Atribución-NoComercial 4.0 InternacionalSarria, HumbertoMartínez, Juan Carlos2019-07-022019-07-022016-07-01ISSN: 2357-6529https://repositorio.unal.edu.co/handle/unal/61874Using the standard deviation of the real samples μn ≥ … ≥ μ1 and λn ≥ … ≥ λ1, we refine the Chebyshev's inequality (refer to [5]),As a consequence, we obtain a new proof of the Benedetti's inequality (refer to [1], [2] and [4])where Cov[μ, λ], s(μ) and s(λ) denote the covariance, and the standard deviations (≠ 0) of the sample vectors μ = (μ1, …, μn) and λ = (λ1, …, λn), respectively.We can also get very interesting applications to eigenvalues and singular values perturbation theory. For some kinds of matrices, the result that we present improves the well known Homand-Weiland's inequality.application/pdfspaDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/51 Matemáticas / MathematicsA new proof of the Benedetti's inequality and some applications to perturbation to real eigenvalues and singular valuesArtículo de revistahttp://bdigital.unal.edu.co/60686/info:eu-repo/semantics/openAccessChebyshev's inequalityHomand-Weiland's inequalityeigenvalues perturbationsingular value perturbation.