Atribución-NoComercial 4.0 InternacionalPerdomo, Oscar2019-06-282019-06-282002https://repositorio.unal.edu.co/handle/unal/43808In this paper we prove that if M ⊏ ℝn , n = 8 or n = 9, is a n  - 1 dimensional stable minimal complete cone such that its scalar curvature varies radially, then M must be either a hyperplane or a Clifford minimal cone. By Gauss' formula, the condition on the scalar curvature is equivalent to the condition that the function K1(m)2 + ... + Kn-1 (m)2 varies radially. Here the Ki are the principal curvatures at m ∈ M. Under the same hypothesis, for M ⊏ ℝ10  we prove that if not only K1(m)2 + ... + Kn-1 (m)2   varies radially but either K1(m)3 + ... + Kn-1 (m)3 varies radially or K1(m)4 + ... + Kn-1 (m)4 varies radially, then M must be either a hyperplane or a Clifford minimal cone.application/pdfspaDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvatureArtículo de revistahttp://bdigital.unal.edu.co/33906/info:eu-repo/semantics/openAccessClifford hypersurfacesminimal hypersurfacesshape operator