Atribución-NoComercial-SinDerivadas 4.0 InternacionalRubiano-Sanabria, YolandaRodríguez Vásquez, Andrés FelipeSocadagui Casas, Diego Arley2025-04-212025-04-212025https://repositorio.unal.edu.co/handle/unal/88013ilustraciones, diagramas, mapasEl cultivo de caña de azúcar es fundamental para la economía agrícola de Colombia, particu larmente en el Valle del Río Cauca, una región que se enfrenta a desafíos como el cambio climático y la gestión eficiente de recursos. En este contexto, el uso de tecnologías de aprendizaje de máquina (AA) y datos geoespaciales se presenta como una solución innovadora para predecir de manera precisa el rendimiento de los cultivos, optimizando el uso de agua y otros insumos clave. Este estudio propone una metodología que integra datos históricos de clima, suelo y manejo agrícola con algoritmos de AA como Random Forest, XGBoost, y Catboost, con el fin de desarrollar modelos predictivos robustos que proporcionen estimaciones espaciales del rendimiento de la caña de azúcar. Los resultados muestran que los modelos basados en AA superan a los métodos tradicionales (cómo regresiones lineales y penalizadas), proporcionando predicciones más precisas que pueden ser implementadas para la planificación agrícola y la gestión de recursos en el Valle del Río Cauca, más específicamente en el municipio de La Candelaria. La investigación destaca el potencial de las técnicas avanzadas de AA para mejorar la eficiencia productiva y contribuir a una agricultura más sostenible (texto tomado de la fuente).El cultivo de caña de azúcar es fundamental para la economía agrícola de Colombia, particu larmente en el Valle del Río Cauca, una región que se enfrenta a desafíos como el cambio climático y la gestión eficiente de recursos. En este contexto, el uso de tecnologías de aprendizaje de máquina (AA) y datos geoespaciales se presenta como una solución innovadora para predecir de manera precisa el rendimiento de los cultivos, optimizando el uso de agua y otros insumos clave. Este estudio propone una metodología que integra datos históricos de clima, suelo y manejo agrícola con algoritmos de AA como Random Forest, XGBoost, y Catboost, con el fin de desarrollar modelos predictivos robustos que proporcionen estimaciones espaciales del rendimiento de la caña de azúcar. Los resultados muestran que los modelos basados en AA superan a los métodos tradicionales (cómo regresiones lineales y penalizadas), proporcionando predicciones más precisas que pueden ser implementadas para la planificación agrícola y la gestión de recursos en el Valle del Río Cauca, más específicamente en el municipio de La Candelaria. La investigación destaca el potencial de las técnicas avanzadas de AA para mejorar la eficiencia productiva y contribuir a una agricultura más sostenible (texto tomado de la fuente).x, 98 páginasapplication/pdfspa630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesPredicción espacial del rendimiento del cultivo de caña de azúcar (Saccharum officinarum) mediante aprendizaje de máquinaTrabajo de grado - MaestríaUniversidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/info:eu-repo/semantics/openAccessCaña de azúcarAprendizaje automático (Inteligencia artificial)Recursos hídricosAgricultura sostenibleCaña de azúcaraprendizaje de máquinaaprendizaje automáticopredicción es pacialrecursos hídricosagricultura sosteniblerendimientoSpatial prediction of sugarcane (Saccharum officinarum) crop yield using machine learning