 179(4), 2027–2036. https://doi.org/10.1534/genetics.107.084772spa
dc.relation.referencesRosero, V. (2019). Caracterización morfológica y clasificación jerárquica de 40 genotipos de arveja arbustiva (Pisum sativum L). San Juan de Pasto.spa
dc.relation.referencesSauer, J. (1993). Historical Geography of Crop Plants A Selecter Roster. New York: Routledge.spa
dc.relation.referencesSaunders, J. A., Mischke, S., Leamy, E. A., & Hemeida, A. A. (2004). Selection of international molecular standards for DNA fingerprinting of Theobroma cacao. Theoretical and Applied Genetics, 110(1), 41–47. https://doi.org/10.1007/s00122-004-1762-1spa
dc.relation.referencesSelvakumari, E., Jenifer, J., Priyadharshini, S., & Vinodhini, R. (2017). Application of DNA Fingerprinting for Plant Identification. Journal of Academia and Industrial Research, 5(10), 149–151.spa
dc.relation.referencesSmýkal, P., Aubert, G., Burstin, J., Coyne, C. J., Ellis, N. T. H., Flavell, A. J., …Warkentin, T. D. (2012). Pea (Pisum sativum L.) in the Genomic Era, 74–115. https://doi.org/10.3390/agronomy2020074spa
dc.relation.referencesSmýkal, P., Hýbl, M., Corander, J., Jarkovský, J., Flavell, A. J., & Griga, M. (2008). Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theoretical and Applied Genetics, 117(3), 413–424. https://doi.org/10.1007/s00122-008-0785-4spa
dc.relation.referencesSzwejkowska, B., Winnicki, T., & Duchovskis, P. (2008). Economic aspects of field pea ( Pisum sativum L .) cultivation methods – an evaluation, 27(4), 241–252.spa
dc.relation.referencesTautz, D., & Renz, M. (1984). Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research, 12(10), 4127–4138. https://doi.org/10.1093/nar/12.10.4127spa
dc.relation.referencesTeshome, A., Bryngelsson, T., Dagne, K., & Geleta, M. (2015). Assessment of genetic diversity in Ethiopian field pea (Pisum sativum L.) accessions with newly developed EST-SSR markers. BMC Genetics, 16(1), 102. https://doi.org/10.1186/s12863-015-0261-5spa
dc.relation.referencesTyrka, M., Perovic, D., Wardyńska, A., & Ordon, F. (2008). A new diagnostic SSR marker for selection of the Rym4/Rym5 locus in barley breeding. Journal of Applied Genetics, 49(2), 127–134. https://doi.org/10.1007/BF03195605spa
dc.relation.referencesUnited Nations. (1992). Convention on biological diversity united nations 1992. Un, 30.spa
dc.relation.referencesUPOV, I. U. F. T. P. O. N. V. O. P. (2009). Guideline for The Conduct of Tests for Distinctness,Uniformity, and Stability of Pisum Sativum L., UPOV (TG 7((TG 7/10)), 1–52. Retrieved from https://www.upov.int/edocs/tgdocs/en/tg007.pdfspa
dc.relation.referencesVallejo, F. A., & Estrada, E. I. (2002). Mejoramiento genetico en plantas. Palmira: Universidad Nacional de Colombia.spa
dc.relation.referencesVieira, M. L. C., Santini, L., Diniz, A. L., & Munhoz, C. de F. (2016). Microsatellite markers: What they mean and why they are so useful. Genetics and Molecular Biology, 39(3), 312–328. https://doi.org/10.1590/1678-4685-GMB-2016-0027spa
dc.relation.referencesWaits, L. P., Luikart, G., & Taberlet, P. (2001). Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Molecular Ecology, 10(1), 249–256. https://doi.org/10.1046/j.1365-294X.2001.01185.xspa
dc.relation.referencesWilliams, J. G. ., Kubelik, A. ., & Livak, K. . (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, 18(22), 6531–6535.spa
dc.relation.referencesWinter, P., & Kahl, G. (1995). Molecular marker technologies for plant improvement. World Journal of Microbiology & Biotechnology, 11(4), 438–448. https://doi.org/10.1007/BF00364619spa
dc.relation.referencesXu, S. X., Liu, J., & Liu, G. S. (2004). The use of SSRs for predicting the hybrid yield and yield heterosis in 15 key inbred lines of Chinese maize. Hereditas, 141(3), 207–215. https://doi.org/10.1111/j.1601-5223.2004.01865.xspa
dc.relation.referencesZamorano, C., López, H., & Alzate, G. (2008). Evaluación de la competencia de arvenses en el cultivo de arveja (Pisum sativum) en Fusagasugá, Cundinamarca (Colombia). Revista Agronomia Colombiana, 26(3), 443–450. Retrieved from http://www.scielo.org.co/pdf/agc/v26n3/v26n3a09.pdfspa
dc.relation.referencesZhang, X., Wan, S., Hao, J., Hu, J., Yang, T., & Zong, X. (2016). Large-scale evaluation of pea (Pisum sativum L.) germplasm for cold tolerance in the field during winter in Qingdao. Crop Journal, 4(5), 377–383. https://doi.org/10.1016/j.cj.2016.06.016spa
dc.relation.referencesZhu, C., Gore, M., Buckler, E. S., & Yu, J. (2008). Status and Prospects of Association Mapping in Plants. The Plant Genome Journal (Vol. 1). https://doi.org/10.3835/plantgenome2008.02.0089spa
dc.relation.referencesZong, X., Redden, R. J., Liu, Q., Wang, S., Guan, J., Liu, J., … Ford, R. (2009). Analysis of a diverse global Pisum sp . collection and comparison to a Chinese local P . sativum collection with microsatellite markers, 193–204. https://doi.org/10.1007/s00122-008-0887-zspa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso restringidospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddcAgricultura y tecnologías relacionadasspa
dc.subject.proposalDiversidad genéticaspa
dc.subject.proposalGenetic diversityeng
dc.subject.proposalEstructura genéticaspa
dc.subject.proposalGenetic structureeng
dc.subject.proposalSSR markerseng
dc.subject.proposalMarcadores SSRspa
dc.titleCaracterización molecular de arveja arbustiva (Pisum sativum L) en la zona cerealista del departamento de Nariño, Colombiaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_f1cfspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2023-Juan_Diego_Duque_Zapata (1).pdf
Tamaño:
841.81 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: