Atribución-NoComercial-SinDerivadas 4.0 InternacionalVelásquez Henao, Juan DavidHenao Ríos, Carolina2022-08-172022-08-172021https://repositorio.unal.edu.co/handle/unal/81925ilustraciones, diagramas, tablasEste trabajo final de maestría presenta diferentes modelos de machine learning que buscan predecir la propensión a la renuncia voluntaria de los colaboradores de la Caja de Compensación Comfenalco Antioquia. Para su desarrollo se recolectaron los datos históricos de los colaboradores que han renunciado y de los que permanecen activos en la Caja de Compensación, los cuales fueron verificados, limpiados, transformados y modelados con diferentes técnicas estadísticas en Python. Los resultados obtenidos indican que el mejor modelo de machine learning para pronosticar la propensión a la renuncia con los datos obtenidos es el XGBoost, con una métrica de precisión del 87,3%. Además, se identificó que la estructura organizacional de la Caja de Compensación representa un riesgo para los ejercicios de pronóstico que se deseen realizar, debido a que sus múltiples mutaciones a lo largo de la historia pueden generar desviaciones mayores en la predicción de los modelos y es una variable que debe ser homologada de una manera que pueda tener permanencia en el tiempo. (Texto tomado de la fuente)This final master's thesis presents different machine learning models that seek to predict the propensity to voluntary resignation of employees of the Comfenalco Antioquia Compensation Fund. For its development, the historical data of the collaborators who have resigned and those who remain active in the Compensation Fund were collected, which were verified, cleaned, transformed, and modeled with different statistical techniques in Python. The results obtained indicate that the best machine learning model to predict the propensity to resign with the data obtained is XGBoost, with a precision metric of 87.3%. In addition, it was identified that the organizational structure of the Compensation Fund represents a risk for the forecasting exercises that are to be carried out, because its multiple mutations throughout history can generate greater deviations in the prediction of the models and is a variable that must be homologated in a way that can have permanence over time.47 páginasapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/4.0/000 - Ciencias de la computación, información y obras generales650 - Gerencia y servicios auxiliares::658 - Gerencia generalModelo de medición de la rotación de personal como variable de decisión estratégicaTrabajo de grado - MaestríaUniversidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/info:eu-repo/semantics/openAccessAdministración de personalPersonnel managementMachine learningModelos de pronósticoRenuncia voluntariaForecasting modelsVoluntary resignationModel for measuring staff turnover as a strategic decision variable