Desarrollo de un modelo de identificación de adulterantes para control de calidad en ajo en polvo

dc.contributor.advisorSánchez Sáenz, Carolina María
dc.contributor.authorPatarroyo Leon, Kelly Johanna
dc.contributor.researcherTriana Fonseca, Laura Valentina
dc.contributor.researcherGutierrez Rico, Tatiana
dc.contributor.researcherVásquez Santana, Gabriel Mateo
dc.contributor.researcherPeña Muñetón, Nicolás
dc.contributor.researcherMatiz Ulloa, Julián David
dc.contributor.researchgroupIngeniería de Biosistemasspa
dc.date.accessioned2022-08-09T14:05:27Z
dc.date.available2022-08-09T14:05:27Z
dc.date.issued2022
dc.descriptiongráficas, ilustraciones, tablasspa
dc.description.abstractEl fraude alimentario constituye una problemática global que no sólo afecta la economía sino también la salud y confianza del consumidor. El ajo en polvo es una especia susceptible a la adulteración con sustancias de bajo costo y apariencia similar: tiza blanca y almidón de maíz. Dado que los métodos existentes para identificar adulterantes en especias requieren equipos sofisticados y un elevado consumo de tiempo, es necesario recurrir a técnicas alternativas. El objetivo de esta investigación fue desarrollar modelos de predicción basados en espectroscopía en infrarrojo cercano, que identifiquen la presencia de tiza blanca o almidón de maíz en ajo en polvo y que cuantifiquen estos compuestos en las muestras adulteradas. Para este fin, se prepararon 626 muestras de dicha especia adulteradas en concentraciones entre 0 y 30% (w/w), se distribuyeron 500 muestras para calibración y 126 muestras para validación. Luego, se desarrollaron los modelos de clasificación por regresión de mínimos cuadrados parciales (PLS) con análisis discriminante y los modelos de cuantificación por PLS, con validación cruzada y externa, utilizando tratamientos de Variable Normal Estándar, Correlación de Dispersión Multiplicativa y las derivadas de Savitzky-Golay. El modelo de clasificación permitió identificar las muestras adulteradas y el tipo de adulterante, en tanto los modelos de cuantificación de cada adulterante permitieron conocer el porcentaje de adulteración en las muestras de ajo en polvo, con valores del error cuadrático medio de predicción (RMSEP) entre 0.6490% - 1.576%. Los resultados indicaron que es posible utilizar modelos espectrales para determinar la autenticación del ajo en polvo. (Texto tomado de la fuente)spa
dc.description.abstractFood fraud is a global problem that not only affects the economy but also consumer health and confidence. Garlic powder is a spice that is susceptible to adulteration with low-cost substances of similar appearance: white chalk and corn starch. Since existing methods to identify adulterants in spices require high-tech and time-consuming equipment, alternative techniques are required. The objective of this research was to develop predictive models based on near infrared spectroscopy to identify the presence of white chalk or corn starch in garlic powder and quantify these compounds in adulterated samples. For this purpose, 626 samples of this spice adulterated in concentrations between 0 and 30% (w/w) were used, 500 samples were distributed for calibration and 126 samples for validation. Then, classification models were developed by partial least squares (PLS) regression with discriminant analysis and quantification models by PLS, with cross-validation and external validation, using Standard Normal Variable, Multiplicative Dispersion Correlation and Savitzky-Golay derivatives treatments. The classification model allowed the identification of adulterated samples and the type of adulterant, while the quantification models for each adulterant allowed knowing the percentage of adulteration in garlic powder samples, with root mean square error of prediction (RMSEP) values between 0.6490% - 1.576%. The results indicated that it is possible to use spectral models to determine the authentication of garlic powder. (Tex taken from the source)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentosspa
dc.description.methodsMetología utilizada en quimiometría para el análisis espectral y contrucción de modelos de predicción.spa
dc.description.notesUn resumen del Capitulo 2 fue publicado en la revista estudiantil de divulgación y cultura agrícola INNAGRI, ISSN en línea 2806-0490: http://bienestar.bogota.unal.edu.co/pgp/Publicaciones/innagri/innagri.htmlspa
dc.description.researchareaCalidad de aimentosspa
dc.description.sponsorshipLa financiación se obtuvo a través de la Convocatoria de Apoyo a Semilleros de Investigación de la Facultad de Ingeniería 2019 y la Convocatoria para el apoyo a Proyectos de Investigación y Creación artística de la Sede Bogotá de la Universidad Nacional de Colombia - 2019.spa
dc.format.extent92 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81818
dc.language.isospaspa
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentInstituto de Ciencia y Tecnología de Alimentos (ICTA)spa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.referencesAdministración Nacional de Medicamentos Alimentos y Tecnología Médica [ANMAT]. (2019). Boletín oficial de la República Argentina (p. Disposición 4069/2019). https://www.boletinoficial.gob.ar/detalleAviso/primera/207652/20190516?busqueda=1#spa
dc.relation.referencesAenugu, H., Kumar, D. S., Srisudharson, Parthiban, N., Ghosh, S. & Banji, D. (2011). Near Infra-Red Spectroscopy - An overview. International Journal of ChemTech Research, 3(2), 825–836. https://www.researchgate.net/publication/286061794_Near_infra_red_spectroscopy-_An_overviewspa
dc.relation.referencesAgencia Española de Seguridad Alimentaria y Nutrición [AESAN]. (2021). Advertencia para personas alérgicas a los sulfitos: Presencia de sulfitos en canela en polvo procedente del Reino Unido. https://www.aesan.gob.es/AECOSAN/web/seguridad_alimentaria/alertas_alimentarias/2021_329.htmspa
dc.relation.referencesAllianz Global Corporate and Speciality. (n.d.). Product recall - Drivers and trends. https://www.agcs.allianz.com/news-and-insights/expert-risk-articles/product-recall-drivers-and-trends.htmlspa
dc.relation.referencesAmirvaresi, A., Rashidi, M., Kamyar, M., Amirahmadi, M., Daraei, B. & Parastar, H. (2020). Combining multivariate image analysis with high-performance thin-layer chromatography for development of a reliable tool for saffron authentication and adulteration detection. Journal of Chromatography A, 1628, 461461. https://doi.org/10.1016/j.chroma.2020.461461spa
dc.relation.referencesAOAC International. (2012a). AOAC Official Method 916.01- Adulterants in Spices. In G. W. Latimer (Ed.), Official methods of analysis of AOAC International (19th ed., pp. 1002–1004).spa
dc.relation.referencesAOAC International. (2012b). Official methods of analysis of AOAC International. In G. W. Latimer (Ed.), Official Methods of Analysis of AOAC International (19th ed., pp. 4–6).spa
dc.relation.referencesArévalo, M. (2013). Determinaciones cuantitativas en naranja mediante tecnologías NIRS. In [Master thesis, Universidad Pública de Navarra].spa
dc.relation.referencesArizio, O. P. & Curioni, A. O. (2014). Global and regional exchange of spices in terms of value, 1992-2011. Revista Colombiana de Ciencias Hortícolas, 8(1), 142–154. www.fao.orgspa
dc.relation.referencesArtigue, H. & Smith, G. (2019). The principal problem with principal components regression. Cogent Mathematics & Statistics, 6. https://doi.org/10.1080/25742558.2019.1622190spa
dc.relation.referencesAttrey, D. P. (2017). Chapter 10 - Detection of food adulterants/contaminants BT - Food Safety in the 21st Century. In Food Safety in the 21st Century. Elsevier Inc. https://doi.org/https://doi.org/10.1016/B978-0-12-801773-9.00010-8spa
dc.relation.referencesBansal, S., Thakur, S., Mangal, M., Mangal, A. K. & Gupta, R. K. (2018). DNA barcoding for specific and sensitive detection of Cuminum cyminum adulteration in Bunium persicum. Phytomedicine, 50(November 2017), 178–183. https://doi.org/10.1016/j.phymed.2018.04.023spa
dc.relation.referencesBarros, B., Scarminio, I. & Bruns, R. (2010). Como fazer Experimentos. Pesquisa e Desenvolvimento Na Ciência e Na Indústria, 4, 413.spa
dc.relation.referencesBennett, P. (2015). Inside the Peanut-Tainted Cumin Recalls: What Happened? Food Allergy, Peanut & Tree Nut, Recalls. https://www.allergicliving.com/2015/02/14/inside-the-peanut-tainted-cumin-recalls-what-happened/spa
dc.relation.referencesBerrar, D. (2018). Cross-validation. Encyclopedia of Bioinformatics and Computational Biology, 1, 542–545.spa
dc.relation.referencesBhattacharyya, N. & Bandhopadhyay, R. (2010). Nondestructive evaluation of food quality: Theory and practice. Nondestructive Evaluation of Food Quality: Theory and Practice, 1–288. https://doi.org/10.1007/978-3-642-15796-7spa
dc.relation.referencesBhattacharyya, N., Bandyopadhyay, R. & Bhuyan Met, A. L. (2005). Correlation of multi-sensor array data with “tasters” panel evaluation for objective assessment of black tea flavor. Proceedings of ISOEN.spa
dc.relation.referencesBhooma, V., Nagasathiya, K., Vairamani, M. & Parani, M. (2020). Identification of synthetic dyes magenta III (new fuchsin) and rhodamine B as common adulterants in commercial saffron. Food Chemistry, 309(October 2019). https://doi.org/10.1016/j.foodchem.2019.125793spa
dc.relation.referencesBjorsvik, H.-R. & Martens, H. (2007). Calibration of NIR Instruments by PLS Regression. In Handbook of Near-Infrared Analysis (3rd ed., pp. 189–205). Press Taylor & Francis Group.spa
dc.relation.referencesBlack, C., Haughey, S. A., Chevallier, O. P., Galvin-King, P. & Elliott, C. T. (2016). A comprehensive strategy to detect the fraudulent adulteration of herbs: The oregano approach. Food Chemistry, 210, 551–557. https://doi.org/10.1016/j.foodchem.2016.05.004spa
dc.relation.referencesBouzembrak, Y. & Marvin, H. J. P. (2016). Prediction of food fraud type using data from Rapid Alert System for Food and Feed (RASFF) and Bayesian network modelling. Food Control, 61, 180–187. https://doi.org/10.1016/j.foodcont.2015.09.026spa
dc.relation.referencesBritish Retail Consortium [BRC], Food and Drink Federation [FDF] & Seasoning and Spice Association [SSA]. (2016). Guidance on authenticity of herbs and spices (pp. 1–19). http://www.brc.org.uk/downloads/Guidance_on_Authenticity_of_Herbs_and_Spices_June_2016.pdfspa
dc.relation.referencesBurns, D. A. & Ciurczak, E. W. (2008). Handbook of Near-Infrared Analysis, Third Edition. https://books.google.ru/books?id=6EEd1a0uka0Cspa
dc.relation.referencesCantarelli, M. A., Moldes, C. A., Marchevsky, E. J., Azcarate, S. M. & Camiña, J. M. (2020). Low-cost analytic method for the identification of Cinnamon adulteration. Microchemical Journal, 159(September). https://doi.org/10.1016/j.microc.2020.105513spa
dc.relation.referencesCarmona, I. (2013). Situación global de especias y condimentos: una oportunidad para el ají procesado picante. Agrimundo, Inteligencia Competitiva Para El Sector Agroalimentario, 6(Junio), 1–5.spa
dc.relation.referencesCetó, X., Sánchez, C., Serrano, N., Díaz-Cruz, J. M. & Núñez, O. (2020). Authentication of paprika using HPLC-UV fingerprints. LWT - Food Science and Tecnology, 124(February), 1–5. https://doi.org/10.1016/j.lwt.2020.109153spa
dc.relation.referencesChaminda Bandara, W. G., Kasun Prabhath, G. W., Sahan Chinthana Bandara Dissanayake, D. W., Herath, V. R., Roshan Indika Godaliyadda, G. M., Bandara Ekanayake, M. P., Demini, D. & Madhujith, T. (2019). Validation of multispectral imaging for the detection of selected adulterants in turmeric samples. Journal of Food Engineering, 266(August 2019), 109700. https://doi.org/10.1016/j.jfoodeng.2019.109700spa
dc.relation.referencesChen, H., Tan, C. & Lin, Z. (2018). Quantitative determination of wool in textile by near-infrared spectroscopy and multivariate models. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 201, 229–235. https://doi.org/10.1016/j.saa.2018.05.010spa
dc.relation.referencesCodex Alimentarius. (1995). Code of Hygienic Practice for Spices and Dried Aromatic Plants Code of Hygienic Practice for Spices and Dried Aromatic Plants. 1–17.spa
dc.relation.referencesconnect2india. (2020). GARLIC POWDER IMPORTERS IN COLOMBIA. Marzo 2020. https://connect2india.com/global/Garlic-Powder-importers-in-Colombiaspa
dc.relation.referencesDai, H., Gao, Q. & He, L. (2020). Rapid Determination of Saffron Grade and Adulteration by Thin-Layer Chromatography Coupled with Raman Spectroscopy. Food Analytical Methods, 13(11), 2128–2137. https://doi.org/10.1007/s12161-020-01828-xspa
dc.relation.referencesDanciu, V., Hosu, A. & Cimpoiu, C. (2018). Thin-layer chromatography in spices analysis. Journal of Liquid Chromatography and Related Technologies, 41(6), 282–300. https://doi.org/10.1080/10826076.2018.1447895spa
dc.relation.referencesDhakal, S., Chao, K., Kim, M., Qin, J. & Bae, A. (2018). Detection of color dye contamination in spice powder using 1064 nm Raman chemical imaging system. Sensing for Agriculture and Food Quality and Safety X, 1066509(May 2018), 1–7. https://doi.org/10.1117/12.2303832spa
dc.relation.referencesDhakal, S., Schmidt, W., Kim, M., Tang, X., Peng, Y. & Chao, K. (2019). Detection of additives and chemical contaminants in turmeric powder using FT-IR spectroscopy. Foods, 8(143), 1–15. https://doi.org/10.3390/foods8050143spa
dc.relation.referencesDhanya, K. & Sasikumar, B. (2010). Molecular marker based adulteration detection in traded food and agricultural commodities of plant origin with special reference to spices. Current Trends in Biotechnology and Pharmacy, 4(1), 454–489.spa
dc.relation.referencesDirection générale de la concurrence, de la consommation et de la répression des fraudes. (2018). Contrôle de la qualité des épices. Le Portail de l’Économie, Des Finances, de l’Action et Des Comptes Publics. https://www.economie.gouv.fr/dgccrf/controle-qualite-des-epicesspa
dc.relation.referencesElliott, C. (2014). The new phenomenon of criminal fraud in the food supply chain. NSF International Report. NSF International Report, 1–17.spa
dc.relation.referencesEsslinger, S., Riedl, J. & Fauhl-Hassek, C. (2014). Potential and limitations of non-targeted fingerprinting for authentication of food in official control. Food Research International, 60, 189–204. https://doi.org/10.1016/j.foodres.2013.10.015spa
dc.relation.referencesEuropean Commission. (2017). The EU Food Fraud Network and the System for Administrative Assistance & Food Fraud- Annual Report 2017. 1–17.spa
dc.relation.referencesEuropean Commission. (2018). The EU Food Fraud Network And The System For Administrative Assistance & Food Fraud - Annual Report 2018. 1–19. https://ec.europa.eu/food/sites/food/files/safety/docs/food-fraud_network_activity_report_2016.pdfspa
dc.relation.referencesEuropean Commission. (2019). 2019 Annual Report - The EU Food Fraud Network and the Administrative Assistance & Cooperation System. 1–19. https://doi.org/10.2875/326318spa
dc.relation.referencesEUROPOL & INTERPOL. (2019). Over €100 million worth of fake food and drinks seized in latest Europol-INTERPOL operation. https://www.europol.europa.eu/newsroom/news/over-€100-million-worth-of-fake-food-and-drinks-seized-in-latest-europol-interpol-operationspa
dc.relation.referencesEverstine, K. (2013). Economically motivated adulteration: implications for food protection and alternate approaches to detection. May.spa
dc.relation.referencesFalkheimer, J. & Heide, M. (2015). Trust and Brand Recovery Campaigns in Crisis: Findus Nordic and the Horsemeat Scandal. International Journal of Strategic Communication, 9(2), 134–147. https://doi.org/10.1080/1553118X.2015.1008636spa
dc.relation.referencesFAOSTAT. (2019a). Detailed Trade Matrix. Food and Agriculture Organization [FAO]. http://www.fao.org/faostat/en/#data/TMspa
dc.relation.referencesFAOSTAT. (2019b). Spice production in the world 2009-2019. FAO. http://www.fao.org/faostat/en/#data/QCLspa
dc.relation.referencesFarag, M., Hegazi, N., Dokhalahy, E. & Khattab, A. (2020). Chemometrics based GC-MS aroma profiling for revealing freshness, origin and roasting indices in saffron spice and its adulteration. Food Chemistry, 331(May), 127358. https://doi.org/10.1016/j.foodchem.2020.127358spa
dc.relation.referencesFerreira, D. S. (2013). Aplicação de espectroscopia no infravermelho e análise multivariada para previsão de parâmetros de qualidade em soja e quinoa. Unicamp, 119.spa
dc.relation.referencesFonovich, T. M. (2013). Sudan dyes: Are they dangerous for human health. Drug and Chemical Toxicology, 36(3), 343–352. https://doi.org/10.3109/01480545.2012.710626spa
dc.relation.referencesFood and Drugs Administration [FDA]. (2009). Economically Motivated Adulteration; Public Meeting. Federal Register, 74(64), 15497–15499. https://www.govinfo.gov/content/pkg/FR-2009-04-06/pdf/E9-7843.pdfspa
dc.relation.referencesFood and Drugs Administration [FDA]. (2015). FDA Consumer Advice on Products Containing Ground Cumin with Undeclared Peanuts. U.S. Food and Drug Administration. http://wayback.archive-it.org/7993/20171114232613/https://www.fda.gov/Food/RecallsOutbreaksEmergencies/SafetyAlertsAdvisories/ucm434274.htmspa
dc.relation.referencesFried, B. & Mcdonnell, M. (2000). Rocks and minerals (Hands-on S). J. Weston Walch.spa
dc.relation.referencesGalvin-King, P., Haughey, S. A. & Elliott, C. T. (2018). Herb and spice fraud; the drivers, challenges and detection. Food Control, 88, 85–97. https://doi.org/10.1016/j.foodcont.2017.12.031spa
dc.relation.referencesGalvin-King, P., Haughey, S. A. & Elliott, C. T. (2019). Spices. In Foodintegrity Handbook A Guide to Food Authenticity Issues and Analytical Solutions (pp. 173–192).spa
dc.relation.referencesGalvin-King, P., Haughey, S. A. & Elliott, C. T. (2021). Garlic adulteration detection using NIR and FTIR spectroscopy and chemometrics. Journal of Food Composition and Analysis, 96, 103757. https://doi.org/10.1016/j.jfca.2020.103757spa
dc.relation.referencesGalvin-King, P., Haughey, S. & Elliott, C. (2020). The Detection of Substitution Adulteration of Paprika with Spent Paprika by the Application of Molecular Spectroscopy Tools. Foods, 9(944), 1–15. https://doi.org/10.3390/foods9070944spa
dc.relation.referencesGao, F., Hu, Y., Chen, D., Li-Chan, E. C. Y., Grant, E. & Lu, X. (2015). Determination of Sudan I in paprika powder by molecularly imprinted polymers-thin layer chromatography-surface enhanced Raman spectroscopic biosensor. Talanta, 143, 344–352. https://doi.org/10.1016/j.talanta.2015.05.003spa
dc.relation.referencesGarber, E. A. E., Parker, C. H., Handy, S. M., Cho, C. Y., Panda, R., Samadpour, M., Reynaud, D. H. & Ziobro, G. C. (2016). Presence of undeclared food allergens in cumin: The need for multiplex methods. Journal of Agricultural and Food Chemistry, 64(5), 1202–1211. https://doi.org/10.1021/acs.jafc.5b05497spa
dc.relation.referencesGoel, S., Patidar, R., Baxi, K. & Thakur, R. S. (2015). Investigation of particulate matter performances in relation to chalk selection in classroom environment. Indoor and Built Environment, 26(1), 119–131. https://doi.org/10.1177/1420326X15607951spa
dc.relation.referencesGossner, C., Schlundt, J., Embarek, P., Hird, S., Lo-Fo-Wong, D., Ocampo, J., Teoh, K. & Tritscher, A. (2009). The Melamine Incident: Implications for International Food and Feed Safety. Environmental Health Perspectives, 117(12), 1803–1808. https://doi.org/10.1289/ehp.0900949spa
dc.relation.referencesGrand View Research. (2020). Seasoning And Spices Market Size, Share & Trends Analysis Report By Product (Herbs, Salt & Salts Substitutes, Spices), By Application, By Region, And Segment Forecasts, 2020 - 2027. https://www.grandviewresearch.com/industry-analysis/seasonings-spices-marketspa
dc.relation.referencesHeidarbeigi, K., Mohtasebi, S. S., Serrano-Diaz, J., Medina-Plaza, C., Ghasemi-Varnamkhasti, M., Alonso, G. L., Garcia-Rodriguez, M. v., Rafiee, S., Rezaei, K., Garcia-Hernandez, C., de Saja, J. A. & Rodriguez-Mendez, M. L. (2016). Flavour characteristics of Spanish and Iranian saffron analysed by electronic tongue. Quality Assurance and Safety of Crops and Foods, 8(3), 359–368. https://doi.org/10.3920/QAS2015.0591spa
dc.relation.referencesHeidarbeigi, Kobra, Mohtasebi, S. S., Foroughirad, A., Ghasemi-Varnamkhasti, M., Rafiee, S. & Rezaei, K. (2015). Detection of adulteration in saffron samples using electronic nose. International Journal of Food Properties, 18(7), 1391–1401. https://doi.org/10.1080/10942912.2014.915850spa
dc.relation.referencesHeidarbeigi, Kobra, Mohtasebi, S. S., Rafiee, S., Ghasemi-Varnamkhasti, M., Rezaei, K. & Rodriguez-Mendez, M. L. (2016). An electronic tongue design for the detection of adulteration in saffron samples. Irani Journal of Biosystem Engineering, 46(4), Pages 405-413. https://doi.org/10.22059/IJBSE.2015.57347spa
dc.relation.referencesHeigi Library. (2019). Spice Consumption. https://www.helgilibrary.com/indicators/spice-consumption-total/spa
dc.relation.referencesHellberg, R. S., Everstine, K. & Sklare, S. A. (2021). Food Fraud: A Global Threat with Public Health and Economic Consequences. In Academic Press. https://doi.org/10.1016/j.jneb.2021.06.004spa
dc.relation.referencesHofmann, A. (2010). Spectrophotometric techniques: I Spectrophotometric Techniques.spa
dc.relation.referencesHu, Y., Wang, S. S., Wang, S. S. & Lu, X. (2017). Application of nuclear magnetic resonance spectroscopy in food adulteration determination: The example of Sudan dye i in paprika powder. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-02921-8spa
dc.relation.referencesIchim, M. C. (2019). The DNA-based authentication of commercial herbal products reveals their globally widespread adulteration. Frontiers in Pharmacology, 10(October), 1–9. https://doi.org/10.3389/fphar.2019.01227spa
dc.relation.referencesICONTEC. (1989). NTC 2555 Industria Agrícola. Especias y condimentos. Determinación del contenido de materia extraña.spa
dc.relation.referencesICONTEC. (1998). NTC 4423 Industria Alimentaria. Especias y Condimentos.spa
dc.relation.referencesInstituto Nacional de Vigilancia de Medicamentos y Alimentos [INVIMA]. (2019). Reporte del resultado de la inspección realizada en el Puertos, Aeropuertos y Pasos Fronterizos para alimentos, materias primas e ingredientes secundarios en alimentos de consumo humano. https://www.invima.gov.co/web/guestspa
dc.relation.referencesInternational Organization for Standardization [ISO]. (1987). ISO 7954:1987 - Microbiology — General guidance for enumeration of yeasts and moulds — Colony count technique at 25 degrees C. https://www.iso.org/standard/14931.htmlspa
dc.relation.referencesInternational Organization for Standardization [ISO]. (2012). ISO 9308-2:2012 - Water quality — Enumeration of Escherichia coli and coliform bacteria — Part 2: Most probable number method. https://www.iso.org/standard/55832.htmlspa
dc.relation.referencesInternational Organization for Standardization [ISO]. (2017). ISO 6579-1:2017 - Microbiology of the food chain — Horizontal method for the detection, enumeration and serotyping of Salmonella — Part 1: Detection of Salmonella spp. https://www.iso.org/standard/56712.htmlspa
dc.relation.referencesJamshidi, B. (2020). Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Ability of near-infrared spectroscopy for non-destructive detection of internal insect infestation in fruits : Meta-analysis of spectral ranges and optical measurement modes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 225, 117479. https://doi.org/10.1016/j.saa.2019.117479spa
dc.relation.referencesJia, X., Huang, J., Luan, H., Rozelle, S. & Swinnen, J. (2012). China’s Milk Scandal, government policy and production decisions of dairy farmers: The case of Greater Beijing. Food Policy, 37(4), 390–400. https://doi.org/10.1016/j.foodpol.2012.03.008spa
dc.relation.referencesKar, S, Tudu, B., Jana, A. & Bandyopadhyay, R. (2019). FT-NIR spectroscopy coupled with multivariate analysis for detection of starch adulteration in turmeric powder. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 36(6), 863–875. https://doi.org/10.1080/19440049.2019.1600746spa
dc.relation.referencesKar, Saumita, Tudu, B. & Bandyopadhyay, R. (2018). Comparison of Different Pre-processing Techniques towards Discrimination of Turmeric Powders using Near-infrared Spectra and Exploratory Data Analysis. 2018 IEEE Applied Signal Processing Conference (ASPCON), 193–197. https://doi.org/10.1109/ASPCON.2018.8748565spa
dc.relation.referencesKiani, S., Minaei, S. & Ghasemi-Varnamkhasti, M. (2017). Integration of computer vision and electronic nose as non-destructive systems for saffron adulteration detection. Computers and Electronics in Agriculture, 141, 46–53. https://doi.org/10.1016/j.compag.2017.06.018spa
dc.relation.referencesKong, W., An, H., Zhang, J., Sun, L., Nan, Y., Song, A. & Zhou, L. (2019). Development of a high-performance liquid chromatography with tandem mass spectrometry method for identifying common adulterant content in saffron (Crocus sativus L.). Journal of Pharmacy and Pharmacology, 71(12), 1864–1870. https://doi.org/10.1111/jphp.13152spa
dc.relation.referencesLakshmi, V. (2012). Food Adulteration. International Journal of Science Inventions Today, 1(2), 106–113. https://doi.org/10.1001/jama.1909.02540310058013spa
dc.relation.referencesLang, J., Mcnitt, L. & Robertson, I. (2014). Determination of Levels of Spice Adulteration using Near-infrared Spectroscopy.spa
dc.relation.referencesLee, S., Lohumi, S., Lim, H., Gotoh, T., Cho, B. & Kim, M. S. (2015). Development of a detection method for adulterated onion powder using raman spectroscopy. Journal of the Faculty of Agriculture Kyushu University, 60(1), 151–156.spa
dc.relation.referencesLeng, T., Li, F., Xiong, L., Xiong, Q., Zhu, M. & Chen, Y. (2020). Quantitative detection of binary and ternary adulteration of minced beef meat with pork and duck meat by NIR combined with chemometrics. Food Control, 113, 107–203. https://doi.org/10.1016/j.foodcont.2020.107203spa
dc.relation.referencesLima, A. B. S. de, Batista, A. S., Jesus, J. C. de, Silva, J. de J., Araújo, A. C. M. de & Santos, L. S. (2020). Fast quantitative detection of black pepper and cumin adulterations by near-infrared spectroscopy and multivariate modeling. Food Control, 107(July 2019), 106802. https://doi.org/10.1016/j.foodcont.2019.106802spa
dc.relation.referencesLohumi, S., Joshi, R., Kandpal, L. M., Lee, H., Kim, M. S., Cho, H., Mo, C., Seo, Y. W., Rahman, A. & Cho, B. K. (2017). Quantitative analysis of Sudan dye adulteration in paprika powder using FTIR spectroscopy. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 34(5), 678–686. https://doi.org/10.1080/19440049.2017.1290828spa
dc.relation.referencesLohumi, S., Lee, S. & Cho, B. K. (2015). Optimal variable selection for Fourier transform infrared spectroscopic analysis of starch-adulterated garlic powder. Sensors and Actuators B-Chemical, 216, 622–628. https://doi.org/10.1016/j.snb.2015.04.060spa
dc.relation.referencesLohumi, S., Lee, S., Lee, H. & Cho, B. K. (2015). A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends in Food Science and Technology, 46(1), 85–98. https://doi.org/10.1016/j.tifs.2015.08.003spa
dc.relation.referencesLohumi, S., Lee, S., Lee, W. H., Kim, M. S., Mo, C., Bae, H. & Cho, B. K. (2014). Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy. Journal of Agricultural and Food Chemistry, 62(38), 9246–9251. https://doi.org/10.1021/jf500574mspa
dc.relation.referencesMabood, F., Boqué, R., Alkindi, A. Y., Al-Harrasi, A., al Amri, I. S., Boukra, S., Jabeen, F., Hussain, J., Abbas, G., Naureen, Z., Haq, Q. M. I., Shah, H. H., Khan, A., Khalaf, S. K. & Kadim, I. (2020). Fast detection and quantification of pork meat in other meats by reflectance FT-NIR spectroscopy and multivariate analysis. Meat Science, 163(February), 108084. https://doi.org/10.1016/j.meatsci.2020.108084spa
dc.relation.referencesMartínez, J.a, B., Loria, J. c & Nava, A. A. (2008). Accidental poisoning with “Chinese chalk.” Acta Biomedica de l’Ateneo Parmense, 79(1), 36–38.spa
dc.relation.referencesMatthews, M. & Jack, M. (2011). Spices and herbs for home and market. In FAO diversification booklet No. 20.spa
dc.relation.referencesMazivila, S. J., Páscoa, R. N. M. J., Castro, R. C., Ribeiro, D. S. M. & Santos, J. L. M. (2020). Detection of melamine and sucrose as adulterants in milk powder using near-infrared spectroscopy with DD-SIMCA as one-class classifier and MCR-ALS as a means to provide pure profiles of milk and of both adulterants with forensic evidence: A short communic. Talanta, 216(February), 120937. https://doi.org/10.1016/j.talanta.2020.120937spa
dc.relation.referencesMcGrath, T. F., Haughey, S. A., Patterson, J., Fauhl-Hassek, C., Donarski, J., Alewijn, M., van Ruth, S. & Elliott, C. T. (2018). What are the scientific challenges in moving from targeted to non-targeted methods for food fraud testing and how can they be addressed? – Spectroscopy case study. Trends in Food Science and Technology, 76(December 2017), 38–55. https://doi.org/10.1016/j.tifs.2018.04.001spa
dc.relation.referencesMerieux NutriSciences. (2019). Fraude alimentario y autenticidad : Condimentos y Especias (pp. 1–2).spa
dc.relation.referencesMiller, J. (2009). Chromatography. In D. Andrews (Ed.), Encyclopedia of Applied Spectroscopy (pp. 1055–1102). WILEY-VCH Verlag GmbH & Co. KGaA.spa
dc.relation.referencesMohiuddin, A. K. (2019). Health Hazards with Adulterated Spices: Save the “Onion Tears.” International Research Journal of Public Health, 1(3), 1–6. https://doi.org/10.28933/irjph-2019-11-1205spa
dc.relation.referencesMonago-Maraña, O., Eskildsen, C. E., Galeano-Díaz, T., Muñoz de la Peña, A. & Wold, J. P. (2021). Untargeted classification for paprika powder authentication using visible – Near infrared spectroscopy (VIS-NIRS). Food Control, 121(June 2020). https://doi.org/10.1016/j.foodcont.2020.107564spa
dc.relation.referencesMoore, Jeffrey, Ganguly, A., Smeller, J., Botros, L., Mossoba, M. & Bergana, M. M. (2012). Standardisation of Non-Targeted Screening Tools to Detect Adulterations in Skim Milk Powder Using NIR Spectroscopy and Chemometrics. NIR News, 23(5), 9–11. https://doi.org/10.1255/nirn.1314spa
dc.relation.referencesMoore, Jeffrey, Spink, J. & Lipp, M. (2012). Development and Application of a Database of Food Ingredient Fraud and Economically Motivated Adulteration from 1980 to 2010. Journal of Food Science, 77(4). https://doi.org/10.1111/j.1750-3841.2012.02657.xspa
dc.relation.referencesMoore, Jessica. (2020). For Garlic Powder They Got Maltodextrin. Constantine Cannon. https://constantinecannon.com/2020/08/28/for-garlic-powder-they-got-maltodextrin/spa
dc.relation.referencesMorgano, M. (2005). Aplicação de Métodos Quimiométricos em Análise de Alimentos.spa
dc.relation.referencesMorozzi, P., Zappi, A., Gottardi, F., Locatelli, M. & Melucci, D. (2019). A quick and efficient non-targeted screening test for saffron authentication: Application of chemometrics to gas-chromatographic data. Molecules, 24(14), 1–13. https://doi.org/10.3390/molecules24142602spa
dc.relation.referencesNaes, T., Isaksson, T., Fearn, T. & Davies, T. (2004). User-friendly guide to multivariate Calibration and Classification. In NIR Publications.spa
dc.relation.referencesNallan, S., Cevoli, C., Balestra, F., Fabbri, A. & Dalla, M. (2019). Evaluation of drying of edible coating on bread using NIR spectroscopy. Journal of Food Engineering, 240, 29–37. https://doi.org/10.1016/j.jfoodeng.2018.07.009spa
dc.relation.referencesNallappan, K., Dash, J., Ray, S. & Pesala, B. (2013). Identification of adulterants in turmeric powder using terahertz spectroscopy. International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz. https://doi.org/10.1109/IRMMW-THz.2013.6665688spa
dc.relation.referencesNavarro, C. (2007). Posibilidades terapeuticas del bulbo de ajo (Allium sativum). Revista Fitoter, 7(2), 132–135.spa
dc.relation.referencesNetzel, M. E. (2020). Garlic: Much more than a common spice. Foods, 9(11), 16–18. https://doi.org/10.3390/foods9111544spa
dc.relation.referencesNielsen, S. (2010). Food Analysis (Fourth). Springer US. https://doi.org/10.1002/9780470723791.ch23spa
dc.relation.referencesOliveira, M. M., Cruz-Tirado, J. P. & Barbin, D. F. (2019). Nontargeted Analytical Methods as a Powerful Tool for the Authentication of Spices and Herbs: A Review. Comprehensive Reviews in Food Science and Food Safety, 18(3), 670–689. https://doi.org/10.1111/1541-4337.12436spa
dc.relation.referencesOsborne, B. G. (2006). Near-Infrared Spectroscopy in Food Analysis. Encyclopedia of Analytical Chemistry, 1–14. https://doi.org/10.1002/9780470027318.a1018spa
dc.relation.referencesOsman, A. G., Raman, V., Haider, S., Ali, Z., Chittiboyina, A. G. & Khan, I. A. (2019). Overview of analytical tools for the identification of adulterants in commonly traded herbs and spices. Journal of AOAC International, 102(2), 376–385. https://doi.org/10.5740/jaoacint.18-0389spa
dc.relation.referencesParastar, H., van Kollenburg, G., Weesepoel, Y., van den Doel, A., Buydens, L. & Jansen, J. (2020). Integration of handheld NIR and machine learning to “Measure & Monitor” chicken meat authenticity. Food Control, 112(December 2019), 107149. https://doi.org/10.1016/j.foodcont.2020.107149spa
dc.relation.referencesParvathy, V. A., Swetha, V. P., Sheeja, T. E., Leela, N. K., Chempakam, B. & Sasikumar, B. (2014). DNA barcoding to detect chilli adulteration in traded black pepper powder. Food Biotechnology, 28(1), 25–40. https://doi.org/10.1080/08905436.2013.870078spa
dc.relation.referencesParvathy, V. A., Swetha, V. P., Sheeja, T. E. & Sasikumar, B. (2015). Detection of plant-based adulterants in turmeric powder using DNA barcoding. Pharmaceutical Biology, 53(12), 1774–1779. https://doi.org/10.3109/13880209.2015.1005756spa
dc.relation.referencesPereira, E., Fernandes, D., de Araújo, M., Diniz, P. & Maciel, M. (2020). Simultaneous determination of goat milk adulteration with cow milk and their fat and protein contents using NIR spectroscopy and PLS algorithms. Lwt - Food Science and Technology, 127(November 2019), 109427. https://doi.org/10.1016/j.lwt.2020.109427spa
dc.relation.referencesPeris, M. & Escuder-Gilabert, L. (2016). Electronic noses and tongues to assess food authenticity and adulteration. Trends in Food Science and Technology, 58, 40–54. https://doi.org/10.1016/j.tifs.2016.10.014spa
dc.relation.referencesPerkin Elmer. (2018). Safeguarding Herb and Spice Authenticity.spa
dc.relation.referencesPetrakis, E. A., Cagliani, L. R., Polissiou, M. G. & Consonni, R. (2015). Evaluation of saffron (Crocus sativus L.) adulteration with plant adulterants by1H NMR metabolite fingerprinting. Food Chemistry, 173, 890–896. https://doi.org/10.1016/j.foodchem.2014.10.107spa
dc.relation.referencesPetrakis, E. A., Cagliani, L. R., Tarantilis, P. A., Polissiou, M. G. & Consonni, R. (2017). Sudan dyes in adulterated saffron (Crocus sativus L.): Identification and quantification by 1H NMR. Food Chemistry, 217, 418–424. https://doi.org/10.1016/j.foodchem.2016.08.078spa
dc.relation.referencesPetrakis, E. A. & Polissiou, M. G. (2017). Assessing saffron (Crocus sativus L.) adulteration with plant-derived adulterants by diffuse reflectance infrared Fourier transform spectroscopy coupled with chemometrics. Talanta, 162(August 2016), 558–566. https://doi.org/10.1016/j.talanta.2016.10.072spa
dc.relation.referencesPollack, K. (2016). Contamination Continues to Challenge Food Industry. Manufacturing.Net. https://www.manufacturing.net/safety/article/13162850/contamination-continues-to-challenge-food-industryspa
dc.relation.referencesPwC & SSAFE. (2016). Food fraud vulnerability assessment. www.pwc.com/foodfraudspa
dc.relation.referencesRamírez, H., Castro, L. & Martínez, E. (2016). Efectos Terapéuticos del Ajo (Allium Sativum). Salud y Administración, 3(8), 39–47. http://www.unsis.edu.mx/revista/doc/vol3num8/A4_Efectos_Terapeuticos_Ajo.pdfspa
dc.relation.referencesRani, R., Medhe, S. & Srivastava, M. M. (2015). HPTLC–MS based method development and validation for the detection of adulterants in spices. Journal of Food Measurement and Characterization, 9(2), 186–194. https://doi.org/10.1007/s11694-015-9223-xspa
dc.relation.referencesRavindran, A., Nesamani, F. P. & De, N. (2018). A Study on the use of Spectroscopic Techniques to Identify Food Adulteration. 2018 International Conference on Circuits and Systems in Digital Enterprise Technology, ICCSDET 2018, 1–6. https://doi.org/10.1109/ICCSDET.2018.8821197spa
dc.relation.referencesReveles, M., Velásquez, R. & Bravo, Á. (2009). TECNOLOGÍA PARA CULTIVAR AJO EN ZACATECAS Rodolfo Velásquez-Valle. INSTITUTO NACIONAL DE INVESTIGACIONES FORESTALES, AGRICOLAS Y PECUARIAS. http://zacatecas.inifap.gob.mx/publicaciones/Tecnologia para cultivar ajo en Zac.pdfspa
dc.relation.referencesRinnan, A., van den Berg, F. & Engelsen, S. (2009). Review of the most common pre-processing techniques for near-infrared spectra. Trends in Analytical Chemistry, 28(10), 1201–1222. https://doi.org/10.1016/j.trac.2009.07.007spa
dc.relation.referencesRosmino, C. (2020). Preventing food fraud: Europe’s battle against the spice pirates. Euronews. https://www.euronews.com/next/2020/11/02/preventing-food-fraud-europe-s-battle-against-the-spice-piratesspa
dc.relation.referencesSahu, P. K., Panda, J., Jogendra Kumar, Y. V. V. & Ranjitha, S. K. (2020). A robust RP-HPLC method for determination of turmeric adulteration. Journal of Liquid Chromatography and Related Technologies, 43(7–8), 247–254. https://doi.org/10.1080/10826076.2020.1722162spa
dc.relation.referencesSaif, S., Hanif, M., Rehman, R. & Riaz, M. (2020). Garlic. In M. A. Hanif, H. Nawaz, M. M. Khan & H. J. Byrne (Eds.), Medicinal Plants of South Asia (pp. 301–315). Elsevier Ltd. https://doi.org/https://doi.org/10.1016/C2017-0-02046-3spa
dc.relation.referencesSasikumar, B., Swetha, V. P., Parvathy, V. A. & Sheeja, T. E. (2016). Advances in Adulteration and Authenticity Testing of Herbs and Spices. In Advances in Food Authenticity Testing. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-100220-9.00022-9spa
dc.relation.referencesSebaei, A. S., Youssif, M. I. & Abdel-Maksoud Ghazi, A. (2019). Determination of seven illegal dyes in Egyptian spices by HPLC with gel permeation chromatography clean up. Journal of Food Composition and Analysis, 84(March), 103304. https://doi.org/10.1016/j.jfca.2019.103304spa
dc.relation.referencesShaffer, R., Rose-Pehrsson, S. & McGill, A. (1998). Probabilistic Neural Networks for Chemical Sensor Array Pattern Recognition : Comparison Studies , Improvements and Automated Outlier Rejection. In Naval Research Laboratory.spa
dc.relation.referencesSherman, E. (2017). Garlic Powder Diluted with Chalk Might be the Latest Food Fraud. Food & Wine. https://www.foodandwine.com/news/garlic-powder-might-be-diluted-chalkspa
dc.relation.referencesSiesler, H., Ozaki, Y., Kawata, S. & Heise, H. (2006). Near-Infrared Spectroscopy Principles, Instruments, Applications. WILEY-VCH.spa
dc.relation.referencesSilvis, I. C. J., van Ruth, S. M., van der Fels-Klerx, H. J. & Luning, P. A. (2017). Assessment of food fraud vulnerability in the spices chain: An explorative study. Food Control, 81, 80–87. https://doi.org/10.1016/j.foodcont.2017.05.019spa
dc.relation.referencesSingh, R., Singh, K. & Radha Singh, C. (2019). Garlic: A spice with wide medicinal actions. ~ 1349 ~ Journal of Pharmacognosy and Phytochemistry, 8(1), 1349–1355. https://www.phytojournal.com/archives/?year=2019&vol=8&issue=1&ArticleId=6946spa
dc.relation.referencesSoldado, A., Modroño, S., Casal, C., Martínez-Fernández, A., Roza-Delgado, D. la & B. (2015). Implantación de la tecnología NIRS en el control de calidad de ensilados a nivel de explotación. Reunión Científica de La Sociedad Española Para El Estudio de Los Pastos, 54.spa
dc.relation.referencesSpink, J. & Moyer, D. C. (2011). Defining the Public Health Threat of Food Fraud. Journal of Food Science, 76(9), 157–163. https://doi.org/10.1111/j.1750-3841.2011.02417.xspa
dc.relation.referencesSu, W. H. & Sun, D. W. (2018). Fourier Transform Infrared and Raman and Hyperspectral Imaging Techniques for Quality Determinations of Powdery Foods: A Review. Comprehensive Reviews in Food Science and Food Safety, 17(1), 104–122. https://doi.org/10.1111/1541-4337.12314spa
dc.relation.referencesSuárez, M. (2016, July 16). Productos El Rey explora Suramérica para exportar. La República. https://www.larepublica.co/empresas/productos-el-rey-explora-suramerica-para-exportar-2400506#:~:text=El Rey cuenta con una,mercado nacional como nuestras exportaciones.spa
dc.relation.referencesSun, X. S. (2012). Overview of Plant Polymers: Resources, Demands, and Sustainability. Resources, Demands, and Sustainability. Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications, 2005, 1–10. https://doi.org/10.1016/B978-1-4557-2834-3.00001-Xspa
dc.relation.referencesSwetha, V. P., Parvathy, V. A., Sheeja, T. E. & Sasikumar, B. (2014). DNA Barcoding for Discriminating the Economically Important Cinnamomum verum from Its Adulterants. Food Biotechnology, 28(3), 183–194. https://doi.org/10.1080/08905436.2014.931239spa
dc.relation.referencesTahri, K., Tiebe, C., el Bari, N., Hübert, T. & Bouchikhi, B. (2016). Geographical provenience differentiation and adulteration detection of cumin by means of electronic sensing systems and SPME-GC-MS in combination with different chemometric approaches. Analytical Methods, 8(42), 7638–7649. https://doi.org/10.1039/c6ay01906dspa
dc.relation.referencesTapsell, L. C., Hemphill, I., Cobiac, L., Patch, C. S., Sullivan, D. R., Fenech, M., Roodenrys, S., Keogh, J. B., Clifton, P. M., Williams, P. G., Fazio, V. A. & Inge, K. E. (2006). Health benefits of herbs and spices: the past, the present, the future. The Medical Journal of Australia., 185(4 Suppl). https://doi.org/10.5694/j.1326-5377.2006.tb00548.xspa
dc.relation.referencesTarantelli, T. (2017). Adulteration with Sudan Dye Has Triggered Several Spice Recalls. Food Safety Tech. https://foodsafetytech.com/feature_article/adulteration-sudan-dye-triggered-several-spice-recalls/spa
dc.relation.referencesTemizkan, R., Can, A., Dogan, M. A., Mortas, M. & Ayvaz, H. (2020). Rapid detection of milk fat adulteration in yoghurts using near and mid-infrared spectroscopy. International Dairy Journal, 110, 104795. https://doi.org/10.1016/j.idairyj.2020.104795spa
dc.relation.referencesThangavel, K. & Dhivya, K. (2019). Determination of curcumin, starch and moisture content in turmeric by Fourier transform near infrared spectroscopy (FT-NIR). Engineering in Agriculture, Environment and Food, 12(2), 264–269. https://doi.org/10.1016/j.eaef.2019.02.003spa
dc.relation.referencesTimes of india. (2020). UP factory making fake spices using donkey dung, husk and acids busted. The Times of India. https://timesofindia.indiatimes.com/life-style/food-news/up-factory-making-fake-spices-using-donkey-dung-husk-and-acids-busted/articleshow/79774790.cmsspa
dc.relation.referencesTorelli, A., Marieschi, M. & Bruni, R. (2014). Authentication of saffron (Crocus sativus L.) in different processed, retail products by means of SCAR markers. Food Control, 36(1), 126–131. https://doi.org/10.1016/j.foodcont.2013.08.001spa
dc.relation.referencesTremlová, B. (2001). Evidence of spice black pepper adulteration. Czech Journal of Food Science, 19, 235–238.spa
dc.relation.referencesWang, H., Peng, J., Xie, C., Bao, Y. & He, Y. (2015). Fruit Quality Evaluation Using Spectroscopy Technology: A review. Sensors, 15(5), 11889–11927.spa
dc.relation.referencesWilde, A. S., Haughey, S. A., Galvin-King, P. & Elliott, C. T. (2019). The feasibility of applying NIR and FT-IR fingerprinting to detect adulteration in black pepper. Food Control, 100(January), 1–7. https://doi.org/10.1016/j.foodcont.2018.12.039spa
dc.relation.referencesWittenberger, K. & Dohlman, E. (2010). Peanut outlook: impacts of the 2008-09 foodborne illness outbreak linked to salmonella in peanuts. In Economic Research Service of the United States Department of Agriculture. https://www.ers.usda.gov/webdocs/publications/37835/8684_ocs10a01_1_.pdfspa
dc.relation.referencesZhang, M., Shi, Y., Sun, W., Wu, L., Xiong, C., Zhu, Z., Zhao, H., Zhang, B., Wang, C. & Liu, X. (2019). An efficient DNA barcoding based method for the authentication and adulteration detection of the powdered natural spices. Food Control, 106(February). https://doi.org/10.1016/j.foodcont.2019.106745spa
dc.relation.referencesZhang, Y., Yang, Z., Li, R., Geng, H. & Dong, C. (2015). Investigation of fine chalk dust particles’ chemical compositions and toxicities on alveolar macrophages in vitro. Chemosphere, 120, 500–506. https://doi.org/10.1016/j.chemosphere.2014.09.009spa
dc.relation.referencesZhu, F. (2018). Relationships between amylopectin internal molecular structure and physicochemical properties of starch. Trends in Food Science and Technology, 78(May), 234–242. https://doi.org/10.1016/j.tifs.2018.05.024spa
dc.relation.referencesZossi, S., Ruiz, R., Sorol, N. & Sastre, M. (2010). Espectroscopía por Infrarrojo cercano (NIRS). Su aplicación en análisis de jugos de caña de azúcar. Revista Industrial y Agrícola de Tucumán, 87(1), 1–6.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.proposalAutenticidadspa
dc.subject.proposalFraude alimentariospa
dc.subject.proposalSeguridad alimentariaspa
dc.subject.proposalEspeciaspa
dc.titleDesarrollo de un modelo de identificación de adulterantes para control de calidad en ajo en polvospa
dc.title.translatedDevelopment of a model for identification of adulterants for quality control of garlic powdereng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitle47611 - Uso de espectroscopía en infrarrojo cercano (NIR) en la Identificación de un adulterante en ajo en polvospa
oaire.awardtitle48522 - Uso de espectroscopía NIR en la identificación de adulterantes en ajo en polvoespa
oaire.fundernameSistema de Información Hermes - Universidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018483673.2022.pdf
Tamaño:
1.5 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: