Evaluación de esquemas de remuneración de Sistemas de Almacenamiento de Energía con Baterías a gran escala conectados a redes de transmisión en Colombia

Juan Manuel Mejía Taborda

Trabajo Final como requisito para optar al título de: Magister en ingeniería, Sistemas Energéticos

Director:

PhD, Carlos Jaime Franco Cardona

Universidad Nacional de Colombia – Sede Medellín
Facultad de Minas
Departamento de Ciencias de la Computación y la Decisión
Medellín, Colombia
2021
Contenido

Resumen ... 6
Palabras Clave .. 6
Abstract ... 7
Keywords .. 7
Lista de Abreviaturas ... 8
Introducción ... 9

1 Antecedentes

1.1 Introducción del capítulo ... 11
1.2 Estado actual de los ESS y BESS .. 11
1.3 Aplicaciones de los BESS ... 12
1.4 Motivaciones para la implementación de BESS 13
1.5 BESS en Colombia .. 13

2 Marco teórico

2.1 Introducción del capítulo ... 17
2.2 Tecnologías de almacenamiento de energía .. 17
2.3 Servicios asociados a los ESS ... 18
2.3.1 Servicios al Mercado Mayorista de Energía 18
2.3.2 Servicios Auxiliares ... 18
2.3.3 Aplazamiento de inversión en Transmisión y Distribución (T&D) 20
2.4 Modelos de Remuneración para ESS ... 21
2.4.1 Costo por Servicio .. 21
2.4.5 Participación en el Mercado Mayorista ... 21
2.4.6 Detrás del medidor .. 22
2.5 Interacciones, agregaciones y efectos de las aplicaciones de BESS 22
2.6 Marco regulatorio colombiano ... 22
2.7 Conclusiones .. 24

3 Revisión de Literatura.. 25

4 Objetivos y metodología

4.1 Objetivo General ... 29
4.2 Objetivos Específicos .. 29
4.3 Metodología ... 29
4.3.1 Etapa 1 – Servicios asociados a BESS y aplicación a Colombia 30
4.3.2 Etapa 2 – Remuneración de servicios de BESS 30
4.3.3 Etapa 3 – Planteamiento de los modelos de servicios y remuneración para evaluación .. 31
4.3.4 Etapa 4 – Evaluación de esquemas propuestos y análisis de resultados.... 31

5 Servicios asociados a BESS en operación ... 32
5.1 Introducción del capítulo ... 32
5.2 Fuentes de información .. 32
5.3 Esquemas de operación para prestación de servicios 39
5.4 Aplicabilidad de los servicios a las condiciones de mercado de Colombia 40
5.4.1 Análisis iniciales sobre el mercado colombiano 40
5.4.2 Aplicaciones que requieren diseños regulatorios 41
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.3</td>
<td>Aplicaciones viables con las condiciones de mercado actuales</td>
<td>46</td>
</tr>
<tr>
<td>5.5</td>
<td>Conclusiones</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>Remuneración de servicios de BESS en mercados internacionales</td>
<td>50</td>
</tr>
<tr>
<td>6.1</td>
<td>Introducción del capítulo</td>
<td>50</td>
</tr>
<tr>
<td>6.2</td>
<td>Australia</td>
<td>50</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Servicios no regulados (De mercado)</td>
<td>50</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Servicios regulados (No sujetos a mercado)</td>
<td>52</td>
</tr>
<tr>
<td>6.2.3</td>
<td>BESS como activos de transmisión</td>
<td>53</td>
</tr>
<tr>
<td>6.3</td>
<td>California</td>
<td>54</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Agrupación de proyectos BESS según CAISO</td>
<td>54</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Servicios sin mercado</td>
<td>57</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Propuestas regulatorias</td>
<td>57</td>
</tr>
<tr>
<td>6.4</td>
<td>Conclusiones</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>Propuesta de servicios y esquemas de remuneración para BESS en Colombia</td>
<td>61</td>
</tr>
<tr>
<td>7.1</td>
<td>Introducción del capítulo</td>
<td>61</td>
</tr>
<tr>
<td>7.2</td>
<td>Descripción técnica del proyecto para evaluación</td>
<td>61</td>
</tr>
<tr>
<td>7.3</td>
<td>Esquemas de remuneración</td>
<td>62</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Remuneración total regulada por recuperación de costos como activo de</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>transmisión</td>
<td></td>
</tr>
<tr>
<td>7.3.2</td>
<td>Remuneración total por prestación de servicios de mercado</td>
<td>63</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Remuneración dividida entre ingresos de mercado e ingresos regulados</td>
<td>67</td>
</tr>
<tr>
<td>7.4</td>
<td>Conclusiones</td>
<td>69</td>
</tr>
<tr>
<td>8</td>
<td>Evaluación Financiera</td>
<td>70</td>
</tr>
<tr>
<td>8.1</td>
<td>Introducción del capítulo</td>
<td>70</td>
</tr>
<tr>
<td>8.2</td>
<td>Modelo de evaluación</td>
<td>70</td>
</tr>
<tr>
<td>8.3</td>
<td>Consideraciones y supuestos generales</td>
<td>71</td>
</tr>
<tr>
<td>8.4</td>
<td>Inversión</td>
<td>71</td>
</tr>
<tr>
<td>8.5</td>
<td>Ingresos</td>
<td>72</td>
</tr>
<tr>
<td>8.6</td>
<td>Egresos</td>
<td>73</td>
</tr>
<tr>
<td>8.6.1</td>
<td>Compra de energía para carga</td>
<td>73</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Impuestos y cargos</td>
<td>76</td>
</tr>
<tr>
<td>8.7</td>
<td>Análisis de resultados</td>
<td>77</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Remuneración total por ingresos regulados</td>
<td>77</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Remuneración total por prestación de servicios de mercado</td>
<td>79</td>
</tr>
<tr>
<td>8.7.3</td>
<td>Remuneración dividida entre ingresos de mercado e ingresos regulados</td>
<td>81</td>
</tr>
<tr>
<td>8.7.4</td>
<td>Resumen y conclusiones</td>
<td>86</td>
</tr>
<tr>
<td>9</td>
<td>Conclusiones y trabajos futuros</td>
<td>91</td>
</tr>
<tr>
<td>9.1</td>
<td>Conclusiones sobre el cumplimiento de los objetivos</td>
<td>91</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Objetivo específico 1</td>
<td>91</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Objetivo específico 2</td>
<td>91</td>
</tr>
<tr>
<td>9.1.3</td>
<td>Objetivo específico 4</td>
<td>92</td>
</tr>
<tr>
<td>9.1.4</td>
<td>Objetivo general</td>
<td>93</td>
</tr>
<tr>
<td>9.2</td>
<td>Trabajos futuros</td>
<td>94</td>
</tr>
<tr>
<td>Bibliografía</td>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 1: Revisión de literatura basada en Scopus .. 26
Tabla 2: Proyectos BESS extraídos de la base de datos de (Sandia National Laboratories, 2020) Análisis de los servicios identificados .. 34
Tabla 3. Mercados de FCAS de contingencia ... 38
Tabla 4. Mercados de FCAS de regulación ... 39
Tabla 5. Resumen Servicios aplicables al sistema colombiano 48
Tabla 6. Servicios considerados para la evaluación .. 48
Tabla 7: Opciones de mercado de RF para BESS en California 56
Tabla 8. Requerimientos técnicos del proyecto (UPME, 2021c) 62
Tabla 9. Energía disponible para venta en ciclo diario .. 64
Tabla 10. Energía anual para servicios de mercado bajo regla California 68
Tabla 11. Costos del proyecto ... 71
Tabla 12. Ingresos anuales por arbitraje de energía .. 72
Tabla 13. Ingresos anuales por AGC ... 72
Tabla 15. Tarifa compra de energía del BESS .. 75
Tabla 16. Egresos anuales por compra de energía en mercado no regulado 75
Tabla 17. Egresos anuales por compra de energía en mercado generadores 76
Tabla 18. Resumen resultados – Solo ingresos regulados ... 78
Tabla 19. Resumen resultados – Solo ingresos por arbitraje 79
Tabla 20. Resumen resultados – Solo ingresos por AGC .. 80
Tabla 21. Resumen ingresos – AGC con dos ciclos de carga/descarga 81
Tabla 22. Resumen egresos compra energía – AGC con dos ciclos de carga/descarga . 81
Tabla 23. Resumen evaluación – AGC con dos ciclos de carga/descarga 81
Tabla 24. Resumen resultados – Arbitraje + Activo de Transmisión 82
Tabla 25. Resumen resultados – AGC + Activo de Transmisión 83
Tabla 26. Resumen ingresos – AGC+AT25% con dos ciclos de carga/descarga 85
Tabla 27. Resumen egresos compra energía – AGC+AT25% con dos ciclos de carga/descarga .. 85
Tabla 28. Resumen evaluación – AGC+AT25% con dos ciclos de carga/descarga 86
Tabla 29. Resumen de agrupaciones de servicios y esquemas de remuneración 87
Lista de Figuras

Figura 1: Servicios asociados a BESS. Adaptado de (IRENA, 2020).. 12
Figura 2: Definiciones principales resolución CREG 098 de 2019.. 15
Figura 3: Tecnologías principales de almacenamiento de energía. Adaptado de
(Swierczynski et al., 2010). .. 17
Figura 4: Resumen de RF. Adaptado de (IRENA, 2020). ... 19
Figura 5: Servicios de ESS como activo de T&D. Tomado de (IRENA, 2020)............................ 20
Figura 6: Metodología... 29
Figura 7: Frecuencia de aparición de servicios en BESS seleccionados............................. 35
Figura 8. Requerimiento de margen de rampa en el sistema. Tomado de (Hu et al., 2018).
.. 37
Figura 9: Curva de demanda de energía promedio en Colombia (XM, n.d.-b)................. 42
Figura 10: Tipos de restricciones en el SIN (CND, 2019)... 47
Figura 11: Costo promedio de FCAS en Australia del Sur y Victoria (AURECON, 2020). 52
Figura 12: Reglas de usos múltiples de CPUC para ESS (CPUC, 2018b). 58
Figura 13. Precio de bolsa nacional – Promedio anual ... 63
Figura 14. Requerimiento promedio horario anual de holgura para AGC en el SIN........ 66
Resumen

Los sistemas de almacenamiento con baterías a escala de transmisión y distribución representan una tecnología de incipiente desarrollo en el contexto de la transformación energética en Colombia. Estos sistemas revisten gran interés por los beneficios técnicos y económicos asociados a su operación en todos los niveles de la cadena de suministro de energía. Uno de los desafíos a nivel global asociados a esta tecnología consiste en la definición de productos y modelos de remuneración para capitalizar los beneficios mencionados, que sean atractivos para los inversionistas a la vez que promueven la eficiencia en costos de la red. El objetivo del presente trabajo es proponer y evaluar modelos de remuneración para un caso práctico de un sistema de almacenamiento con baterías conectado en la red de distribución de la ciudad de Barranquilla, Colombia. Inicialmente, se identifican los servicios aplicables al mercado colombiano bajo las condiciones regulatorias actuales y se plantean mecanismos para la captura de valor asociado a dichos servicios, por parte del inversionista, a partir de referentes de mercados internacionales. Los mecanismos planteados consideran ingresos por recuperación regulada de costos, por participación en mercados de energía y servicios complementarios. El trabajo permitirá dar una idea preliminar, a inversionistas, reguladores y planeadores, del esquema de remuneración que mejor capture el valor para los sistemas de almacenamiento con baterías a gran escala en Colombia, al tiempo que identifica barreras regulatorias para una mayor explotación del potencial económico de dichos sistemas.

Palabras Clave

Sistemas de almacenamiento de energía, baterías de ion-litio, esquema de remuneración, mercado de energía, servicios auxiliares, evaluación económica.
Abstract
Evaluation of remuneration schemes for large-scale Battery Energy Storage Systems connected to transmission networks in Colombia.

Transmission and distribution-scale battery energy storage systems are a technology of growing development in the context of the Colombian energy-transition process. These systems attract major interest due to the technical and economic benefits associated to their operation, in every level of the energy supply chain. One of the global challenges related to this technology consists in the definition of products and revenue models to capitalize the benefits, that is attractive to investors while promotes grid cost-efficiency. The aim of this work is to propose and to evaluate revenue models for a battery energy storage system to be installed in the distribution grid of Barranquilla, Colombia. First, the services applicable to these systems under current regulatory framework will be identified. There will be presented mechanisms for the investor to capture the value associated to these services, based on the reference of international markets. The proposed mechanisms will consider cost-based, energy market and ancillary services revenue streams. The work will give investors, regulators and grid planners, a preliminary approach to the revenue stream which allows the most value capture to transmission and distribution-scale battery energy storage systems in Colombia, while identifying regulatory barriers for a wider exploitation of the potential economic benefits from these systems.

Keywords
Energy storage systems, lithium-ion batteries, revenue streams, energy market, ancillary services, economic assessment.
Lista de Abreviaturas

<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>GD</td>
<td>Generación distribuida</td>
</tr>
<tr>
<td>DR</td>
<td>Respuesta de demanda</td>
</tr>
<tr>
<td>BESS</td>
<td>Sistemas de almacenamiento de energía con baterías</td>
</tr>
<tr>
<td>T&D</td>
<td>Transmisión y distribución de energía eléctrica</td>
</tr>
<tr>
<td>ESS</td>
<td>Sistemas de almacenamiento de energía</td>
</tr>
<tr>
<td>PHS</td>
<td>Centrales de rebombeo</td>
</tr>
<tr>
<td>FERNC</td>
<td>Fuentes de energía renovables no convencionales</td>
</tr>
<tr>
<td>IEA</td>
<td>Agencia Internacional de Energía</td>
</tr>
<tr>
<td>EV</td>
<td>Vehículos eléctricos</td>
</tr>
<tr>
<td>CPUC</td>
<td>Comisión de Servicios Públicos de California</td>
</tr>
<tr>
<td>CAISO</td>
<td>Operador independiente del sistema eléctrico de California</td>
</tr>
<tr>
<td>SIN</td>
<td>Sistema interconectado nacional</td>
</tr>
<tr>
<td>UPME</td>
<td>Unidad de Planeación Minero Energética</td>
</tr>
<tr>
<td>PERGT</td>
<td>Plan de Expansión de Referencia Generación – Transmisión</td>
</tr>
<tr>
<td>STR</td>
<td>Sistema de transmisión regional</td>
</tr>
<tr>
<td>OR</td>
<td>Operador de red</td>
</tr>
<tr>
<td>CREG</td>
<td>Comisión de Regulación de Energía y Gas</td>
</tr>
<tr>
<td>IAE</td>
<td>Ingreso Anual Esperado</td>
</tr>
<tr>
<td>CND</td>
<td>Centro Nacional de Despacho de Colombia</td>
</tr>
<tr>
<td>MEM</td>
<td>Mercado de energía mayorista de Colombia</td>
</tr>
<tr>
<td>SA</td>
<td>Servicios auxiliares</td>
</tr>
<tr>
<td>RFP</td>
<td>Regulación de frecuencia primaria</td>
</tr>
<tr>
<td>RFS</td>
<td>Regulación de frecuencia secundaria</td>
</tr>
<tr>
<td>RFT</td>
<td>Regulación de frecuencia terciaria</td>
</tr>
<tr>
<td>FFR</td>
<td>Respuesta rápida de frecuencia</td>
</tr>
<tr>
<td>RV</td>
<td>Regulación de voltaje</td>
</tr>
<tr>
<td>AGC</td>
<td>Control automático de generación</td>
</tr>
<tr>
<td>MILP</td>
<td>Programación lineal en enteros mixta</td>
</tr>
<tr>
<td>VPN</td>
<td>Valor presente neto</td>
</tr>
</tbody>
</table>
Introducción

El mercado eléctrico de Colombia está atravesando actualmente un proceso de reestructuración enfocado a la eficiencia, que busca consolidar mecanismos y tecnologías como los mercados de tiempo real, la respuesta de la demanda (DR) y la generación distribuida (GD), entre otros. Los sistemas de almacenamiento con baterías (BESS) a escala de transmisión y distribución (T&D) representan una de estas tecnologías de incipiente desarrollo en este contexto de transformación energética en Colombia.

Estos sistemas revisten gran interés por los beneficios técnicos y económicos asociados a su operación, en todos los niveles de la cadena de suministro de energía. A nivel de generación y transmisión, los BESS pueden brindar una reserva de capacidad adicional a las plantas tradicionales para períodos pico, desplazar o aplanar los picos de demanda, suministrar servicios de balance del sistema, alivio de congestiones, aplazamiento de la inversión en infraestructura de T&D, entre otros servicios que variarían en impacto económico y operativo de acuerdo con las características de cada mercado.

Uno de los desafíos a nivel global asociados a los BESS consiste en la definición de productos y modelos de remuneración para capitalizar los beneficios mencionados, que sean atractivos para los inversionistas a la vez que promueven la eficiencia en costos de cara a la red y los consumidores finales. Diferentes trabajos, referenciados a lo largo del presente documento, concluyen sobre la no viabilidad económica y financiera de proyectos de BESS que suministran solo un servicio, por lo cual una de las tendencias a nivel global es la adecuación y definición de reglas de mercado que permitan a dichos sistemas recibir ingresos por participación en diferentes servicios agregados.

El objetivo del presente trabajo es proponer y evaluar modelos de remuneración para el caso práctico de un BESS conectado en la red de distribución de la ciudad de Barranquilla, Colombia. Por un lado, se identificarán los servicios aplicables al mercado colombiano bajo las condiciones regulatorias actuales y se plantearán mecanismos para la captura de valor asociado a dichos servicios por parte del inversionista a partir de referentes de mercados internacionales. Los mecanismos planteados considerarán ingresos por recuperación regulada de costos, por participación en mercados de energía y servicios complementarios.

El trabajo permitirá dar una idea preliminar, a inversionistas, reguladores y planeadores, del esquema de remuneración de mejor captura de valor para los BESS a gran escala en Colombia, al tiempo que identifica barreras regulatorias para una mayor explotación del potencial económico de dichos sistemas.

Este trabajo final está organizado en once capítulos. En el primer capítulo se detallan los antecedentes del desarrollo de BESS en el contexto nacional e internacional, que rodean el problema abordado. El capítulo 2 corresponde al marco teórico del trabajo, que agrupa
los principales conceptos de tecnologías, servicios y esquemas de remuneración a partir de los cuales se definen las propuestas a evaluar. El tercer capítulo es una revisión de literatura donde se mencionan trabajos realizados por otros autores en los cuales se abordan evaluaciones de viabilidad económica y financiera de BESS considerando participación en el mercado de algún país o región a través de uno o varios servicios. A partir de la acotación del problema en los capítulos mencionados se definen, en el capítulo 4, los objetivos, general y específicos a abordar en este trabajo final.

A partir del capítulo 5, se desarrollan los análisis para dar cumplimiento a los objetivos planteados. En este capítulo se identifican los servicios prestados por proyectos BESS a nivel global, los cuales posteriormente se homologan al caso de Colombia, para seleccionar los servicios remunerados y no remunerados que se incluyen en la evaluación. En el sexto capítulo, se revisan los esquemas de remuneración de sistemas BESS pertenecientes a dos mercados de referencia internacionales. Los países son seleccionados por su nivel de desarrollo e implementación de la tecnología, y por su avance en la aplicación o estructuración de reglas de mercado que permitan a los BESS capturar diferentes fuentes de valor para viabilizar los proyectos.

En el capítulo 7 se desarrolla la propuesta de esquemas de remuneración sujetos a evaluación. Para cada esquema se plantean diferentes escenarios que consideran la prestación de uno o varios de los servicios identificados en el capítulo 5. Se detalla la estimación de los ingresos totales para cada uno de los escenarios propuestos, a partir de datos históricos de precios y cantidades relacionadas con los servicios en cuestión, así como de supuestos debidamente sustentados para cubrir vacíos regulatorios o generar más escenarios para el análisis.

En el capítulo 8 se desarrolla la evaluación financiera de los esquemas de remuneración y escenarios planteados en el capítulo 7. Se detalla el modelo de evaluación a utilizar y se explican las principales componentes de este para cada esquema, tales como la inversión inicial, los ingresos, los costos y gastos operativos y los impuestos. Finalmente se presentan los resultados de la evaluación para los escenarios propuestos, concluyendo sobre la viabilidad de estos, y los factores relevantes para alcanzarla o no. Por último, el noveno capítulo recoge las conclusiones y recomendaciones generales del trabajo. Se define la mejor agrupación de servicios para un BESS en Colombia, con su respectivo esquema de remuneración, y se identifican los desarrollos regulatorios futuros requeridos para una mejor captura de valor de los BESS.

1 Antecedentes

1.1 Introducción del capítulo

En este capítulo, se hace una presentación del estado de desarrollo de los sistemas de almacenamiento de energía (ESS), y en particular de BESS, a nivel mundial. Se presentan datos actualizados de agencias dedicadas a monitorear la implementación de estas y otras tecnologías en el mundo.

Adicionalmente, se introducen los servicios y aplicaciones asociados a BESS, de acuerdo con revisiones de trabajos investigativos y casos llevados a la práctica. Se describe en qué condiciones ha surgido el requerimiento de instalación de BESS en dos casos representativos a nivel mundial, haciendo una primera mención a los modelos de remuneración utilizados y/o proyectados para dichos sistemas. Para finalizar el capítulo, se presenta la regulación existente en Colombia para BESS y se exponen los diferentes sucesos que llevaron al planteamiento de la instalación de un BESS a gran escala para aliviar congestiones de red, el cual es objeto de análisis en el trabajo.

1.2 Estado actual de los ESS y BESS

Los ESS han hecho parte integral de algunos sistemas eléctricos desde los años sesenta. La tecnología de mayor implementación en la actualidad son las centrales de rebombeo (PHS), las cuales representaban, para el año 2018, un 94% de la capacidad instalada de ESS a nivel global (IHA, 2018). Salvo algunas excepciones, la implementación de estos sistemas ha surgido, en general, de la necesidad de complementar las tecnologías de generación térmica en regiones con alta dependencia de dichas fuentes, mediante una generación de reserva para atención de picos de demanda.

En el contexto de la descarbonización del sector eléctrico, con los escenarios de alta penetración de fuentes de energía renovables no convencionales (FERNC), los ESS han despertado gran interés investigativo, en cuanto permiten mitigar la variabilidad asociada a estas fuentes, garantizando un suministro constante y una operación flexible (Mohamad et al., 2018). Las PHS tienen la limitación de requerir una fuente hídrica y largos tiempos de construcción. En este sentido, se ha acelerado la investigación y desarrollo de proyectos asociados a otras tecnologías de almacenamiento, lo cual ha significado un crecimiento en la capacidad instalada de ESS alternativos a las PHS.

De acuerdo con datos recogidos por la Agencia Internacional de Energía (IEA), entre los años 2013 y 2019 se desarrollaron nuevos proyectos ESS a nivel mundial por una capacidad instalada total aproximada de 10.7 GW.(IEA, 2020). Esta capacidad está repartida en partes aproximadamente iguales entre proyectos a escala de consumidor final, usualmente denominados “detrás del medidor”, y proyectos de gran escala.
Por otro lado, más del 90% corresponde a BESS, cuya tecnología predominante son las baterías de ion de litio. La facilidad y rapidez de implementación de los BESS, comparada con la de otros ESS, así como la reducción de costos de las baterías de ion de litio, impulsada principalmente por el desarrollo de la industria de los vehículos eléctricos (EV), son las causas principales de la preferencia hacia dicha tecnología en la mayoría de los proyectos materializados en los últimos años (IEA, 2020).

1.3 Aplicaciones de los BESS

Desde los años ochenta se realizaron investigaciones con BESS para aplicaciones de regulación de frecuencia. Algunos casos de éxito incluyen BESS implementados en sistemas tipo “isla”, comunes en Corea del Sur (Faunce et al., 2018). Desde entonces, las investigaciones y desarrollos realizados involucran una variedad de aplicaciones, que en algunos casos no implican necesariamente un escenario de alta penetración de FERNC.

Diferentes revisiones han agrupado estas aplicaciones en categorías que varían de acuerdo con el enfoque de cada trabajo. Un ejemplo se presenta en la Figura 1, donde las aplicaciones asociadas a los BESS se agrupan según los servicios que pueden suministrar al sistema en diferentes eslabones de la cadena.

![Diagrama de aplicaciones de BESS](image)

Figura 1: Servicios asociados a BESS. Adaptado de (IRENA, 2020)

En la Figura 1, las agrupaciones en las cuales se dividen los servicios asociados a BESS se presentan, de izquierda a derecha, desde las etapas de mercado mayorista, hasta las aplicaciones relacionadas con el consumidor final. Pasando por servicios auxiliares de la
red y otros asociados a las empresas propietarias de redes de T&D. La discusión sobre los servicios asociados a los BESS, y sus posibles combinaciones y agregaciones, se desarrolla en el capítulo 2. “Marco Teórico”.

1.4 Motivaciones para la implementación de BESS

La implementación de los proyectos de BESS depende de las condiciones operativas, regulatorias y de mercado de cada sistema. En algunos casos, el desarrollo se da como solución a situaciones críticas que amenazan la confiabilidad del suministro. En Australia, un país con objetivos ambiciosos en el desarrollo de FERNC, los primeros BESS a gran escala se desarrollaron en el 2017, como respuesta a las condiciones climáticas extremas que limitaron la capacidad de las FERNC y causaron apagones en el sur del país (Faunce et al., 2018). Actualmente, algunos de estos proyectos participan tanto en el mercado de compra y venta de energía, como en el de servicios auxiliares (Aurecon & ARENA, 2019).

En el caso de California, las primeras PHS fueron construidas en la década de los ochenta, cuando el mercado aún era centralizado, con el objetivo de mejorar la confiabilidad de la red (CAISO, 2014). Los recientes objetivos de reducción de emisión de gases de efecto invernadero, integración de FERNC y optimización de la red, derivaron, en el año 2010, en la promoción por parte de la Comisión de Servicios Públicos de California (CPUC) de una meta de nueva capacidad instalada de ESS de por lo menos 1,533.52 MW para el año 2024 (CPUC, n.d.).

En el año 2015, una fuga de gas en la reserva de Alinson Canyon, desencadenó el desarrollo de proyectos de BESS por parte de varias utilities que debieron recurrir a alternativas de corto plazo para garantizar la confiabilidad del servicio en horas de demanda máxima ante el riesgo de desabastecimiento (Li et al., 2019).

En este contexto, proyectos de emergencia considerando BESS de 100 MW y 20 MW, fueron promovidas por el CPUC e implementados en 2017 (CPUC, n.d.). En el año 2018, el CPUC aprobó una serie de reglas provisionales para la participación de ESS en múltiples servicios asociados al mercado mayorista y T&D, basado en la hoja de ruta planteadas por el operador del sistema de California (CAISO) a partir de las solicitudes y comentarios recibidos por parte de partes interesadas, propietarios e inversionistas potenciales. Estas reglas buscan explotar el potencial económico asociado a la agregación de aplicaciones de los ESS (CAISO, 2014; CPUC, 2018b).

1.5 BESS en Colombia

En Colombia, actualmente, la definición de los requerimientos de implementación de BESS, para aplicaciones en escala de T&D en el sistema interconectado nacional (SIN) recae sobre la Unidad de Planeación Minero Energética (UPME), entidad facultada para realizar la proyección de la demanda de energía eléctrica, planear la expansión de las redes de transmisión y referenciar la expansión de la generación.

En ejercicio de sus facultades, la UPME publica anualmente el Plan de Expansión de Referencia Generación – Transmisión (PERGT), donde se evalúan y definen, para un horizonte de quince años desde la fecha de publicación, las obras de expansión requeridas
en el SIN, de acuerdo con los requerimientos a nivel de demanda y generación proyectados en las diferentes regiones que componen el sistema.

En el PERGT 2015-2029 se estudió un primer caso práctico asociado a la implementación de BESS en el sistema de transmisión regional (STR) del departamento de Atlántico, con el objetivo de aliviar el sistema ante congestiones en subestaciones y prevenir desatenciones de demanda en condiciones de contingencia, teniendo en cuenta la dificultad presentada por el operador de red (OR) propietario de las redes, para desarrollar proyectos de nueva infraestructura (UPME, 2016).

Como resultado del estudio, se sugiere un régimen operativo en el cual el BESS programa su carga en las horas de demanda mínima e inyecta energía solo en escenarios de contingencia. En sus análisis, la UPME plantea un modelo de remuneración basado en la recuperación de la inversión por tarifas reguladas, con una tasa de descuento referencial, considerando el BESS como un elemento adicional de la red de transmisión. Asimismo, resalta que la realización del proyecto está sujeta a la definición de un marco regulatorio para la implementación.

En el año 2019, la Comisión de Regulación de Energía y Gas (CREG), mediante la resolución 098-2019, dio el primer paso en la definición de un marco regulatorio para la incorporación de BESS al SIN, reafirmando algunos planteamientos preliminares de la UPME. Esta resolución es un mecanismo provisional, que regirá para los proyectos que entren en servicio hasta el 31 de diciembre de 2022. En la Figura 2, se presentan a grandes rasgos las principales definiciones de la resolución.

De acuerdo con la Figura 2, la CREG establece que la instalación de BESS responde a requerimientos específicos asociados a limitaciones en la infraestructura de T&D. Asimismo, la asignación y remuneración de proyectos se hace bajo el esquema usado para los nuevos activos del SIN, siendo seleccionado el inversionista que oferte el menor Ingreso Anual Esperado (IAE) y definido el ingreso como recuperación de la inversión. Finalmente, la operación es de entera responsabilidad del Centro Nacional de Despacho (CND), operador del sistema. El inversionista no se ve involucrado en transacciones por la energía con la que opera el BESS.

El requerimiento identificado por la UPME se materializó en el año 2021 con la publicación de la convocatoria UPME STR 01-202 “Almacenamiento de Energía con Baterías – Atlántico”, donde se efectúa el mecanismo planteado en la resolución de la CREG y se especifican las condiciones para la participación de inversionistas interesados en la realización del que es el primer proyecto de BESS conectado al SIN. El proyecto contempla la instalación y puesta en servicio, para junio de 2023, de un BESS con capacidad de entrega al sistema de 45 MWh y duración mínima de una hora, conectado al sistema de distribución de la ciudad de Barranquilla, en la subestación Silencio 34 kV. (UPME, 2021c). En julio de 2021, la convocatoria fue adjudicada a la compañía Canadian Solar Energy, que presentó la oferta con el menor valor presente neto del ingreso anual esperado, entre los demás proveedores del proceso. (UPME, 2021a).
El caso de Colombia es un ejemplo donde la implementación de BESS no está directamente relacionada con un escenario de alta penetración de FERNC. La regulación emitida hasta ahora restringe al inversionista el acceso a transacciones en el mercado de energía mayorista de Colombia (MEM) y limita la aplicación del BESS a los servicios asociados a T&D mostrados en la Figura 1.

Paralelo al desarrollo impulsado por la planeación del sistema desde organismos oficiales, los sistemas BESS han despertado el interés en otros agentes del mercado, particularmente generadores, como una alternativa para suministrar servicios complementarios a la red. Tal es el caso de la compañía Enel-Emgesa, la cual en mayo de 2019 anunció la instalación del que en su momento sería el primer BESS a gran escala en Colombia. El sistema, conformado por baterías de iones de litio, con una capacidad de 7 MW y 3.9 MWh, está concebido para aportar capacidad de reserva adicional a la central Termozipa (Enel, 2019).

En 2019, el Gobierno de Colombia, con el apoyo del Banco Interamericano de Desarrollo (BID) y el Banco Mundial (BM), lanzó la denominada Misión de Transformación Energética, una comisión de expertos encargada de trazar la hoja de ruta para la transformación energética y la modernización del sector eléctrico (Gobierno de Colombia, 2019). El informe final de la misión, recomienda evaluar el desempeño de BESS en múltiples usos,
enfatizando en la necesidad de un marco regulatorio integral que involucre esta tecnología (Batlle et al., 2020).

Parte de esta regulación comprende la definición del esquema de remuneración para diferentes aplicaciones de los BESS, así como las condiciones para su participación en el MEM. La dificultad en la definición de dicho esquema radica en la definición de reglas de usos múltiples de BESS que resulten atractivas para los inversionistas, al tiempo que garantizan la optimización en las tarifas para los clientes finales. Estas reglas deben considerar las transformaciones a las que estará sujeto el mercado en los próximos años.

En este contexto, se hace necesario desarrollar un análisis en el que se revisen los principales esquemas de remuneración implementados o propuestos a nivel global para servicios asociados a BESS, se planteen modelos con servicios aplicables al mercado colombiano y se desarrolle una evaluación económica que dé nociones preliminares acerca de los modelos que mejores beneficios económicos representan bajo las condiciones de mercado actuales, desde la perspectiva de un inversionista.

En el siguiente capítulo, correspondiente al marco teórico, se introducirán los conceptos sobre tecnologías de ESS, servicios y aplicaciones asociados a BESS y los modelos de remuneración aplicables a dichos servicios. Adicionalmente, se hará una descripción breve del marco regulatorio existente en Colombia para los mercados de energía y los servicios complementarios del sistema.
2 Marco teórico

2.1 Introducción del capítulo
En este capítulo se relacionan las principales tecnologías de ESS existentes en la actualidad. Se describen los conceptos técnicos relacionados con los servicios y aplicaciones de los ESS de mayor relevancia para el trabajo, de acuerdo con la definición inicial realizada en los antecedentes y se explican los esquemas de remuneración aplicables a dichos sistemas según su participación en el mercado, ubicación y funciones a desempeñar en la red. Finalmente, se hace una breve introducción al marco regulatorio y funcionamiento actual del mercado de energía eléctrica colombiano.

2.2 Tecnologías de almacenamiento de energía
La energía eléctrica, por naturaleza, debe ser utilizada en el instante en que es generada. Esto representa un reto en la coordinación de la operación tradicional de los sistemas de potencia, pues debe garantizarse, a grandes rasgos, que la generación sea igual o superior a la demanda en todo momento, así como una serie de respaldos adicionales, para evitar interrupciones en el servicio. Los ESS son sistemas que permiten almacenar la energía, en formas diferentes a la electricidad, de manera que pueda ser convertida en energía eléctrica para su uso posterior. En la Figura 3 se agrupan las principales tecnologías de ESS para aplicaciones de red:

Figura 3: Tecnologías principales de almacenamiento de energía. Adaptado de (Swierczynski et al., 2010).
El presente trabajo se centrará en las tecnologías de baterías convencionales, teniendo en cuenta que la regulación, y los proyectos en marcha están definidos para implementación de este tipo de tecnologías.

2.3 Servicios asociados a los ESS
Como se mencionó en el capítulo 1 existe una variedad de servicios que pueden suministrar los BESS a la red. Estos servicios pueden agruparse de acuerdo con las condiciones de cada sistema. En el presente trabajo se describirán de acuerdo con la agrupación propuesta por (IRENA, 2020), mostrada en la Figura 1.

2.3.1 Servicios al Mercado Mayorista de Energía

2.3.1.1 Arbitraje de energía
Corresponde a la compra y almacenamiento de energía en los horarios de menor demanda o con mayor generación de FERNC, cuando los precios son bajos, para su posterior descarga y venta a la red en las horas pico de demanda, cuando los precios son más elevados. Puede aplicarse mediante la participación en mercados del día anterior e intradiarios. El operador del BESS usca obtener beneficio de las diferencias entre los precios de la energía en diferentes hobras del día.

3.1.1.1 Capacidad de suministro de energía
Comprende la participación en el mercado de energía en la figura de un generador, que tiene una capacidad disponible para despacho por parte del operador del sistema. En los periodos de absorción de energía, el BESS actúa como una carga. Este servicio puede suministrarse a través de contratos de venta de energía, también conocidos como PPA (“power purchase agreement”). El contrato permite al BESS fijar un precio de venta de la energía, que tomará del sistema cuando los precios sean mínimos, por lo cual es en esencia un tipo de arbitraje.

Por su parte, la capacidad de generación de energía de reserva es requerida para mitigar grandes desbalances o restricciones asociadas a un despacho real de generación. Dependiendo de las particularidades de cada sistema eléctrico y de los tiempos en los que se requieran dichas reservas, pueden considerarse una capacidad de suministro adicional o entrar en la categoría de SA de balance.

3.1.2 Servicios Auxiliares

3.1.2.1 Introducción
Los ESS pueden participar en mercados de servicios auxiliares (SA), los cuales son servicios complementarios a la capacidad, que los participantes aportan al sistema para garantizar su correcto funcionamiento. La definición, agrupación y responsabilidades asociadas a los SA varían de acuerdo con las características específicas de cada sistema. Generalmente, comprenden las reservas de voltaje y frecuencia, y el arranque en negro.
3.1.2.2 **Reservas operativas**

Representan una capacidad adicional utilizada para suministrar la energía requerida por la demanda en tiempo real, cuando esta se incrementa o la generación disminuye. Los desbalances entre generación y demanda se traducen en desviaciones de frecuencia respecto de la nominal del sistema. Cuando la demanda excede la generación, la frecuencia del sistema disminuye, y viceversa. Una desviación considerable de la frecuencia respecto de su valor nominal puede provocar problemas de estabilidad, y poner en riesgo la infraestructura del sistema y la confiabilidad del suministro (IRENA, 2020).

Uno de los servicios asociados a estas reservas es la regulación de frecuencia (RF), que consiste en la modificación de la potencia inyectada a la red, a través de los sistemas de control de los generadores, para corregir las desviaciones de frecuencia. La RF se categoriza en cada sistema de acuerdo con el tiempo de respuesta de los generadores ante estas contingencias. Las categorías en las generalmente se dividen los RF se detallan en la Figura 4.

![Figura 4: Resumen de RF. Adaptado de (IRENA, 2020).](image)

Se detalla que la RFP corresponde a una acción de contención, en la cual se busca mitigar las desviaciones de frecuencia en los primeros segundos del evento. La RFS restaura la frecuencia a su valor nominal, en un tiempo que va del orden de los 30 segundos a algunos minutos. El servicio de RFS suele estar asociado a un sistema automatizado de las plantas de generación. Dependiendo de la tecnología y las características de una planta, esta podrá aportar RFS hacia arriba o hacia abajo, cuando el desbalance es producido por una reducción o un aumento de la frecuencia, respectivamente. Por su parte, la RFT reemplaza la RFS desde los 15 minutos en adelante. Los FFR, representan una innovación asociada a los BESS. La naturaleza de los BESS, y sus sistemas de control asociados, basados en electrónica de potencia permiten inyectar potencia a la red en cuestión de milisegundos, más rápido que los generadores convencionales (térnicos, hidráulicos), por lo cual pueden brindar una respuesta de frecuencia más rápida (IRENA, 2020).

3.1.2.3 **Regulación de Voltaje (RV)**

Al igual que para la frecuencia, en los sistemas eléctricos de potencia se debe garantizar que el voltaje se encuentre en un rango cercano al valor nominal, evitando fluctuaciones que pongan en peligro el suministro y la integridad de los equipos. La RV consiste en la estabilización de este parámetro en su valor nominal, mediante la inyección de potencia reactiva a la red por parte de los generadores. Los BESS pueden participar en RV en redes de distribución, cercanas al consumidor final, a través de los inversores con los cuales se
conectan a la red, los cuales pueden estar programados tanto para el control de potencia activa como reactiva.

3.1.2.4 Arranque en negro

Asociado a generadores, corresponde a la capacidad de una planta para arrancar de forma autónoma sus unidades y fijar una referencia de voltaje y frecuencia en su nodo más cercano, y posteriormente en una porción del sistema que funcionaría como red aislada. Corresponde con un proceso de restablecimiento luego de un colapso total del sistema. Los BESS pueden apoyar el arranque en negro de un generador síncrono asociado, o de forma aislada a través de un inversor con esta capacidad, de los cuales aún no hay desarrollos comerciales.

3.1.3 Aplazamiento de inversión en Transmisión y Distribución (T&D)

La planeación de las inversiones en nueva infraestructura de T&D, en un área específica de un sistema, se realiza tomando como referencia las plantas de generación proyectadas y las congestiones ocasionadas por el crecimiento de la demanda. Este segundo factor adquiere importancia, cuando los centros de generación se encuentran alejados de los centros de consumo. La Figura 5 resume las aplicaciones de ESS como activos de T&D.

![Figura 5: Servicios de ESS como activo de T&D. Tomado de (IRENA, 2020)](image)

Un ESS instalado en un nodo cercano a estos centros de consumo, que se cargue en horas de baja demanda y se descargue en los picos de esta, puede aliviar las congestiones de las redes de transmisión que unen la generación y la carga, así como evitar las reservas para picos de demanda de los generadores convencionales, que pueden perjudicar su vida útil. Por otro lado, en un escenario de alta penetración de FERNC, un ESS instalado en un nodo cercano a un centro de generación permite almacenar la energía en las horas de mayor generación, evitando congestiones y pérdidas de la energía no consumida.
En este sentido, el aplazamiento de inversión en redes de T&D, más que un único servicio, es un atributo de los BESS que describe su capacidad de brindar, en casos específicos, beneficios económicos al sistema superiores a los asociados a nuevas redes de T&D, a través de una serie de aplicaciones propias de la tecnología. Lo anterior sumado a unos requerimientos de tiempo y espacio para implementación menores.

Las aplicaciones a nivel de consumidor final no serán objeto de estudio del presente trabajo.

2.4 Modelos de Remuneración para ESS

Los servicios y aplicaciones anteriormente mencionados representan beneficios para la red en la cual los ESS son instalados. Eyer y Corey (2010) proponen una diferenciación entre aplicaciones y beneficios de ESS a escala de T&D. Las aplicaciones son los usos del ESS, mientras que los beneficios asociados a dichos usos son de carácter principalmente financiero e involucran costos reducidos o evitados por parte del propietario (Nueva infraestructura de T&D, operación de infraestructura tradicional), así como posibles ingresos percibidos por la operación del ESS.

Los modelos de remuneración son los esquemas de ingresos definidos por la regulación de cada sistema, a los que puede acceder un inversionista por la operación del ESS, a partir de los cuales se estructura el modelo financiero de un proyecto. Los modelos de remuneración permiten capitalizar los beneficios de un ESS.

En (Masiello et al., 2014), se propone una clasificación de los modelos de remuneración para ESS en costo por servicio, participación en mercado mayorista y detrás del medidor.

3.1.4 Costo por Servicio

Esquema asociado a los proyectos desarrollados por propietarios de redes de T&D, como parte de su plan de inversiones, que puede extenderse a otros inversionistas mediante procesos licitatorios de capacidades de almacenamiento definidas. El inversionista recibe un ingreso regulado basado en la recuperación del capital invertido y los costos de operación, mantenimiento y compra de energía. A cambio, debe garantizar la disponibilidad del ESS, el cual se considera un activo de la red de T&D (Masiello et al., 2014).

3.1.5 Participación en el Mercado Mayorista

Esquema donde los ingresos provienen de la participación en mercados mayoristas competitivos, a través de servicios que involucren venta de energía o prestación de SA al sistema. Los ingresos por SA dependen de la definición de los productos de mercado asociados a estos servicios complementarios. En algunos casos, parte de estos SA son obligatorios para la participación en el mercado mayorista (Masiello et al., 2014).

Los ESS pueden participar como una fuente de generación independiente, o complementar la operación de otro generador. Para que las aplicaciones de ESS en SA sea rentable, se requiere del diseño de productos de mercado que tengan en cuenta los beneficios asociados a estos sistemas.
3.1.6 Detrás del medidor

Los ingresos están asociados a servicios de la red y venta de energía por parte del consumidor final. Depende principalmente de la definición regulatoria de los programas de DR y autogeneración, así como las condiciones y remuneración de la GD (Masiello et al., 2014). En el presente trabajo no se tendrá en cuenta este modelo, teniendo en cuenta que las aplicaciones bajo estudio corresponden a BESS instalados a nivel de redes de T&D.

2.5 Interacciones, agregaciones y efectos de las aplicaciones de BESS

Un BESS instalado en la red puede brindar al sistema varios de los servicios mencionados en el presente capítulo de manera simultánea. Por ejemplo, un BESS que hace arbitraje al inyectar energía en las horas pico de demanda está aliviando congestiones de la red y reduciendo el requerimiento de capacidad adicional de la generación convencional. En un escenario con alta capacidad instalada de BESS, con definición regulatoria de precios nodales en el sistema, el arbitraje de energía permite aplanar los picos de la curva de demanda, reduciendo el precio de la energía, lo cual representa un beneficio económico para el sistema.

Li et al. (2019) indican que, en términos de ingresos, un BESS que se enfoque en el suministro de un solo servicio dificilmente puede resultar económicamente viable. En algunas circunstancias, la propuesta de valor de un BESS debe involucrar varios servicios para que el proyecto sea económicamente viable. Esto trae consigo algunos retos, tales como la compatibilidad operativa de los servicios, las barreras regulatorias, y la valoración conjunta de beneficios de difícil cuantificación (sociales, ambientales). En (Eyer & Corey, 2010; Moreira et al., 2016), se analiza la compatibilidad, sinergias y conflictos operativos de algunas aplicaciones de BESS a gran escala. Por otro lado, diferentes trabajos han abordado evaluaciones económicas de BESS en contextos de agregación de múltiples servicios (Fong et al., 2017; Teng & Strbac, 2016), en donde, para un marco regulatorio definido, se obtiene una rentabilidad mayor para la participación simultánea en arbitraje y SA.

2.6 Marco regulatorio colombiano

Las transacciones de energía en el sistema colombiano se dan a través del MEM. Este mercado surgió a partir de la reestructuración de la organización del sector eléctrico surgida con las Leyes 142 y 143 de 1994. En estas leyes se definen los diferentes agentes que participan en el mercado, actualmente clasificados en generadores, transmisores, distribuidores, comercializadores y grandes consumidores, estos últimos denominados usuarios no regulados (XM, n.d.-a).

El MEM se divide en contratos bilaterales de largo plazo y bolsa de energía. Las transacciones de energía pueden realizarse en la bolsa o mediante contratos bilaterales con otros agentes. La regulación define otros mecanismos para garantizar el suministro de energía por parte de los generadores, tales como las subastas de contratos de energía a
largo plazo e ingresos adicionales por la disponibilidad real de las plantas (XM, n.d.-a). En lo que respecta a SA, todos los generadores despachados centralmente por el operador del mercado están en obligación de prestar el servicio de RFP, RFS y RV. Para la RFS se tiene definido el servicio de control automático de generación (AGC), para el cual se tiene un mercado y un despacho basado en ofertas, paralelo al de energía. El operador optimiza el despacho para minimizar los precios, y remunera a las plantas a las cuales se les asigne este servicio (CREG, 2015). Las reservas adicionales son establecidas por el CND y los servicios de restablecimiento del servicio son opcionales.

En el año 2018 la CREG contrató una consultoría para el análisis de SA para el SIN, con el objetivo de desarrollar una propuesta regulatoria que amplíe el mercado asociado a dichos servicios en los años posteriores. La consultoría planteó e hizo una evaluación técnico-económica de propuestas regulatorias para servicios de balance, energía reactiva, regulación de tensión y recuperación del servicio. Como resultado, se seleccionó una propuesta que considera productos cuya obtención puede darse en el corto y largo plazo, adicionales a la energía, que los agentes pueden negociar y ofertar en el mercado (PSR & Di-Avante, 2018).

El diseño regulatorio considera la creación de mercados basados en ofertas en el despacho diario para los SA de corto plazo, así como la definición de contratos para los servicios de largo plazo. Se plantea que los requerimientos técnicos para los SA deben ser especificados por el CND para su oficialización por parte de la CREG (PSR & Di-Avante, 2018).

Asimismo, propone que el CND emita un informe anual con los requerimientos identificados de SA para el año siguiente, los cuales buscará garantizar con mecanismos de mercado de acuerdo con su naturaleza. Dentro de los servicios a ofertar en mercados de corto plazo se encuentran los servicios de balance. En este sentido, se propone que los actores del mercado oferten, además de energía, un precio unitario por disponibilidad en megavatios de cuatro productos adicionales, los cuales corresponden a RFP, RFS hacia arriba, RFS hacia abajo y RFT. Para la RFP se hace referencia al no requerimiento, en el corto plazo, de la creación de un mercado, teniendo en cuenta que es un servicio que actualmente se proporciona bajo el mecanismo de condición para participar en el mercado, dada la alta influencia en la matriz de plantas de baja intermitencia (PSR & Di-Avante, 2018).

Para los SA suministrados a través de contratos a largo plazo, entre los que se encuentran los servicios de RV y arranque en negro, se planteó un mecanismo de licitación basado en los requerimientos de nuevas instalaciones identificados por el CND en su informe anual. Los procesos garantizarían una remuneración a los oferentes que adjudiquen las licitaciones, basada en un cargo regulado. Para algunos casos específicos, cuando el CND determine que las condiciones de mercado no son competitivas, podría asignar la ejecución directa y obligatoria del servicio requerido al agente responsable (PSR & Di-Avante, 2018).

Una de las conclusiones principales es el requerimiento de la creación de un mercado del día anterior para esta clase de servicios que permita a los generadores gestionar las restricciones operativas de sus generadores. Asimismo, la consultoría concluyó sobre el no
requerimiento inicial de establecimiento de precios nodales para aprovechamiento del potencial comercial de los servicios, al tiempo que sugiere la adaptación de un mercado en tiempo real (intra-diario) (PSR & Di-Avante, 2018).

2.7 Conclusiones
En conclusión, existe una diversidad de servicios aplicables a BESS, con sus respectivos modelos de remuneración de acuerdo con las condiciones de cada mercado. A partir de estos servicios y modelos se pueden generar combinaciones o agregaciones que permitan aprovechar el potencial económico de los beneficios asociados a los BESS, de acuerdo con el marco regulatorio existente en Colombia para dichos servicios.

En el siguiente capítulo, se realiza una revisión de literatura, en la cual se busca identificar trabajos previos que hayan realizado evaluaciones económicas de modelos de remuneración de BESS, específicamente para el caso colombiano. Se destacarán de dichos trabajos la metodología, conclusiones y limitaciones relevantes.
3 Revisión de Literatura

Se hizo una búsqueda en la literatura científica de trabajos en los que se realice la evaluación de esquemas de remuneración e ingresos de BESS a gran escala. La búsqueda se hizo en la base de datos Scopus, utilizando la siguiente ecuación de búsqueda: TITLE-ABS-KEY ("energy storage" OR "energy storage system") AND ("business model" OR "revenue stream" OR "value stream") AND economic AND (analysis OR assessment).

Algunos trabajos base encontrados hacen una evaluación general de la viabilidad económica de modelos de negocio de ESS, en los cuales los esquemas de ingresos son una parte del análisis, asociados a las aplicaciones del ESS en cada modelo, que se complementa por otros factores como los costos de inversión y operativos. Para no dejar por fuera de la revisión este tipo de trabajos, se incluye en la ecuación de búsqueda el término "modelos de negocio".

Con la búsqueda se obtiene como resultado 33 artículos, los cuales son depurados de acuerdo con los siguientes criterios de exclusión:

- Tecnologías diferentes a baterías. Se mantienen algunos trabajos en los cuales el ESS objeto de evaluación es genérico, y no se especifica su tecnología.
- Aplicaciones detrás del medidor, a nivel de consumidor final, residencial o industrial, tales como DR, complemento de sistemas de GD, microrredes y/o EV.
- Operación y evaluación como complemento de una planta de generación, en la que el trabajo se enfoca en cálculo de ingresos de la planta, o bien de reducción del costo nivelado de electricidad, también conocido como LCOE, de una FERNC. Se tiene preferencia por BESS de operación independiente ("stand alone").
- Evaluación comparativa con otras tecnologías bajo un mismo servicio o aplicación.

Aplicando la depuración mencionada, se obtuvieron 7 artículos con la evaluación económica o el cálculo y análisis de ingresos de un caso práctico de ESS conectado a la red. En la Tabla 1 se presenta un resumen de dicha revisión.

Se encontraron varios artículos que desarrollan la evaluación mencionada, en algunos casos como objetivo general del trabajo, y en otros como parte de un análisis más amplio. Si bien los artículos encontrados abordan aplicaciones de BESS a escala de T&D, solo se contemplan en los análisis ingresos post-participación en mercado mayorista, ya sea a través de arbitraje de energía o participación en mercados de SA.

Ninguno de los trabajos revisados de evaluación cuantitativa de un caso real, incluyó en el análisis los ingresos regulados como costo por servicio para recuperación de la inversión. Esto se debe a que los sistemas donde están ubicado los BESS bajo estudio no consideran la remuneración de BESS como un activo de T&D bajo las condiciones regulatorias y de mercado estudiadas. De estos artículos, ninguno tiene como campo de aplicación o caso de estudio el sistema eléctrico de Colombia.
<table>
<thead>
<tr>
<th>Ref.</th>
<th>Autores</th>
<th>Año</th>
<th>Servicios</th>
<th>Metodología de evaluación</th>
<th>Resultados</th>
<th>Tabla 1: Revisión de literatura basada en Scopus</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Fong et al., 2017)</td>
<td>Fong, Strbac, Moreira</td>
<td>2017</td>
<td>Arbitraje de Energía, Resposta de frecuencia (RFS), Reservas, Servicios de red (congestiones)</td>
<td>Despacho del BESS utilizando un modelo de optimización de programación lineal en enteros mixta (MILP). Evaluación económica por cálculo de VPN</td>
<td>Mayor VPN para operación simultánea en todos los servicios. Mayores ingresos por RFS.</td>
<td></td>
</tr>
<tr>
<td>(Shafiee et al., 2018)</td>
<td>Shafiee, Bhuiya, Ul Haque, et al.</td>
<td>2018</td>
<td>Arbitraje de energía, mercados de reservas (regulación de frecuencia y reserva ante contingencias)</td>
<td>Despacho del ESS basado en plataforma de co-optimización que incorpora participación en varios servicios</td>
<td>La mayor parte de los ingresos proviene de servicios de reservas de regulación y capacidad en picos de demanda</td>
<td></td>
</tr>
<tr>
<td>(Baggu et al., 2019)</td>
<td>Baggu, Nagarajan, Cutler, et al.</td>
<td>2019</td>
<td>Servicios de soporte de red, mercado de energía y servicios auxiliares</td>
<td>Desarrollo de un MILP que integra modelo de degradación del BESS por ciclo de vida</td>
<td>Cálculo de ingresos por participación individual en servicios del mercado. Propone trabajo futuro para monetizar servicios de soporte de red e integrar al modelo.</td>
<td></td>
</tr>
<tr>
<td>(Campos-Gaona et al., 2018)</td>
<td>Campos-Gaona, Madariaga, Zafar, et al.</td>
<td>2018</td>
<td>Mercado de energía, servicios auxiliares, soporte a transmisión y soporte a firmeza de FERNC</td>
<td>Los mercados para estos servicios asociados a BESS en Gran Bretaña ya están establecidos. Se toman precios históricos publicados por la National Grid (Operador del sistema de Gran Bretaña).</td>
<td>La respuesta de frecuencia, y los demás servicios de balance, son las opciones más lucrativas en una base de GBP/MW</td>
<td></td>
</tr>
<tr>
<td>(Alam et al., 2020)</td>
<td>Alam, Balducci, et al.</td>
<td>2020</td>
<td>Arbitraje, DR, RFP, RFS (hacia arriba y hacia abajo), Reserva de capacidad, RV</td>
<td>Cálculo de beneficios para el sistema por participación en varios servicios usando una herramienta de evaluación propia del dueño para despacho óptimo del BESS y datos históricos. El objetivo del trabajo es diseñar un sistema de control local que garantice dicha operación óptima.</td>
<td>La mayor parte de los beneficios al sistema se obtiene de la participación en RFP, seguido del arbitraje y la RFS hacia abajo. Se diseña el sistema de control para dar prioridad a este servicio.</td>
<td></td>
</tr>
</tbody>
</table>
Shafiee, et al. (2018) evalúan un caso práctico de un ESS ubicado en Alberta, Canadá. Inicialmente, se hace una introducción breve a las aplicaciones de ESS en arbitraje de energía y SA, referenciando otros trabajos que analizan la viabilidad económica de ESS bajo dichas aplicaciones. Posteriormente, se hace una descripción de las condiciones del mercado de reservas operativas en la región bajo estudio, analizando los mecanismos implementados por el operador del sistema eléctrico de Alberta (AESO) para hacerse de SA por parte de los generadores, así como para la definición de los precios asociados a estos servicios, con el fin de garantizar la estabilidad de la red.

Luego se propone una programación de la operación del ESS, basado en la maximización de una función de ingresos que considera la participación tanto en el mercado de energía como en el de SA. El modelo utilizado no especifica la tecnología del ESS, pero incluye algunas restricciones de potencia y energía entregada, de acuerdo con las reglas del AESO, la eficiencia y las limitaciones operativas del ESS. Finalmente, tras simular la operación del ESS bajo condiciones históricas de mercado, en el período 2012-2015, se obtuvo como resultado que la mayor parte de los ingresos provenía de los diferentes tipos de reservas de demanda pico, y luego de las reservas rodantes.

El trabajo concluye sobre la importancia de tomar en consideración la agrupación de diferentes fuentes de ingresos. Teniendo en cuenta que el trabajo fue realizado como un ejercicio de optimización con datos de mercado históricos, los autores aclaran que, en un ejercicio real de valoración de futuros proyectos, se deben tener en cuenta las proyecciones de precios de energía y de los mercados de SA, con sus incertidumbres asociadas. Asimismo, se indica que el trabajo está aún en desarrollo, y está sujeto a precisiones futuras.

Moreno et al, (2015) plantean un modelo de optimización de ingresos para ESS coordinando participación en múltiples servicios, tomando como referencia las condiciones del mercado de Gran Bretaña. Los servicios considerados son arbitraje de energía, control de frecuencia (servicios de balance) y alivio de congestiones. Para este último servicio se propone un esquema de remuneración por contratos de largo plazo, teniendo en cuenta que este no se encuentra definido en el marco regulatorio actual, calculado como el costo de oportunidad de mantener cierto nivel de carga disponible para alivio de congestiones, y no disponerla en los otros mercados. Se considera que el cliente de este servicio específico es el propietario de las redes de distribución. El resultado del trabajo es el cálculo de los ingresos totales del ESS por cada uno de los servicios, encontrándose que los más significativos están asociados a los servicios de balance.

En (Fong et al., 2017) se configuran diferentes modelos de negocio a partir de los resultados obtenidos en (Moreno et al., 2015), aplicados a un caso práctico de un BESS de características técnicas y costos especificados. Se desarrolla una evaluación económica de los modelos de negocio planteados, mediante el cálculo del VPN y la TIR de cada uno para un ciclo de vida del proyecto de 20 años. Se obtiene como resultado que un portafolio que incluya todos los servicios considerados en (Moreno et al., 2015) recupera la inversión inicial en los primeros diez años del proyecto. El trabajo resalta en sus conclusiones la importancia de la definición de mecanismos atractivos para los inversionistas en BESS, en
mercados que aún no cuentan con ellos, haciendo referencia, particularmente, a los países europeos.

Extendiendo la búsqueda a trabajos académicos y tesis de grado, se encuentra una evaluación de diversos modelos de negocio de ESS propuestos en un escenario de alta penetración de FERNC en el mercado eléctrico Chileno (Morris, 2017). Si bien no corresponde a literatura indexada el trabajo adopta una metodología muy similar a la que se desea desarrollar en el presente Trabajo Final.

(Morris, 2017) inicialmente hace una revisión de los principales modelos de negocio y marcos regulatorios aplicables a ESS en los mercados internacionales, para el año de realización del trabajo (2017). En esta revisión, se incluye la determinación de los esquemas de remuneración asociados. En segundo lugar, se propone una clasificación de los modelos de negocio en el contexto chileno, partiendo de diferentes enfoques, dependiendo del eslabón en la cadena de suministro de energía en la que se encuentre el propietario del ESS, y la propuesta de valor asociada al mismo.

En esa sección, se introducen algunos esquemas de remuneración y modelos de negocio para el ESS desde un enfoque de propiedad de un OR, entre los que se encuentra la captura de valor por participación mixta en mercado mayorista y como activo de T&D. Sin embargo, se indica que estos no estarán incluidos en la evaluación cuantitativa posterior, aludiendo a las barreras regulatorias existentes en el mercado chileno para el reconocimiento de ESS como activos de T&D con remuneración basada en costos.

Finalmente, se plantea un modelo de simulación para realizar la evaluación económica de un BESS, partiendo desde un enfoque de generador, con participación en arbitraje de energía, control de frecuencia (en especial RFS) y como generación complementaria de una planta solar. Esto para un escenario de operación actual ("business as usual") y otro con alta penetración de FERNC. Asimismo, considerando operación costo-eficiente por parte del coordinador del sistema, operación autónoma, basada en la maximización de ingresos y una mezcla de ambas.

Los resultados obtenidos muestran un pequeño incremento en los ingresos, ante una operación conjunta de arbitraje y RFS, respecto a participación solo con arbitraje. Las conclusiones principales giran en torno a la importancia de la definición de reglas de mercado para la operación y remuneración de ESS, que disminuyan la incertidumbre para potenciales inversionistas.

Como resultado de la revisión, se evidencia un vacío en la literatura sobre evaluación de esquemas de remuneración de BESS de gran escala conectado a redes de T&D del sistema eléctrico colombiano, en los cuales se propongan agrupaciones de servicios aplicables en el marco regulatorio local. En este contexto, y teniendo en cuenta la importancia del desarrollo de BESS en Colombia, identificada en el capítulo 1 “Antecedentes”, se plantean los objetivos del trabajo final a desarrollar, los cuales se presentan en el siguiente capítulo.
4 Objetivos y metodología

A partir de los antecedentes y el marco teórico aplicable a sistemas de almacenamiento, así como la literatura identificada sobre evaluación económica de proyectos BESS, en este capítulo se proponen los objetivos del presente trabajo.

4.1 Objetivo General
E valuar esquemas de remuneración de sistemas de almacenamiento de energía con baterías a gran escala, conectados a redes de transmisión y distribución, bajo el marco regulatorio colombiano.

4.2 Objetivos Específicos
1. Identificar los potenciales servicios asociados a un sistema de almacenamiento de energía con baterías a gran escala conectado a redes de transmisión y distribución en el mercado eléctrico de Colombia.
2. Revisar esquemas de remuneración aplicables a los servicios identificados en el Objetivo 1 de acuerdo con el marco regulatorio de mercados internacionales de referencia.
3. Proponer agrupaciones de servicios con sus respectivos esquemas de remuneración, aplicables a un sistema de almacenamiento de energía con baterías, instalado en Colombia.

4.3 Metodología
El trabajo para acometer la evaluación y conseguir los objetivos descritos, se desarrolló a partir de las etapas descritas en la Figura 6.

Figura 6: Metodología
4.3.1 Etapa 1 - Servicios asociados a BESS y aplicación a Colombia

Consistió en una revisión de los servicios y aplicaciones de BESS en sistemas eléctricos de potencia, cuando están conectados de manera independiente (no asociados a plantas de generación) a nivel de redes de T&D. Dicha revisión se desarrolló en el capítulo 5.

Inicialmente, se realizó un mapeo de casos prácticos de proyectos en fase de operación o desarrollo, a partir de una base de datos estructurada por el Departamento de Energía de Estados Unidos, priorizando aquellos cuya potencia y tecnología son similares a la del BESS utilizado como caso base en el presente trabajo (Batería de ion-litio de 45 MW).

De estos casos prácticos se extrajeron los servicios ofrecidos al sistema, haciendo una homologación a las clasificaciones de servicios generales introducidas en la sección 2.3. Adicionalmente, se analizó la forma cómo se determinan los esquemas de operación aplicables a proyectos BESS, de acuerdo con la función principal por la cual son desarrollados y las restricciones de cada uno.

Para los servicios definidos en la etapa anterior, se evaluó la aplicabilidad en el sistema eléctrico colombiano, considerando aspectos técnicos y el marco regulatorio actual del mercado. Al respecto, dichos servicios identificados se agruparon entre los que requieren de diseños regulatorios para su implementación, y los que son aplicables bajo las condiciones regulatorias actuales.

4.3.2 Etapa 2 - Remuneración de servicios de BESS

En esta etapa, desarrollada en el capítulo 6, se realizó la descripción de los modelos de remuneración e ingresos aplicables a los proyectos BESS de dos mercados internacionales de referencia. Se revisó la regulación asociada a los BESS en dichas regiones, identificando los productos que han sido creados o adaptados para permitir la captación de valor por parte de los inversionistas por los servicios suministrados para optimizar la operación del sistema. Específicamente, en aplicaciones que se refieren a la participación en mercados mayoristas de electricidad o al soporte de redes de T&D.

Uno de los planteamientos del trabajo fue evaluar la viabilidad de agrupar el flujo de ingresos por aplicaciones que involucran participación del BESS en el MEM y como activo de T&D. Esto con el fin de dar un desarrollo preliminar a las recomendaciones realizadas en (Corredor et al., 2020) sobre el mercado eléctrico colombiano. Por tal motivo, se incluyeron en la revisión modelos de remuneración ya implementados o en proceso de definición, que involucran mecanismos para la captación de valor por participación en diferentes sectores de la cadena de suministro de energía de forma simultánea.
4.3.3 Etapa 3 – Planteamiento de los modelos de servicios y remuneración para evaluación

A partir de los servicios aplicables al mercado eléctrico colombiano, definidos en la Etapa 1, se introdujeron propuestas de diferentes esquemas de operación y remuneración para un proyecto BESS en Colombia, tomando como referencia, en cuanto a tecnología y restricciones operativas, el caso práctico correspondiente a la convocatoria UPME STR 01-2021. Las propuestas se plantearon en el capítulo 7.

Los esquemas propuestos consideraron casos de remuneración completamente basada en recuperación de costos como activo de T&D, casos de remuneración completamente basada en ingresos por el mercado de energía, y casos mixtos, donde se plantean mecanismos para combinar ingresos y participación parcial por los dos esquemas ya mencionados.

4.3.4 Etapa 4 – Evaluación de esquemas propuestos y análisis de resultados

Con los planteamientos de las etapas 1 a 3, definidos los servicios y los esquemas de remuneración, se realizó el cálculo de los ingresos, egresos e inversión del BESS para cada uno de los casos propuestos, en un horizonte de tiempo definido para la evaluación económica. El análisis, desarrollado en el capítulo 8, se realizó con un modelo de evaluación de proyectos por flujo de caja descontado, donde para cada caso analizado se concluye acerca de la viabilidad de acuerdo con el VPN y la TIR obtenidos. Finalmente se presentaron y analizaron los resultados y se concluyó acerca de los aspectos de mayor relevancia en el trabajo, enunciando los temas de interés identificados para trabajo futuro.

Presentados los objetivos del trabajo y la secuencia de actividades para alcanzarlos, se desarrollan cada una de las etapas de la metodología descrita. En el capítulo siguiente se presenta la primera etapa, correspondiente a la identificación y análisis de los servicios asociados a BESS.
5 Servicios asociados a BESS en operación

5.1 Introducción del capítulo
La evaluación económica de un proyecto BESS parte de la definición de los servicios y aplicaciones que brinda, los cuales dependen del contexto del proyecto y los requerimientos del sistema en que se desarrolla. Existe una variedad de servicios que se enmarcan en las categorías generales descritas en la sección 3.2. En el presente capítulo se realiza una identificación de estos a partir de la información de casos de aplicación reales a nivel global. De los servicios identificados, se busca determinar cuáles y en qué condiciones son aplicables a un proyecto BESS de gran escala que se desarrolle en Colombia.

El capítulo sigue el siguiente orden: Inicialmente en las secciones 5.2 y 5.3 se identifican y analizan los servicios prestados por proyectos BESS en etapas de operación o estructuración a nivel global. Se brinda además una interpretación para aplicaciones específicas que pueden o no considerarse del mismo significado de alguna de las explicadas en la sección 2.3. En la sección 5.4 se introducen brevemente los esquemas de operación implementados por proyectos BESS reales para la provisión de múltiples servicios, la cual es una facultad de esta tecnología que se evalúa en el presente trabajo. En la sección 5.5 se homologan los servicios identificados a las condiciones de mercado en Colombia, diferenciando aquellos que pueden ser prestados bajo el marco normativo actual para BESS de los que requieren diseños regulatorios o desarrollo de nuevos productos de mercado para viabilizar su implementación.

5.2 Fuentes de información
Para identificar los proyectos de BESS a partir de los cuales se clasifican los servicios suministrados, el insumo principal corresponde con la base de datos de proyectos de almacenamiento de energía alrededor del mundo, consolidada por Sandia National Laboratories, laboratorio adscrito al Departamento de Energía de Estados Unidos (Sandia National Laboratories, 2020). La base de datos, actualizada por última vez en noviembre de 2020 cuenta con aproximadamente 1700 registros, los cuales son filtrados de acuerdo con los siguientes criterios para obtener los proyectos cuyas características son acordes con el análisis propuesto.

1. Proyectos de capacidad instalada mayor o igual a 10 MW, los cuales para efectos del presente trabajo y según (Marnell et al., 2019) se consideran de gran escala o escala de transmisión.
2. Proyectos cuyas tecnologías corresponden a baterías de ion-litio
3. Proyectos que se encuentran operativos, que hayan sido anunciados o contratados.
4. Proyectos de almacenamiento tipo stand-alone, es decir, no acoplados a una planta de generación térmica o renovable.

Una vez aplicados los filtros mencionados se obtuvieron 48 proyectos, los cuales se presentan ordenados según su capacidad instalada en la Tabla 2.
<table>
<thead>
<tr>
<th>Índice</th>
<th>Nombre del Proyecto</th>
<th>Capacidad Nominal Instalada [MW]</th>
<th>País</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Crimson Energy Storage - 450 MW</td>
<td>450</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>2</td>
<td>Vistra Moss Landing Energy Storage - 300 MW</td>
<td>300</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>3</td>
<td>Hornsdale Power Reserve 100MW / 129MWh Tesla Battery</td>
<td>100</td>
<td>Australia</td>
</tr>
<tr>
<td>4</td>
<td>Solar Energy Corporation of India (SECI)-100MW</td>
<td>100</td>
<td>India</td>
</tr>
<tr>
<td>5</td>
<td>Germany Residential Energy Storage Systems - 34,000 PV Battery Storage Systems @ 2 kW</td>
<td>68</td>
<td>Alemania</td>
</tr>
<tr>
<td>6</td>
<td>AMS 50 MW Hybrid-Electric Buildings</td>
<td>50</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>7</td>
<td>Nishi-Sendai Substation - Tohoku Electric / Toshiba</td>
<td>40</td>
<td>Japón</td>
</tr>
<tr>
<td>8</td>
<td>Minami-Soma Substation - Tohoku Electric / Toshiba</td>
<td>40</td>
<td>Japón</td>
</tr>
<tr>
<td>9</td>
<td>Non-Gong Substation ESS - 36 MW ESS - KEPCO / Kokam</td>
<td>36</td>
<td>Corea del Sur</td>
</tr>
<tr>
<td>10</td>
<td>Convergent 35 MW / 140 MWh - SCE</td>
<td>35</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>11</td>
<td>30 MW SK Innovation BESS</td>
<td>30</td>
<td>Alemania</td>
</tr>
<tr>
<td>12</td>
<td>Dalrymple 30 MW / 8 MWh battery</td>
<td>30</td>
<td>Australia</td>
</tr>
<tr>
<td>13</td>
<td>Japan-Egypt-Hurghada-30 MW</td>
<td>30</td>
<td>Egipto</td>
</tr>
<tr>
<td>14</td>
<td>Escondido Energy Storage</td>
<td>30</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>15</td>
<td>SDG&E Escondido Substation - AES</td>
<td>30</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>16</td>
<td>West-Ansung (Seo-Anseong) Substation ESS Pilot Project - 28 MW ESS - KEPCO / Kokam / LG Chem</td>
<td>28</td>
<td>Corea del Sur</td>
</tr>
<tr>
<td>17</td>
<td>Anchorage Area Battery Energy Storage System</td>
<td>25</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>18</td>
<td>Shin-Yongin Substation ESS Pilot Project - 24 MW ESS - KEPCO / Samsung SDI</td>
<td>24</td>
<td>Corea del Sur</td>
</tr>
<tr>
<td>19</td>
<td>Uiroyeong Substation ESS - 24 MW ESS - KEPCO / LG CNS</td>
<td>24</td>
<td>Corea del Sur</td>
</tr>
<tr>
<td>20</td>
<td>Shin-Gimje Substation ESS - 24 MW ESS - KEPCO / Kokam</td>
<td>24</td>
<td>Corea del Sur</td>
</tr>
<tr>
<td>21</td>
<td>Plumsted Energy Storage</td>
<td>20</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>22</td>
<td>Stryker Energy Storage</td>
<td>20</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>23</td>
<td>SDG&E / Hecate Energy Bancroft - (San Diego, CA)</td>
<td>20</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>24</td>
<td>McHenry Battery Storage Project - EDF Renewable Energy</td>
<td>20</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>25</td>
<td>Aliso Canyon SCE Mira Loma Substation - Tesla</td>
<td>20</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>Índice</td>
<td>Nombre del Proyecto</td>
<td>Capacidad Nominal Instalada [MW]</td>
<td>País</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>----------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>26</td>
<td>AES Tait Battery Array</td>
<td>20</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>27</td>
<td>AltaGas Pomona Energy - SCE / Greensmith Energy</td>
<td>20</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>28</td>
<td>Terna Grid Defense Plan Phase II (1)</td>
<td>20</td>
<td>Italia</td>
</tr>
<tr>
<td>29</td>
<td>Kingdom of Jordan - NEPCO</td>
<td>20</td>
<td>Jordania</td>
</tr>
<tr>
<td>30</td>
<td>UK National Grid - RES</td>
<td>20</td>
<td>Reino Unido</td>
</tr>
<tr>
<td>31</td>
<td>Jake Energy Storage Center: RES Americas</td>
<td>19,8</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>32</td>
<td>Elwood Energy Storage Center: RES Americas</td>
<td>19,8</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>33</td>
<td>Meyersdale Energy Storage - NextEra</td>
<td>18</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>34</td>
<td>Nextera Wyman</td>
<td>16,2</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>35</td>
<td>WEMAG Schwerin Battery Park - Younicos</td>
<td>15</td>
<td>Alemania</td>
</tr>
<tr>
<td>36</td>
<td>14.8 MW / 58.8 MWh IESO Energy Storage Procurement Phase 1 - Hecate Energy (Toronto Installation)</td>
<td>14,8</td>
<td>Canadá</td>
</tr>
<tr>
<td>37</td>
<td>Daimler 2nd Life Storage - The Mobility House</td>
<td>13</td>
<td>Alemania</td>
</tr>
<tr>
<td>38</td>
<td>Kaua'i Dispatchable Solar Storage - 13 MW / 52MWh - SolarCity</td>
<td>13</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>39</td>
<td>GS E&R-LG Chem</td>
<td>12,5</td>
<td>Corea del Sur</td>
</tr>
<tr>
<td>40</td>
<td>Auwahi Wind Farm</td>
<td>11</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>41</td>
<td>Green Mountain Energy Storage - NextEra</td>
<td>10,4</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>42</td>
<td>Changsha 10MW/20MWh BESS</td>
<td>10</td>
<td>China</td>
</tr>
<tr>
<td>43</td>
<td>Rabbit Hill Energy Storage Project</td>
<td>10</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>44</td>
<td>Tucson Electric Power (TEP) - NextEra</td>
<td>10</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>45</td>
<td>Red Hook (Brooklyn, NY) - NY Prize Microgrid</td>
<td>10</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>46</td>
<td>Clinton County BESS - Exelon / RES</td>
<td>10</td>
<td>Estados Unidos</td>
</tr>
<tr>
<td>47</td>
<td>Jhajjar, Haryana BESS - AES</td>
<td>10</td>
<td>India</td>
</tr>
<tr>
<td>48</td>
<td>Vlissingen Advancion Energy Storage - AES</td>
<td>10</td>
<td>Países Bajos</td>
</tr>
</tbody>
</table>

Tabla 2: Proyectos BESS extraídos de la base de datos de (Sandia National Laboratories, 2020) Análisis de los servicios identificados
La base de datos diferencia hasta 29 tipos de servicios que pueden suministrar los proyectos registrados (Sandia National Laboratories, 2020). De los BESS extraídos en la Tabla 2, 33 proveen solo un servicio, los restantes ofrecen servicios múltiples, hasta un máximo de 7, como es el caso de Tucson Electric Power, propiedad de NextEra. En la Figura 7 se presentan los primeros 20 servicios ordenados según el número de proyectos que los ofrecen.

En concordancia con el alcance del presente trabajo, enfocado en las aplicaciones a nivel de T&D, se excluyen de análisis posteriores:

- Aplicaciones a nivel de consumidor final (residencial o comercial) o asociadas a generación distribuida, entre las cuales se incluyen los relacionados con la gestión de consumos (factura) de energía, la capacidad de integración de micro-red y la auto-generación (en inglés: On-site power).
- Servicios de cambio de hora de energía FERNC (en inglés: renewable energy time shifting) y estabilización de capacidad de FERNC (en inglés: renewable capacity firming), corresponden con aplicaciones propias de proyectos ubicados en áreas de influencia eléctrica con gran penetración de FERNC, donde los BESS son implementados para mitigar el impacto de la variabilidad climática sobre dichas fuentes y asegurar un suministro confiable incluso en las horas de demanda máxima.

Figura 7: Frecuencia de aparición de servicios en BESS seleccionados
De las aplicaciones restantes, algunas no cuentan con una definición específica suministrada por el DOE que permita incluirlas en las clasificaciones de servicios definidas en la Figura 1 del capítulo 1. Estas corresponden a la resiliencia, el soporte en transmisión y la rampa flexible. La interpretación que se realiza en este trabajo sobre dichas aplicaciones se resume a continuación.

Resiliencia: La definición de resiliencia en los sistemas eléctricos varía de acuerdo con el área de interés. En términos generales, se considera una característica de un sistema eléctrico, que describe su capacidad para absorber, responder y recuperarse ante eventos y perturbaciones que generan interrupción de las operaciones. Estos eventos generalmente son de baja probabilidad y alto impacto, que tienen su origen en factores de riesgo cada vez más cambiantes y representativos, como ciber-ataques, desastres naturales, errores humanos (EAC, 2019).

En el caso de Colombia, se acompaña con otros términos como la confiabilidad y seguridad, como requerimientos para garantizar una operación estable y un suministro continuo de electricidad. De acuerdo con esta definición, la resiliencia no es por sí sola un servicio, sino el resultado de una planeación adecuada de la inversión en sistemas de T&D y la provisión de SA que permitan recuperar o mantener el servicio de energía cuando el suministro principal se ha interrumpido. En este sentido, el aporte de un BESS a la resiliencia de un sistema está asociado principalmente a los servicios de arranque en negro y/o al de operación en modo isla.

La operación en modo isla es característica de BESS conectados a micro-redes o en nodos de distribución con FERNC a gran escala asociadas. Consiste en un modo de operación de respaldo donde, después de una desconexión de una red principal de distribución, las FERNC y el BESS restablecen el servicio por un tiempo definido, con los mismos estándares de calidad y confiabilidad, priorizando las cargas de mayor importancia (Fusheng et al., 2016).

Soporte en transmisión (en inglés: transmission support): Al igual que con el caso de la resiliencia, la interpretación de este término corresponde a la agrupación de servicios que, en términos generales, ayudan a mantener el balance entre generación y carga manteniendo los niveles de frecuencia y voltaje de alta tensión en sus márgenes operativos. Uno de los proyectos que reporta brindar soporte a transmisión fue el implementado por el OR italiano Terna, en las islas de Sicilia y Cerdeña, como respuesta al aumento de plantas FERNC en la región y su impacto sobre la seguridad en el suministro. El soporte a la transmisión se traduce en el suministro paralelo de una serie de servicios de RF y balance (Terna, 2016). En el presente trabajo, se considera incluido en los servicios de RF y RV.

Flexibilidad de Rampa: La rampa es una característica inherente a los recursos de generación que denota la tasa de cambio de la carga neta. Las FERNC son fuentes de generación con rampas elevadas, en cuanto su perfil de carga depende de factores climatológicos de rápida variación. En el caso de la generación solar, por ejemplo, la potencia alcanza su valor máximo rápidamente en las horas de mayor radiación solar, para reducirse a sus mínimos en los horarios nocturnos. En un escenario de alta penetración de
FERNC, este fenómeno afecta el balance generación-carga. En este contexto, los BESS revisten especial importancia. Por su naturaleza no inercial, basada en electrónica de potencia, tienen una velocidad de respuesta que se traduce en rampas mayores y más flexibles que las asociadas a las plantas de generación convencionales. La flexibilidad en el control de rampa de los BESS les permite no solo tomar cambios de carga instantáneos, en aumento o decremento, sino también variar la tasa de cambio de dicha carga. Esto permite acercar aún más las curvas de generación y carga, y disminuye el requerimiento de reservas operativas.

En California, este servicio tiene asociado un producto de mercado, “flexible ramping product” (RFP) (Hu et al., 2018). Los participantes ofertan, en períodos de 5 minutos, un margen sobre la tasa de cambio esperada de la curva de demanda en el período siguiente, sobre el cual pueden variar su propia tasa de salida. En la Figura 8 se ilustra el principio de incertidumbre del cambio de la carga, sobre el cual se basa el requerimiento de rampa flexible.

![Figura 8. Requerimiento de margen de rampa en el sistema. Tomado de (Hu et al., 2018).](image)

Por otro lado, la RF es el servicio que más veces aparece como suministrado por los proyectos analizados, de acuerdo con la Figura 7. Sin embargo, la definición y las condiciones para la prestación de dicho servicio varía de acuerdo con el marco regulatorio que rige el sistema eléctrico en el que se conecta el proyecto.

El operador de la interconexión Pensilvania - Nueva Jersey - Maryland (PJM) en Estados Unidos, a la cual se conectan 9 de los proyectos de la Tabla 2, exige a los participantes del
mercado de RF estar equipados con AGC. Así mismo, diferencia dos tipos de RF en las que los operadores pueden participar, de acuerdo con la capacidad de rampa de sus recursos de generación (Kintner-Meyer, 2014):

- **RegA o tradicional**: Señal dirigida a recursos con capacidad de rampa limitada por sus características físicas.
- **RegD o dinámica**: Señal dirigida a recursos con mayor velocidad de respuesta y capacidad de energía limitada, entre los que se encuentran los BESS.

En ambos casos la RF puede requerirse hacia arriba o hacia abajo, y los operadores deben estar en capacidad de suministrar ambas.

En el caso de Corea del Sur, la utility Korea Electric Power Corporation (KEPCO) ejerce el monopsonio de la compra de electricidad a las plantas de generación del país, actuando como único transmisor y operador del sistema. Los generadores participan en el mercado de energía de Corea (KPX) y KEPCO mantiene como reserva una porción de la energía ofertada para despachar servicios de RF en caso de ser requeridos (Hur et al., 2015).

Si bien KEPCO no es un agente generador, es propietario de 5 proyectos BESS de la base de datos filtrada, los cuales suministran RF. El interés económico de KEPCO en desarrollar dichos como inversionista, radica en la reducción en los pagos realizados a generadores por la energía destinada a RF, así como de las restricciones asociadas a la red, derivadas de la operación de la RF con generadores ubicados en nodos distantes (Hur et al., 2015). A nivel operativo, la RF en Corea se despacha en intervalos de cinco minutos, y de acuerdo con el tiempo de respuesta requerido, se presta a través de una señal de AGC o de gobernador libre (GF).

En Australia, por su parte, se tienen ocho servicios de RF, que allí es denominada servicios auxiliares de control de frecuencia (FCAS, por sus siglas en inglés). Estos servicios se dividen en FCAS de contingencia y FCAS de regulación. Los primeros se activan ante eventos de contingencia, como una desconexión o caída repentina de grandes cantidades de generación o carga. Son controlados por el operador de la red local, quien recurre a un servicio específico de acuerdo con la escala de la crisis del evento de contingencia, y la velocidad de respuesta requerida para estabilizar la frecuencia. Cada servicio de contingencia tiene su propio mercado, en total son los seis que se presentan en la Tabla 3 (Meng, 2021).

<table>
<thead>
<tr>
<th>Servicio</th>
<th>Producto de mercado</th>
<th>Tiempo de respuesta</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCAS de contingencia</td>
<td>Rápida hacia arriba</td>
<td>6 segundos</td>
</tr>
<tr>
<td></td>
<td>Rápida hacia abajo</td>
<td>6 segundos</td>
</tr>
<tr>
<td></td>
<td>Lenta hacia arriba</td>
<td>60 segundos</td>
</tr>
<tr>
<td></td>
<td>Lenta hacia abajo</td>
<td>60 segundos</td>
</tr>
<tr>
<td></td>
<td>Retardada hacia arriba</td>
<td>5 minutos</td>
</tr>
<tr>
<td></td>
<td>Retardada hacia abajo</td>
<td>5 minutos</td>
</tr>
</tbody>
</table>

Tabla 3. Mercados de FCAS de contingencia
Los FCAS de regulación son controlados por el operador del sistema AEMO, y activados ante desviaciones pequeñas de frecuencia causados por la baja inercia, en condiciones de operación normal, en zonas con penetración alta de FERNC. Son un símil a los servicios de RSF en otros países. Los dos mercados de FCAS de regulación se presentan en la Tabla 4.

<table>
<thead>
<tr>
<th>Servicio</th>
<th>Producto de mercado</th>
<th>Tiempo de respuesta</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCAS de regulación</td>
<td>Regulación hacia arriba</td>
<td>Segundos</td>
</tr>
<tr>
<td></td>
<td>Regulación hacia abajo</td>
<td>Segundos</td>
</tr>
</tbody>
</table>

Tabla 4. Mercados de FCAS de regulación

5.3 Esquemas de operación para prestación de servicios

En términos de valores nominales, para los BESS se diferencia la capacidad de potencia instantánea, medida en mega watts (MW), y la capacidad de almacenamiento de energía, indicada en mega watts-hora (MWh). La relación entre estas magnitudes es la duración del BESS, definida como el tiempo que le toma descargarse operando a su potencia nominal, la cual es un indicador de la reserva de energía de un BESS.

Los servicios previamente descritos, de acuerdo con sus requerimientos, pueden ser intensivos en potencia (power intensive) o en energía (energy intensive). Un servicio intensivo en potencia reviste una demanda alta de potencia en un lapso corto de tiempo, por lo cual tienen un bajo consumo de energía. Un ejemplo son los servicios de RF, generalmente asociados a eventos cuya duración está del orden de segundos. Por otro lado, los servicios intensivos en energía, como el arbitraje o las reservas de potencia, implican un suministro de energía constante durante varios minutos u horas (Balducci et al., 2018).

La inscripción de un BESS a uno o varios servicios está sujeta al criterio del inversionista y a los factores que motivan la realización del proyecto. Sin embargo, la operación del BESS debe ser optimizada teniendo en cuenta su capacidad limitada, para priorizar la participación en servicios o aplicaciones de mayor importancia. La determinación de la operación óptima o adecuada del BESS responde a las características y restricciones específicas de cada proyecto. Las restricciones incluyen el número de ciclos de carga/descarga diarios permitidos para garantizar la vida útil del proyecto y la imposición a nivel regulatorio, contractual o técnico de un nivel de carga (SoC) mínimo.

Se presentan dos casos de aplicación desarrollados en Australia, donde el esquema de operación responde a las señales de precio de los servicios de mercado.

El proyecto de Dalrymple, también llamado ESCRI-SA, se encuentra ubicado en la península de Yorke en Australia del Sur. Dicho estado, altamente dependiente de FERNC, se conecta al resto de la red del este de Australia por medio de una línea de transmisión de 500 kV llamada la interconexión de Heywood. Las fallas o congestiones en la interconexión se traducen en una recurrente operación en modo isla del sistema en la región. El objetivo principal de los proyectos BESS en la zona es evitar las sobrecargas o desbalances que
puedan provocar la desconexión de la interconexión, participando en un servicio de alivio de congestiones denominado “System Integrity Protection Scheme” (SIPS). Así mismo, deben soportar la operación en modo isla cuando las desconexiones ocurren. El BESS está autorizado a participar en servicios de mercado, Primero los servicios para los cuales estaba destinado el proyecto a nivel contractual. La operación prioriza de manera automática de acuerdo con las señales recibidas de AEMO. Durante operación comercial, se requiere que el BESS opere entre el 10% y el 90% de su capacidad instalada. Lo anterior para garantizar siempre tiene la capacidad para responder a un evento de red (ElectraNet, 2021).

En el proyecto Ballarat el esquema que definió la operación en el año 2019 estuvo basado en el mercado. Con la restricción de realizar máximo una descarga profunda al día, inicialmente el BESS basó su operación en el arbitraje de energía, cargándose en las horas nocturnas o de exceso de generación con FERC, cuando el precio de mercado era más bajo, y vendiendo la energía en las horas de demanda máxima. Meses después, la demanda de FCAS por parte del AEMO aumentó considerablemente, elevando los precios de mercado asociado a estos servicios. La operación del BESS migró a una priorización de los servicios de RF, que al activarse consumían en promedio entre el 10% y 20% de la capacidad de energía del BESS. Esto permitió al proyecto ofertar capacidad para RF durante más períodos antes de completar el ciclo diario de descarga. De esta manera los ingresos del proyecto por FCAS aumentaron considerablemente respecto a los de arbitraje. La operación en la actualidad prioriza los servicios intensivos en potencia de los intensivos en energía (AusNet, 2020).

5.4 Aplicabilidad de los servicios a las condiciones de mercado de Colombia

En la sección 2.6 del presente trabajo se presentó una revisión general del marco regulatorio para el mercado eléctrico colombiano, allí se mostró de manera general el funcionamiento del MEM en cuanto a la compra de la energía demandada y servicios de RF. En la presente sección se amplía dicha información, detallando la aplicabilidad de los diferentes servicios identificados bajo las condiciones de mercado actuales.

5.4.1 Análisis iniciales sobre el mercado colombiano

Un BESS a gran escala de operación independiente (stand-alone), puede integrarse al SIN en los eslabones de generación, transmisión o distribución de la cadena de suministro de energía. Cada uno de estos eslabones tiene unas aplicaciones o servicios asociados de acuerdo con el tipo de activo que presta dicho servicio según el marco regulatorio del sistema eléctrico colombiano.

Por ejemplo, las plantas de generación prestan el servicio de suministro de energía, los SA y sus reservas asociadas. Por su parte, el alivio de congestiones de transmisión y en general, las aplicaciones que mejoren la confiabilidad y seguridad de las redes de T&D, se obtienen de la inversión en nuevos activos de T&D por parte de los OR.
Uno de los planteamientos del presente trabajo es agrupar servicios por eslabones diferentes de la cadena, validando, por ejemplo, que un BESS esté habilitado para hacer arbitraje de energía al tiempo que opera para reducir congestiones de red. Teniendo esto en cuenta, uno de los puntos a considerar para la operación comercial del BESS es que para una empresa del sistema está prohibida la integración vertical entre actividades reguladas de T&D y actividades de mercado como la generación, de acuerdo con las Leyes 142 y 143 de 1994 (CREG, 2018).

El marco regulatorio transitorio aplicable a BESS en Colombia en la actualidad, considera dichos sistemas como activos de T&D de planificación centralizada, asignados por convocatoria y remunerados mediante ingreso regulado. Por tal motivo, existe una barrera regulatoria para la provisión de servicios de energía y SA, ya que un BESS independiente no podría registrarse en el sistema como agente generador. Así mismo, de participar activamente en el mercado, el BESS debe comprar la energía con la cual se recarga, por lo cual se requiere de su registro como demanda. La liquidación comercial de la energía utilizada en el mercado de energía requiere entonces de la creación de una frontera de generación y una de consumo asociadas al mismo sistema, ya que el marco regulatorio que contempla las fronteras bidireccionales está asociado a recursos de GD, de potencias menores a las asociadas a un BESS a gran escala.

Si bien el objetivo del presente trabajo no es el diseño de una propuesta regulatoria, para la evaluación de los esquemas de remuneración de los servicios asociados al mercado de energía y SA, se toma un caso hipotético en el cual la regulación específica para BESS permite su registro como generador y consumidor, bajo las mismas condiciones de las plantas de generación despachadas centralmente, salvo algunas excepciones detalladas para cada uno de los servicios.

5.4.2 Aplicaciones que requieren diseños regulatorios

5.4.2.1 Mercado de energía

La participación de los BESS en un mercado mayorista de energía se da adquiriendo la figura de un consumidor en los períodos de carga, y de un generador en los períodos de descarga. En un mercado liberalizado como el de Colombia, esto implica la realización de operaciones de compra y venta de energía, en instantes temporales diferentes. Toda la energía vendida es adquirida previamente en el mercado, lo que implica una operación de arbitraje de energía.

Para un inversionista interesado en optimizar la ganancia de un proyecto BESS, esto conlleva una estrategia de operación que minimice el precio de adquisición de la energía, y maximice el precio de venta, a la vez que se maneja el riesgo asociado a la volatilidad del precio de energía. Al actuar como generador, un BESS a gran escala está sujeto al despacho de energía centralizado, por lo cual participa en el mercado spot de corto plazo. En una estrategia de corto plazo, el BESS realiza arbitraje de energía sobre los precios de bolsa de cada hora. El marco regulatorio para el despacho de energía en Colombia contempla un mercado spot del día anterior, donde los agentes ofertan una disponibilidad
horaria a un precio único aplicable a las 24 horas del día y el precio spot para cada hora se fija como el asociado a la generación marginal para cubrir una proyección de demanda.

Una curva de precios típica para el sistema eléctrico colombiano, relacionada con el perfil de demanda, se presenta en la Figura 9. Teniendo en cuenta que el BESS objeto de la convocatoria UPME STR 01-2020 tendrá un tiempo de carga de una hora, un esquema de operación propuesto comprende a grandes rasgos la carga del BESS en la franja de las horas 3 y 4, y la declaración de una disponibilidad para la franja comprendida entre las horas 19 a 21, con un precio de oferta que garantice el despacho. Lo anterior bajo la consideración de que la entrada en operación de los primeros BESS no modificará en el corto y mediano plazo el perfil de carga del país. Esta consideración no es aplicable en un escenario de alta penetración de FERNC y de proyectos BESS, los cuales se espera modifiquen el perfil de carga y por ende la curva de precios diaria típica del sistema.

![Figura 9: Curva de demanda de energía promedio en Colombia (XM, n.d.-b)](image)

El arbitraje sujeto al precio de bolsa requiere de un pronóstico adecuado de la curva de demanda del día anterior y de un algoritmo para la oferta que optimice la operación. Sin embargo esto conlleva a una exposición a cambios en el precio de bolsa, en este sentido el inversionista podría optar por vender una porción de su energía mediante contratos bilaterales de suministro de energía a largo plazo.

Para el caso de compra de energía para carga, la figura aplicable actualmente a un BESS a gran escala, por su potencia y consumo de energía esperados, es la de usuario no regulado. Bajo esta figura, el precio de la energía para carga puede negociarse directamente con un comercializador. En su mínimo, dicho precio corresponde al precio spot en la hora de carga, más los componentes asociados a restricciones, cargos por T&D y pérdidas, que integran la tarifa de energía de un consumidor no regulado en Colombia.
5.4.2.2 Regulación de frecuencia (RF)
La Resolución CREG 025 de 1995 (CREG, 1995), que establece el Código de Redes, parte del Reglamento de Operación del Sistema Interconectado Nacional de Colombia, define, para las plantas de generación, la reserva de RFP como aquella que responde a cambios súbitos de frecuencia en un tiempo de 0 a 10 segundos, sosteniendo dicha variación como mínimo por los 30 segundos siguientes. Por su parte, la reserva de RFS debe tomar la variación de la generación de las plantas que participaron en RFP, por lo cual debe estar disponible a partir de los 30 segundos de ocurrido el evento y sostenerse por lo menos en los 30 minutos siguientes.

El servicio de RFP es obligatorio para todas las plantas de generación despachadas centralmente, es equivalente al 3% de la generación horaria programada y requiere el cumplimiento de unos parámetros mínimos, soportados en pruebas, de estatismo y banda muerta. Bajo las condiciones de mercado actuales, este servicio no tiene remuneración y su incumplimiento conlleva a penalizaciones (PSR & Di-Avante, 2018).

La RFS, a su vez, está asociada al servicio de AGC de las plantas de generación. La asignación del servicio de AGC se realiza por orden de mérito a través de un mercado que está ligado a las ofertas del mercado de energía, de acuerdo con los requerimientos de reserva para AGC identificados por el operador del mercado para cada hora. Los agentes están en libertad de ofertar una potencia en giro disponible, incremental a su generación programada u ofertada, llamada holgura. El mercado de RSF unifica la regulación hacia arriba y hacia abajo, por lo que la holgura es simétrica para los márgenes de aumento y reducción de potencia (PSR & Di-Avante, 2018).

De acuerdo con las reglas comerciales del AGC, todos los generadores despachados centralmente tienen una responsabilidad comercial de cumplir con una holgura, proporcional a cada hora. Sin embargo, en la práctica dicho servicio solo puede ser prestado por plantas técnicamente habilitadas para realizar cambios rápidos de generación, condición que en operación normal solo cumplen las plantas hidráulicas (PSR & Di-Avante, 2018). Las plantas térmicas a gas pueden prestar el servicio solo en condiciones de aislamiento del sistema. El operador del mercado realiza la asignación del AGC previo a la realización del despacho económico de energía, para garantizar la prestación de dicho servicio por parte de las plantas con precio de oferta más bajo.

Según la Resolución CREG 027 de 2016 (CREG, 2016), la remuneración del servicio consiste en dos componentes. Por un lado, se remunera la energía suministrada durante la prestación del servicio de AGC, al precio de bolsa. Adicionalmente, se remunera la disponibilidad para prestación del servicio, a través del pago por la holgura no utilizada, tanto hacia arriba como hacia abajo, a un precio dado por el costo real de energía equivalente de cargo por confiabilidad (CERE), estimado por el operador del mercado cada mes. Por otro lado, el generador que presta el servicio de AGC debe incurrir en el pago de la reconciliación negativa cuando su generación real es menor a la ideal o programada por cuenta de la activación del servicio, o cuando su oferta de energía está fuera de mérito. El pago recibido por la prestación del servicio corresponde al balance entre la remuneración por AGC a la que es acreedor y la reconciliación negativa.

43
El servicio de RSF reviste una particularidad. Al ser suministrado principalmente por plantas de generación hidráulicas, el requerimiento de holgura mínima según el Código de Redes está determinado por planta (23 MW) y por unidad (6 MW) (CREG, 1995). El BESS en proceso de licitación en Colombia tiene una potencia de 45 MW. La participación en el mercado de AGC bajo el calificativo de planta es técnicamente inviable pues le exige disponer de una holgura mínima superior a su capacidad total. En una regulación diferenciada se deben proponer las condiciones para permitir la participación de BESS en el mercado de AGC. En dicha regulación se debe indicar un nivel mínimo de holgura específico para la tecnología BESS.

En el presente trabajo para la evaluación económica del AGC se considera un escenario hipotético bajo el cual el servicio de RSF está desligado del despacho de energía y no tiene exigencia de holgura simétrica. Bajo este supuesto, al BESS le es permitido ofertar toda su capacidad disponible en el servicio de AGC para suministrar regulación en subida o en bajada en proporciones diferentes, de acuerdo con los requerimientos de RSF del sistema y el estado de carga inicial.

Bajo las condiciones de mercado actuales no se tiene un servicio diferenciado dentro de la RFP para sistemas con respuestas más rápidas, homologable a FFR, en parte porque no se han implementado a nivel de sistema tecnologías capaces de suministrarlo. Tampoco se tiene diferenciada una reserva de RFT, si bien existe la figura de reservas de reemplazo que cumple la misma función en cuanto se utilizan para restablecer la reserva de RFS.

Dicha reserva hace parte de la reserva operativa del operador del mercado en cada hora, y es asignada según sea requerida y de acuerdo con los recursos disponibles, bajo un criterio económico. Si bien pueden crearse productos de mercado específicos de FFR y RFT, estos no son considerados inicialmente en la evaluación, ya que no es del alcance del presente trabajo el diseño de productos de mercado.

Sin embargo, se anticipa que al ser el FFR una característica asociada a las tecnologías de muy rápida respuesta, lo cual cumple un BESS, la estructuración de un mercado diferenciado para estos deberá ser motivado por la implementación de más proyectos que involucren dichas tecnologías. En contraste, el servicio de RFT es aplicable también a plantas de generación convencionales, por lo que su separación de las reservas de la oferta de energía obedecerá más al requerimiento de optimizar los costos del sistema asociado a SA, que al incentivo de nuevas tecnologías.

Al ser una tecnología basada en electrónica de potencia, los BESS tienen asociada una velocidad en la variación del suministro de potencia mayor que la de las plantas de generación convencionales que suministran RPF y RSF. En lo que se refiere a requerimientos de control, tiempos de respuesta y demás requerimientos técnicos actuales del CNO, un BESS puede habilitarse para prestar servicios de RPF y RSF, siempre que tengan un esquema de operación que les permita tener capacidad disponible para dichos servicios cuando es requerida. Así mismo, de materializarse los servicios de balance de la propuesta regulatoria de SA en el SIN, que diferencian RSF de subida y bajada e incluyen un mercado de RFT, los BESS podrían participar.
5.4.2.3 Recuperación del servicio (Resiliencia)
Este servicio es prestado de manera opcional por parte de las plantas de generación que reporten capacidad de arranque autónoma. Los BESS no requieren de un suministro de energía externo para operar e inyectar energía a la red. Sin embargo, los inversores más utilizados comercialmente, tanto para integración de FERNC como de BESS, son seguidores de red ("grid – following inverters"), los cuales dependen de una referencia del sistema para funcionar y se desconectan en caso de una gran alteración o una interrupción total del sistema.

Para que los BESS presten servicios de recuperación del servicio, se requiere la utilización de inversores formadores de red ("grid – forming inverters"), los cuales permiten fijar una referencia de frecuencia y tensión para restablecer la red independientemente. Este tipo de inversores se consideran una tecnología emergente, que no hace parte de la oferta estándar (IRENA, 2020). El proyecto ESCRI-SA (Dalrymple) en Australia, implementó esta clase de inversores para prestar servicios de operar en modo isla, independiente de una planta de generación externa (ElectraNet, 2021). En otros proyectos, como Schwerin Battery Park, propiedad de WEMAG, en Alemania, el servicio de arranque en negro se ha prestado con asistencia de una turbina de gas en el arranque (Colthorpe, 2017). Debido al incipiente desarrollo de la tecnología de inversores formadores de red, y al posible requerimiento de generación convencional para soportar el servicio de arranque en negro, no se tiene en cuenta la aplicación en cuestión en análisis posteriores del trabajo.

Para este servicio, la propuesta regulatoria para Colombia indicada por PSR & Di Avante (2018), consiste en un esquema similar al propuesto para la RV, con licitaciones de expansión para el servicio, donde pueden participar BESS cuando el desarrollo de la tecnología de inversores lo permita.

5.4.2.4 Flexibilidad de rampa
La definición de un producto de rampa flexible es aplicable a cualquier sistema eléctrico, como primera opción sobre la RF y demás reservas operativas, para responder rápidamente ante desbalances generación-carga en operación normal. Sin embargo, su potencial económico y técnico es mayor en sistemas donde la carga está sujeta a variaciones de rampa alta, por ejemplo, con una alta penetración de FERNC y donde las reservas operativas provienen en su mayoría de plantas térmicas, con costos asociados elevados. Este es el caso de California, que en consecuencia desarrolló un producto de mercado para este servicio.

En contraste, Colombia cuenta con una matriz de generación basada en fuentes hídricas, con capacidad de inercia. Además, las reservas operativas para RF provienen en su mayoría de dichas fuentes, por lo que los costos asociados a las reservas son menores que, por ejemplo, los de un sistema soportado en fuentes térmicas.

Adicionalmente, la estimación de la remuneración por la prestación de este servicio, requiere del diseño de un producto de mercado específico para los requerimientos del sistema. Esta labor está por fuera del alcance de este trabajo, por lo cual este servicio no
es considerado en la evaluación, si bien se resalta la importancia del mismo en un escenario de mayor penetración de fuentes variables.

5.4.2.5 Operación en modo isla (Resiliencia)
En el caso de Colombia, donde no se presenta una participación masiva de FERNC la operación de BESS en modo isla podría aplicarse como respaldo para grandes centros de consumo alimentados por redes radiales debido a su lejanía. Sin embargo, en los lineamientos para la operación de recursos de generación del sistema, el funcionamiento en isla es evitado en para no comprometer los límites establecidos de seguridad de la operación y calidad de suministro (CNO, 2018). De hecho, dentro de las condiciones técnicas para la conexión de BESS, se encuentra la implementación de un esquema de protección anti-isla (CNO, 2019). Por estos motivos, no se considera en la evaluación.

5.4.3 Aplicaciones viables con las condiciones de mercado actuales
5.4.3.1 Alivio de congestiones
En el SIN de Colombia, el efecto de las congestiones por limitación en la capacidad de las redes de T&D es homologable al concepto de restricciones eléctricas. El alivio de restricciones se desarrolla con estrategias de corto y largo plazo.

En el corto plazo, desde el proceso de operación, el operador del mercado identifica diariamente las necesidades de generación de seguridad, que corresponde con la generación real despachada, no incluida en el despacho económico por cuanto este no considera las limitaciones de red. La generación de seguridad es reconocida a las plantas que la proveen mediante reconciliaciones positivas. Esta generación es más costosa comparada con la que desplaza en el despacho real, lo que representa un sobrecosto respecto al precio de energía fijado en el despacho ideal. Esta diferencia se asigna a la demanda mediante el rubro de restricciones en la tarifa (CREG, 2012).

Por otro lado, las estrategias de largo plazo, asociadas al proceso de planeación, consisten en la expansión de la red, a través de la construcción de nueva infraestructura de T&D o repotenciación de la existente. Los nuevos proyectos para alivio de restricciones son identificados en los planes de expansión de la UPME y los OR, dependiendo del nivel de tensión y el área de interés.

El marco regulatorio existente en Colombia para BESS, contempla su uso como alternativa a procesos de expansión de redes de T&D de difícil implementación, para el alivio de los tipos de restricciones presentadas en la Figura 10 (CND, 2019). Así mismo, los términos de referencia de la convocatoria UPME STR 01-2020, condicionan la entrega de energía del BESS al alivio de congestiones en la red.
De acuerdo con los procedimientos de operación definidos por la regulación, la operación del BESS se programa diariamente en el despacho económico. La energía y hora de descarga del SAEB se define a partir de las sobrecargas en estado estacionario identificadas en los análisis eléctricos del operador del mercado. La carga de energía se programa de manera que el BESS alcance su estado de carga máximo en la hora anterior al inicio de los períodos de descarga. Las restricciones operativas corresponden a eventos de contingencia que causan fallas o sobrecargas en los equipos de T&D. Por la naturaleza de dichas restricciones, no pueden ser incluidas en la planeación de la operación y se gestionan de forma reactiva. El BESS descarga fuera de lo programado siempre que se presenten sobrecargas por contingencias.

5.4.3.2 Regulación de voltaje

Es un servicio que se presta conjuntamente por los activos de generación y transmisión del SIN, a través de diferentes acciones instruidas por el operador del sistema. En el caso de los BESS, se considera que la operación es la asociada a la de una planta de generación. De acuerdo con el Código de Redes dichas plantas están obligadas a generar o absorber potencia reactiva dentro de sus límites técnicos, para garantizar el control de la tensión en su nodo de conexión. Al ser obligatorio en la actualidad no existe un mercado específico para energía reactiva a nivel del sistema. La propuesta de SA del SIN, considera un esquema de licitación para expansión de red enfocada en este servicio, donde los BESS pueden tener cabida (PSR & Di-Avant, 2018).

5.5 Conclusiones

En la referencia de proyectos internacionales se identificaron hasta 20 servicios y aplicaciones asociados a BESS. Posteriormente se extrajeron los aplicables a proyectos “stand-alone” y se analizó su posible implementación bajo las condiciones de mercado de Colombia. Los resultados se presentan en la Tabla 5.
Servicios que requieren un cambio regulatorio

- Mercado de energía (Arbitraje)
- Regulación de Frecuencia (FFR, RPF, RSF, RTF)
- Recuperación del servicio
- Flexibilidad de rampa
- Operación en modo isla (resiliencia)

Servicios aplicables bajo la regulación actual

- Alivio de restricciones eléctricas y operativas (Implica aplazamiento de inversión en T&D)
- Regulación de voltaje

| Tabla 5. Resumen Servicios aplicables al sistema colombiano |

Sobre estos servicios se realizan análisis adicionales a lo largo de las secciones 5.4.2 y 5.4.3, donde se incluyen los requerimientos técnicos y comerciales para la prestación de cada uno. A partir de estos análisis se realiza una nueva depuración para determinar los servicios que son incluidos en la evaluación económica. El retiro de servicios en esta etapa obedece al requerimiento de diseño de productos de mercado por fuera del alcance del presente trabajo, limitaciones en la tecnología o inviabilidades regulatorias de tipo técnico, derivadas de los requerimientos para una operación confiable del sistema.

De los servicios resultantes después de la depuración se determinó cuáles se pueden monetizar, ya sea a través de esquemas de ingresos regulados o de mercado. Los servicios obligatorios no se remuneran y están asociados a la participación del BESS en aplicaciones remuneradas, de acuerdo con las reglas comerciales y de operación del SIN. El resumen de los servicios considerados para la evaluación se presenta en la Tabla 6.

| Tabla 6. Servicios considerados para la evaluación |

Se seleccionaron como servicios remunerados para la evaluación el arbitraje de energía, la regulación secundaria de frecuencia o AGC, y el alivio de restricciones eléctricas, el cuál
reune las aplicaciones del BESS como activo de transmisión. Se considera además la prestación de servicios no remuneraos tales como la regulación de frecuencia primaria, aplicable solo cuando el BESS participa en arbitraje de energía, y la regulación de voltaje, requerida para todos los servicios y escenarios.

En el capítulo siguiente, se analiza el marco regulatorio y los esquemas de remuneración aplicables a proyectos BESS, en los mercados eléctricos de California y Australia. Se identifican los tipos de servicios definidos en cada mercado, determinando además cuáles están sujetos a remuneración. Así mismo, se introducen los mecanismos implementados o en proceso de evaluación, que permiten el reconocimiento de ingresos por la provisión de diferentes tipos de servicios.
6 Remuneración de servicios de BESS en mercados internacionales

6.1 Introducción del capítulo

Una vez definidos los servicios asociados a BESS, considerados para evaluación en el presente trabajo, se deben definir los esquemas a partir de los cuales dichos servicios son solicitados, coordinados, despachados y remunerados. Para tal fin, se realiza una referencia sobre el desempeño comercial, estatus regulatorio y servicios asociados a los BESS en mercados internacionales que tienen proyectos en operación comercial.

En este capítulo se revisan los esquemas de remuneración de sistemas BESS pertenecientes a los mercados de Australia y California. Se seleccionan estas regiones por su nivel de desarrollo e implementación de la tecnología, y por su avance en la aplicación o estructuración de reglas de mercado que permitan a los BESS capturar diferentes fuentes de valor para viabilizar los proyectos. Para cada uno se identifica y explica la remuneración de los servicios de mercado, y se indican los servicios que no tienen remuneración asociada. Finalmente, se presentan casos de aplicación o propuestas regulatorias en los cuales además de ingresos de mercado los BESS acceden a ingresos regulados por la prestación de servicios de confiabilidad como activo de transmisión.

6.2 Australia

Si bien no existe un marco regulatorio completo que describa y contemple todas las posibles aplicaciones de los BESS, el regulador australiano “Australian Energy Regulator”, (AER), ha emitido conceptos específicos donde diferencia servicios regulados y no regulados asociados a la tecnología (AER, 2020). En Australia actualmente no existe una figura de agente especial asociado a recursos de almacenamiento. Los BESS se registran en el mercado en una doble figura de generadores y consumidores (Aurecon & ARENA, 2019).

6.2.1 Servicios no regulados (De mercado)

Los servicios no regulados se proveen a través de mercados competitivos, que contemplan un mercado de energía y los diferentes mercados de SA de RF, descritos en el capítulo 5. Ambos mercados son intradiarios con despacho en intervalos de 5 minutos. El precio spot con el que se liquidan las transacciones se obtiene cada media hora, al promediar los precios de los últimos seis intervalos de 5 minutos. (AEMO, 2020). Los mercados de energía y RF son independientes entre sí, por cuanto las ofertas de servicios de RF no están directamente ligadas a la oferta de energía, como se ejemplifica en el caso del BESS de Ballarat (AusNet, 2020).

El despacho en el mercado de energía se realiza por orden de mérito, definiendo el precio de mercado como el marginal para abastecer la demanda de un intervalo de 5 minutos. Cada media hora, se promedia el precio de seis intervalos para definir un precio spot, a partir del cual se liquidan las transacciones de energía en el mercado. El AEMO define un precio spot para cada uno de los estados del país, considerando las restricciones de las redes de transporte requeridas para cubrir largas distancias entre diferentes regiones, así como el hecho de que no todos los estados se encuentran interconectados entre sí (AEMO, 2020). En estados como Australia del Sur, la volatilidad del precio de energía ha aumentado...
como efecto de la alta penetración y dependencia de fuentes variables de energía, como las FERNC. Esto representa una oportunidad y un perjuicio para los BESS, en cuanto pueden beneficiarse de diferenciales de precios mayores para hacer arbitraje de energía, pero se dificulta el pronóstico de precios futuros para definir la estrategia de operación.

En el caso de la RF, se tienen ocho mercados independientes de FCAS, uno para cada servicio descrito en el capítulo 5, sección 5.3. Para los servicios de FCAS de subida, los agentes ofertan una capacidad disponible en MW que pueden agregar en un intervalo de 5 minutos para subir la frecuencia, con su precio asociado en $/MWh. Análogamente, para los FCAS de bajada se oferta la capacidad en MW que puede reducirse al sistema. El AEMO asigna los FCAS por orden de mérito, determina un precio de liquidación como el marginal para cada servicio y programa el despacho integrado del mercado de energía y FCAS para minimizar el costo total al mercado (AEMO, 2015).

La remuneración de los agentes que el AEMO habilita en cada intervalo para suministrar FCAS, en todos los mercados, corresponde al producto de la capacidad disponible ofertada y el precio de liquidación, dividido por 12, considerando los intervalos intrahorarios en los que se hace el despacho (AEMO, 2015). La FFR, exclusiva de los recursos de almacenamiento, no tiene un producto de mercado diferenciado por lo cual entra a hacer parte de los FCAS de contingencia. Lo anterior pese a que el tiempo de respuesta de la FFR, que ronda los 200 ms, es mucho menor al máximo de 6 segundos requeridos para participar en FCAS de contingencia (Aurecon & ARENA, 2019).

Todos los proyectos analizados ubicados en Australia tienen participación en los mercados competitivos. Los servicios de FCAS se configuran como los que mayores ingresos representan para los BESS en operación. El aumento en los requerimientos de FCAS por parte de AEMO, durante el primer semestre de 2019, elevó los precios de dichos servicios en varias regiones del país. Para proyectos de gran tamaño e importancia, como Dalrymple, Ballarat y Hornsdale, esto provocó que los ingresos recibidos por FCAS en sus primeros años de operación excedieran los esperados en la estructuración de los modelos de negocio (AURECON, 2020; AusNet, 2020; ElectraNet, 2021).

Sin embargo, la entrada en operación de más proyectos con BESS tiende a reducir nuevamente los precios. La entrada en el mercado del BESS de Hornsdale, por ejemplo, redujo aproximadamente en un 80% los pagos por FCAS en la región de Australia del Sur, como se observa en la Figura 11 (AURECON, 2020). Esto tiene un beneficio para el sistema en cuanto reduce los costos de operación, pero a largo plazo amenaza la viabilidad financiera y económica de los BESS existentes y futuros.
El costo promedio anual de FCAS en Australia del Sur alcanzó casi los 500 millones de AUD por MWh en el año 2017, mientras en el estado de Victoria no superaba los 50 millones. Con el ingreso al mercado del BESS de Hornsdale, en la segunda semana del año 2018, el costo para los dos estados se estabilizó en niveles promedio similares (AURECON, 2020).

6.2.2 Servicios regulados (No sujetos a mercado)

Por su parte, los servicios regulados están orientados a garantizar la seguridad de los sistemas de potencia desde la gestión de la capacidad de la infraestructura de T&D propiedad de los OR, identificados en Australia como “Network Service Providers” (NSP) (AEMO, 2015). Salvo algunas excepciones, correspondientes a la regulación de voltaje ante contingencias y el arranque en negro, la provisión de estos servicios regulados por parte de BESS no tiene una remuneración directa con productos de mercado específicos. Generalmente se consideran prioritarios en la operación, si bien las obligaciones contractuales pueden diferir para cada proyecto dependiendo de su motivación (Aurecon & ARENA, 2019).

Entre estos servicios se encuentra la regulación de voltaje, requerimiento inherente a todos los recursos de generación que los BESS deben cumplir tanto en periodos de carga como de descarga. El servicio auxiliar de control de voltaje (VCAS, por sus siglas en inglés) es un caso particular de la regulación de voltaje, correspondiente a la inyección de potencia reactiva para mantener el voltaje y la estabilidad en límites adecuados después de una contingencia. El VCAS se remunera a través de acuerdos de largo plazo con un NSP o directamente con el AEMO (AEMO, 2015), sin embargo, conlleva unos requerimientos técnicos adicionales que complican su contratación por parte de los BESS (Aurecon & ARENA, 2019).

Los proyectos ubicados en Australia del Sur deben estar disponibles para prestar el servicio de SIPS y operación en modo isla, sin recibir remuneración explícita por ellos (Aurecon & ARENA, 2019; ElectraNet, 2021). Se resalta que en la práctica los eventos de operación en
modo isla requieren de la activación de los servicios de FCAS que sí son remunerados a los BESS para estabilizar el balance generación-carga mientras se restablece la conexión (ElectraNet, 2021).

Los BESS pueden prestar el servicio de arranque en negro en un caso extremo de desconexión de la red principal que ocasione pérdida total del suministro, dependiendo de si están habilitados para tal fin. Estos servicios, llamados de reinicio del sistema (SRAS, por sus siglas en inglés), son contratados mediante acuerdos de largo plazo con el AEMO (AEMO, 2015). Sin embargo, la prestación de este servicio reviste dificultades para los BESS. La principal corresponde a un requerimiento de exclusividad que inhabilita al BESS para otras aplicaciones y por ende otras fuentes de ingresos (Aurecon & ARENA, 2019).

6.2.3 BESS como activos de transmisión
Los proyectos de Dalrymple y Ballarat son los únicos de propiedad de empresas dedicadas a la transmisión de energía, ElectraNet y AusNet, respectivamente. El negocio de T&D es un monopolio natural. Por lo tanto, la remuneración de su actividad está basada en la recuperación regulada de costos determinada por el regulador “Australian Energy Regulator” (AER), mediante la aprobación de los planes de inversión de los OR, llamados “Network Capability Incentive Parameter Action Plan” (NCIPAP), para ciclos regulatorios trianuales (AusNet, 2020; ElectraNet, 2018).

AER reconoce y acepta la participación de estos proyectos en mercados competitivos, pero fija límites y condiciones para prevenir la doble remuneración. En específico, se exige que el NSP ceda la operación del BESS a una entidad separada legalmente, mediante alquiler o acuerdos de derechos de uso del dispositivo (AER, 2020).

En este sentido, el BESS de Dalrymple es propiedad de ElectraNet pero está representado ante el AEMO por AGL Energy, quien lo usa para participar en el mercado de energía y FCAS (ElectraNet, 2021). Análogamente, el proyecto de Ballarat, propiedad de AusNet, es operado por EnergyAustralia para prestar servicios de mercado. Este BESS limita su operación a los servicios de mercado y no provee otros a empresas de T&D (AusNet, 2020), como sí lo hace ESCRI-SA.

El BESS de Dalrymple, ESCRI-SA, tiene un tratamiento regulatorio especial. Representa el único caso en el cual AER permite remuneración por participación en el mercado y por recuperación de costos (Pattas, 2017). Esta excepción surgió de la necesidad de ElectraNet por soportar el cierre financiero del proyecto ante los inversionistas de este (ElectraNet, 2018).

En junio de 2017, ElectraNet remitió al AER una solicitud expresa para incluir el BESS en su NCIPAP aprobado para el período 2015 a 2018 como reemplazo de dos proyectos de expansión convencional de redes de transmisión. La empresa solicitó el reconocimiento de una porción del costo total del BESS, como una inversión de capital a incluir en la base de activos de remuneración regulada. Para justificar la inversión la solicitud se acompañó de una valoración económica de los beneficios a los consumidores, comparado a un escenario
sin BESS, correspondientes a la reducción del impacto de los siguientes eventos (Korte, 2017):

- Despacho de generación costosa por congestiones en la interconexión Heywood.
- Energía no suministrada por falta de confiabilidad del suministro a los consumidores conectados a la subestación Dalrymple, donde se conecta el BESS.

Los beneficios económicos del proyecto se estimaron en 13,5 millones de dólares australianos (AUD), mientras que componente de costos de capital asociados a los servicios regulados se estimaron 6,6 millones de AUD (ElectraNet, 2018). Por lo anterior, la solicitud fue aprobada y el proyecto pudo llevarse a cabo bajo un esquema de ingresos mixto (Pattas, 2017).

Para el año 2021, la comisión de mercado de energía, llamada “Australian Energy Market Comission” (AEMC), tiene en proceso de consulta una modificación regulatoria propuesta por el AEMO, que busca normalizar la condición y tratamiento de los sistemas de almacenamiento en el mercado eléctrico. La propuesta no define un estándar para permitir el acceso de BESS a la remuneración de servicios regulados y no regulados. Sin embargo, el AER ha utilizado el canal para referirse a la necesidad de definir las reglas respecto a la aplicabilidad de los cargos por uso del sistema de T&D en la tarifa de los BESS cuando se cargan, lo cual impacta directamente los ingresos por arbitraje de energía (Feather, 2020).

Algunos NSP defienden que los BESS de su propiedad, conectados a sus redes, deben estar exentos de dichos cargos por uso mientras se mantienen para proyectos de terceros. En el BESS de Dalrymple, por ejemplo, ElectraNet solicitó al AER la exención en el pago de cargos por uso de red, aludiendo una figura de “servicio de transmisión negociado” basada en el hecho de que el propietario del BESS es el mismo propietario de la red en la cual este se conecta (ElectraNet, 2018). Si bien el AER aceptó este esquema, considera que no debe sentar un precedente para proyectos futuros, pues el tratamiento diferencial de las tarifas entre NSP y demás inversionistas puede distorsionar el libre mercado y el desarrollo futuro de la tecnología (Pattas, 2017).

6.3 California

El desarrollo de BESS en California obedece a la necesidad de soportar la generación variable asociada a FERNC en zonas de alta penetración de estas tecnologías durante las horas pico de demanda. La mayoría de los proyectos referenciados en la Tabla 2 del capítulo 5 tienen un tiempo de descarga de 4 horas, por lo cual priman los servicios intensivos en energía. En este sentido, los BESS priorizan las aplicaciones de arbitraje de energía, reservas de capacidad y alivio de congestiones, sobre la RF (CAISO, 2018).

6.3.1 Agrupación de proyectos BESS según CAISO

Históricamente, los proyectos con BESS en California pueden agruparse en dos categorías, dependiendo de cómo son considerados por el CAISO para su operación y remuneración (CAISO, 2018):
1. Recursos de mercado que suministran una reserva local de capacidad, conocida como resource adequacy (RA), para garantizar la operación segura y confiable del sistema por parte del CAISO.
2. Un activo de transmisión, aprobado a través del plan de transmisión del CAISO

6.3.1.1 Recursos de mercado

En el primer caso, los proyectos son aprobados mediante procesos de adquisición del CPUC u otras entidades regulatorias. En este grupo se encuentran, por ejemplo, los BESS desarrollados en el marco de la Assembly Bill 2514 del CPUC y sus decisiones asociadas. En estas, se fijaron metas de desarrollo de proyectos de almacenamiento a las tres principales empresas de T&D propiedad de inversionistas, también llamadas investor owned utilities (IOU). Dichas empresas son Southern California Edison (SCE), Pacific Gas and Electric Company (PG&E) y San Diego Gas & Electric (SDG&E). Los proyectos superan en total los 1,500 MW de capacidad instalada (CPUC, 2013, 2014).

Para cumplir los objetivos de la AB 2514, las IOU lanzaron procesos de licitación de RA cada dos años entre 2014 y 2018, donde se incluían requerimientos de capacidad de almacenamiento (CEC, 2015). La remuneración por RA consiste en un pago fijo por disponibilidad, que reconoce y aprueba la CPUC a los IOU con base en los acuerdos realizados en dichos procesos licitatorios (CPUC, 2018a). Los participantes de los procesos sugieren un esquema de propiedad del proyecto, pudiendo darse dos opciones (PG&E, 2016; SDG&E, 2016):

Utility – owned: El oferente construye el proyecto, pero la propiedad y la administración de este está a cargo del IOU. El proyecto Escondido Energy Storage, de SDG&E, así como los BESS de Convergent y Aliso Canyon - Mira Loma Substation, ambos propiedad de SCE, son ejemplos de proyectos desarrollados bajo este esquema (Sandia National Laboratories, 2020).

Third party – owned: El oferente construye, opera y mantiene el proyecto por un tiempo contractual definido. La propiedad del BESS se cede al adjudicatario, que además de recibir el pago fijo por RA, generalmente pacta con el IOU un contrato de compra de energía, o power purchase agreement (PPA), por una capacidad fija para descarga en las horas pico de demanda. Este es el caso de los BESS de Hecate Energy (Walton, 2016) y AltaGas Pomona Energy (AltaGas, 2017). Alternativamente, el propietario del BESS puede participar en el mercado de corto plazo, para realizar arbitraje de energía sin firmar contratos bilaterales.

Para los BESS que participan en mercados se identifica una oportunidad de participar adicionalmente en los mercados de RSF o AGC, aunque no es la aplicación principal. CAISO remunera el servicio de RSF como la suma de tres componentes (Byrne et al., 2018):

i. Capacidad despachada para RSF, a precio marginal del mercado de RSF
ii. Energía suministrada por la activación de servicio de RSF, al precio de mercado.
iii. Desempeño (respuesta a señal de AGC de CAISO)
Dentro de los BESS relacionados en el Capítulo 5, este es un servicio reportado solo por Escondido Energy Storage, en operación desde 2017. Sin embargo, no hay información pública respecto a los ingresos de este proyecto por participación en servicios de mercado. Byrne et al, (2018), evalúa el mercado de RF en California desde la perspectiva de un BESS. Plantea que existen dos opciones de participación, presentadas en la Tabla 7.

<table>
<thead>
<tr>
<th>Participación</th>
<th>Mercado</th>
<th>Compromiso despacho</th>
<th>Otros servicios de mercado</th>
</tr>
</thead>
<tbody>
<tr>
<td>REM</td>
<td>RSF del día anterior</td>
<td>15 minutos</td>
<td>No permitido</td>
</tr>
<tr>
<td>Traditional (Non – REM)</td>
<td></td>
<td>1 hora</td>
<td>Permitido</td>
</tr>
</tbody>
</table>

Tabla 7: Opciones de mercado de RF para BESS en California

Una de las opciones considera la participación en el programa de gestión de la regulación de energía, o regulation energy management (REM). Los BESS que participan en REM tienen la obligación de mantener la capacidad de descarga durante 15 minutos en cada uno de los períodos de una hora en los cuales es asignado con el servicio de RSF. Al exigirse un tiempo de descarga menor, el BESS puede ofertar mayor capacidad para RSF y por ende recibe mayor remuneración (Byrne et al., 2018). Sin embargo, no tiene permitido participar en otros servicios de mercado, incluyendo el de energía (Sakti et al., 2018). Por otro lado, la participación como agente tradicional, obliga al BESS a descargar a su capacidad despachada por el período horario en los que se asigna RSF. Esto hace que los BESS de tiempos de descarga menores a una hora no puedan ofertar su capacidad máxima para RSF, lo que compromete los ingresos por este servicio (Byrne et al., 2018). No obstante, tienen la posibilidad de participar en otros mercados (Sakti et al., 2018).

6.3.1.2 Activos de transmisión

En dicho plan de transmisión, los proyectos BESS se proponen como alternativas a la construcción o repotenciación de redes de T&D, para aliviar congestiones, sobrecargas, y mejorar en general la confiabilidad de los sistemas de T&D. Los proyectos aprobados se consideran activos de transmisión, por lo cual su remuneración consiste en un ingreso regulado basado en recuperación de costos. Estos BESS son de uso dedicado para servicios de soporte a la transmisión, su operación está a cargo de CAISO, por lo que no admiten aplicaciones en los mercados de energía o SA (CAISO, 2018).
6.3.2 Servicios sin mercado
El arranque en negro, la RV y la RFP corresponden con características inherentes a los recursos de generación convencionales. Esta apreciación aplica también para los BESS, por lo cual estos servicios no tienen un mercado o remuneración diferenciados (CPUC, 2018b)

6.3.3 Propuestas regulatorias
El operador CAISO y el regulador estatal CPUC están en proceso de desarrollo de un marco regulatorio que admita todas las potenciales aplicaciones de BESS implementados en California. El desarrollo se realiza a través de propuestas regulatorias elaboradas en procesos de participación con partes interesadas, adelantadas en paralelo con la implementación de nuevos proyectos mediante los mecanismos actuales. Se resaltan dos propuestas principales (CAISO, 2018; CPUC, 2018b):

ESDER: Siglas en inglés para Recursos de Almacenamiento de Energía y Energía Distribuida (“Energy Storage and Distributed Resources”). El proceso se ha desarrollado e implementado por fases. En cada una de ellas se abordan y se resuelven problemas técnicos y de mercado, identificados para la participación de recursos distribuidos en los mercados mayoristas de energía y SA, incluyendo las aplicaciones a nivel de consumidor final (Sakti et al., 2018). A finales del año 2020 la propuesta se encontraba en su cuarta fase, en la cual se refinaría el producto de rampa flexible y los criterios para la participación de BESS en los mercados de tiempo real (CAISO, 2020).

SATA: Siglas en inglés para Almacenamiento como Activo de Transmisión (“Storage as Transmission Asset”). Es una propuesta enfocada a los proyectos ESS implementados como activos de transmisión a través de TPP de CAISO. Busca definir los mecanismos para que estos ESS puedan participar en servicios de mercado de energía y SA. El objetivo es disminuir el aporte de los contribuyentes en la remuneración regulada de costos de los proyectos, habilitando la inclusión de ingresos por servicios de mercado en los modelos de negocio de los ESS. Las propuestas se basan en la decisión de la CPUC sobre usos múltiples de almacenamiento de energía, sintetizada en once reglas provisionales que se resumen en la Figura 12.

Las primeras cuatro reglas están orientadas a que los ESS participen en aplicaciones del eslabón de la cadena de suministro a la que se conectan, o superior, por lo cual todos los ESS pueden participar en servicios de T&D y el mercado mayorista.

Las reglas 5 y 6 priorizan los servicios por una clasificación de confiabilidad. A excepción del arbitraje todos los servicios a nivel de T&D y mercado mayorista se consideran de confiabilidad, lo cual incluye la RF, rampa flexible, reserva de capacidad, operación en modo isla y alivio de congestiones.
Figura 12: Reglas de usos múltiples de CPUC para ESS (CPUC, 2018b).

Las reglas 7 a 10 se enfocan en la adecuada contratación de servicios por parte de un ESS con base en el conocimiento de las limitaciones de su activo y los compromisos ya adquiridos. Finalmente, la regla 11 busca garantizar que los servicios ofrecidos y remunerados a los ESS sean diferenciales e incrementales.

En la segunda revisión de la propuesta, en el año 2018, los esquemas de remuneración explorados por CAISO para permitir agrupación de servicios de mercado con recuperación regulada de costos, son (CAISO, 2018):

i. **Recuperación total de costo por remuneración regulada, con ingresos de mercado acreditados a los contribuyentes**: El BESS tiene acceso a una remuneración regulada que garantiza la recuperación total de los costos del proyecto. Los ingresos recibidos por concepto de participación en servicios de mercado se consideran una compensación al contribuyente, por lo que son restados de los ingresos regulados. En todo caso, el inversionista tiene garantizado un margen igual al de la actividad de transmisión, y la participación en servicios de mercado disminuye la carga tarifaria sobre los contribuyentes, asociada a la remuneración del proyecto. La compañía que propone el BESS como alternativa a transmisión dentro del TPP indica la remuneración esperada con base en el costo total del proyecto, tal como se hace para la infraestructura de transmisión en general.

Este esquema pretende aliviar la carga sobre el contribuyente en el desarrollo de proyectos BESS, al tiempo que elimina para estos últimos el riesgo de participación en el mercado y explota sus beneficios en el sistema. Sin embargo, precisamente por eliminar dicho riesgo, no produce incentivos adicionales para la prestación de servicios de mercado.
ii. **Recuperación parcial de costos por remuneración regulada, con totalidad de ingresos del mercado para el inversionista**: El BESS recupera una porción del costo total del proyecto a través de remuneración regulada, pero tiene derecho a la totalidad de los ingresos asociados a la prestación de servicios de mercado. La porción que se recupera por ingresos regulados debe ser indicada por la compañía propietaria del BESS en el TPP.

Se espera que la compañía haga una estimación y proyección de los ingresos por servicios de mercado, para que de acuerdo con el margen mínimo esperado para su actividad reste dichos ingresos de los que serían solicitados al CAISO en un escenario sin participación en el mercado.

El CAISO revisará la validez de estas estimaciones al momento de aceptar una propuesta bajo este esquema en el TPP, buscando garantizar que se ejecuten proyectos financieramente viables. Al no garantizar una remuneración regulada del proyecto, este esquema introduce un riesgo que, si bien incentiva la prestación de servicios de mercado, puede disminuir el interés de los inversionistas por desarrollar proyectos BESS.

iii. **Recuperación total de costo por remuneración regulada, con compartición de los ingresos del mercado entre el inversionista y los contribuyentes**: Es una combinación de los dos esquemas anteriores. El BESS tiene acceso a una remuneración que recupera el costo total del proyecto, y es acreedor a una porción de los ingresos de mercado, propuesta inicialmente como el 50%, dejando el restante a favor de los contribuyentes. A través de este esquema se incentiva no solo el desarrollo de proyectos BESS, sino también su participación en los servicios de mercado, con los beneficios operativos que estos representan para el sistema. Sin embargo, esto representa una menor acreditación al contribuyente.

La propuesta regulatoria se encuentra en etapa de revisión y comentarios, sujetos a los resultados de los demás desarrollos regulatorios paralelos. Se encuentran pendientes de definición otros aspectos que afectan la operación comercial del BESS. Uno de ellos, de interés en para el presente trabajo, corresponde con el proceso de definición de la disponibilidad del BESS para prestar servicios de mercado. La ejecución de un proyecto BESS bajo un mecanismo TPP tiene como prioridad la prestación de servicios como activo de transmisión, es decir, para alivio de congestiones en las redes. CAISO considera que se requiere la disponibilidad total de la capacidad del BESS en un período diario para la prestación de este servicio (CAISO, 2018).

En este sentido, la propuesta indica que será CAISO quien determine, con un plazo por definir previo al despacho, y con base en sus criterios de confiabilidad, si el BESS será requerido en una franja de 24 horas como activo de transmisión, o en su defecto, si está autorizado para participar en el mercado. En caso de ser requerido como activo de transmisión, el propietario del BESS deberá garantizar que este se encuentra en su máxima
carga a las 12 AM del día definido, en el cual la operación del BESS será responsabilidad directa de CAISO. En el período en cuestión, el BESS se considera en indisponibilidad para la prestación de servicios de mercado (CAISO, 2018).

6.4 Conclusiones

Se identificaron los principales esquemas de remuneración aplicables a BESS en los referentes internacionales de Australia y California. En ambos casos, se definió una motivación o problemática principal para el desarrollo de cada proyecto, que dirige el nivel de prioridad que se da a los servicios prestados. En Australia, los ingresos de mercado están condicionados principalmente por la alta demanda de servicios de RF, por lo que los BESS que desean maximizar su rentabilidad centran la operación en aplicaciones intensivas en potencia. Mientras, en California, si bien existe un mercado de RF en el que los BESS pueden participar, el desarrollo de BESS para participar en servicios de mercado obedece al requerimiento de reservas de capacidad remuneradas con contratos.

En ambos mercados existe interés hacia la integración de ingresos regulados en el modelo de negocio de BESS que participan en servicios de mercado. En Australia se tiene un caso práctico con el BESS de ESCRI-SA, que solicitó ingresos regulados para dar viabilidad financiera a su proyecto, la cual no se alcanzaba con las proyecciones de ingresos de mercado realizadas. Sin embargo, el aumento en la demanda de FCAS provocó un incremento en los ingresos de mercado por fuera de lo proyectado, que de mantenerse en el largo plazo podrían recuperar la inversión del proyecto por sí solos. Es preciso que el AER revise si bajo las condiciones reales de ingresos del BESS la asignación de una remuneración regulada representa una ineficiencia en la operación del sistema.

En contraste, en California se encuentra en desarrollo una propuesta regulatoria para la integración de ingresos regulados y de mercado, que busca aprovechar el potencial de todos los servicios de los BESS, minimizando la carga al contribuyente. El CAISO espera definir mecanismos que mantengan un equilibrio entre incentivar la inversión en BESS al tiempo que se optimizan los costos del sistema. Con las propuestas del CAISO, por ejemplo, se logra que un aumento del precio de los servicios de mercado represente un descuento mayor en la carga al contribuyente. Lo que no ocurre en el caso australiano, donde dicha carga permanece constante e igual a la definida al inicio del proyecto.

En el siguiente capítulo se presentan diferentes escenarios de remuneración, los cuales toman elementos de los mercados analizados en este capítulo, tales como el arbitraje sobre precios nodales que no tienen cargos extra, y la prestación de RSF no simétrica (hacia arriba o hacia abajo). Así mismo, si bien la valoración económica del trabajo no está orientada a la disminución de costos para el sistema, sí se tendrá en cuenta que este es el principal criterio de los reguladores para aprobación de ingresos, como se observó en los casos presentados en este capítulo.
Propuesta de servicios y esquemas de remuneración para BESS en Colombia

7.1 Introducción del capítulo
Identificados los servicios a evaluar y analizados esquemas de remuneración implementados internacionalmente para estos, se desarrolla en este capítulo una propuesta de esquemas de remuneración. Para cada esquema planteado se determinan diferentes escenarios que consideran la prestación de uno o varios de los servicios identificados en el capítulo 5. Posteriormente se detalla la estimación de los ingresos totales para cada uno de los escenarios propuestos, a partir de datos históricos de precios y cantidades relacionadas con los servicios en cuestión, así como de supuestos debidamente sustentados para cubrir vacíos regulatorios o generar más escenarios de análisis.

La evaluación está enfocada a verificar el cierre financiero del proyecto bajo la perspectiva del inversionista. El análisis planteado y la coordinación de los servicios propuestos no considera ni busca maximizar los beneficios económicos percibidos por el sistema, asociados a los diferentes servicios del BESS.

7.2 Descripción técnica del proyecto para evaluación
La evaluación se realiza considerando las especificaciones técnicas y operativas más importantes del BESS objeto de la convocatoria UPME STR 01-2021 (UPME, 2021c). Las cuales se recogen en la Tabla 8.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Requerimiento técnico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia nominal de salida al voltaje nominal</td>
<td>45 MW</td>
</tr>
<tr>
<td>Energía nominal de salida al voltaje nominal</td>
<td>45 MWh EoL “End of Life”</td>
</tr>
<tr>
<td>Tiempo de carga en cada ciclo</td>
<td>1 hora</td>
</tr>
<tr>
<td>Tiempo de descarga en cada ciclo</td>
<td>1 hora</td>
</tr>
<tr>
<td>Eficiencia mínima de carga/descarga en AC (incluyendo auxiliares y refrigeración)</td>
<td>85%</td>
</tr>
<tr>
<td>Ciclos de vida útil</td>
<td>5500 ciclos durante el período de pagos, considerando solo una actuación diaria y al 95% de profundidad de descarga (DoD).</td>
</tr>
<tr>
<td>Descripción</td>
<td>Requerimiento técnico</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Período de pagos (Horizonte del proyecto)</td>
<td>15 años desde la fecha de puesta en servicio</td>
</tr>
<tr>
<td>Año de puesta en servicio</td>
<td>2023</td>
</tr>
</tbody>
</table>

Tabla 8. Requerimientos técnicos del proyecto (UPME, 2021c).

7.3 Esquemas de remuneración

A partir de los servicios identificados en el Capítulo 5, y los esquemas referenciados en el Capítulo 6, se proponen tres esquemas de remuneración para la evaluación:

I. Remuneración total regulada por recuperación de costos como activo de transmisión

II. Remuneración total por prestación de servicios de mercado

III. Remuneración repartida entre ingresos regulados por recuperación parcial de costos e ingresos por prestación de servicios regulados

En la evaluación se plantean diferentes escenarios, con información, premisas y agrupaciones de servicios propios, que permiten ampliar el análisis de la viabilidad bajo cada esquema. Una descripción detallada se presenta en los ítems 7.3.1, 7.3.2 y 7.3.3.

7.3.1 Remuneración total regulada por recuperación de costos como activo de transmisión

Corresponde con el esquema actualmente en vigencia para el desarrollo de proyectos BESS en Colombia. La remuneración consiste en un ingreso anual fijo por la disponibilidad del activo, que corresponde con la oferta presentada por el proveedor del BESS en la convocatoria asociada al proyecto. En el presente trabajo el ingreso anual fijo se determina como el requerido para alcanzar una tasa de retorno del proyecto de 11,50%, igual a la regulada para la actividad de transmisión de energía, de acuerdo con la Resolución CREG 083 de 2008 (CREG, 2010). En los demás esquemas bajo evaluación, el ingreso hace parte de la información de entrada del análisis. Bajo el presente esquema, el ingreso regulado anual del BESS es obtenido como resultado a partir de la tasa de retorno deseada.

En este esquema, a parte de la inversión inicial, solo se consideran como egresos recurrentes los costos anuales de AOM. El responsable de la operación del activo es el CND, quien destina su uso exclusivamente al alivio de restricciones eléctricas y operativas de la red de transmisión en la que el BESS se conecta, para garantizar la confiabilidad del sistema. En adelante estos servicios se denominarán servicios de transmisión o como activo de transmisión. El propietario del BESS debe garantizar un índice de disponibilidad mínimo para el activo, de lo contrario incurriría en multas. Dado lo anterior, los costos asociados a la energía con la que se carga el BESS pasan a ser parte de las restricciones
del sistema, asumidas por los contribuyentes, y no corresponden a un egreso del inversionista propietario del BESS.

7.3.2 Remuneración total por prestación de servicios de mercado
Los ingresos percibidos por el BESS están asociados en su totalidad a la prestación de servicios de mercado. Los servicios o aplicaciones para los cuales se realiza la evaluación, de acuerdo con las conclusiones del Capítulo 5, son el arbitraje en el mercado mayorista de energía y el AGC. Para facilitar los cálculos y analizar el desempeño de cada servicio por separado, se plantea un esquema con participación exclusiva del BESS en dicho servicio. No se considera la estructuración de portafolios con varios servicios de mercado.

7.3.2.1 Ingresos por arbitraje de energía
De acuerdo con la Tabla 8, el BESS puede realizar un solo ciclo de carga/descarga diario. Se considera que cada etapa de carga o descarga podrá realizarse en una ventana de hasta 3 horas, teniendo en cuenta que el BESS no necesariamente debe despachar o cargar la totalidad de su capacidad en un período horario. Para maximizar el ingreso por arbitraje de energía, los tiempos para la descarga deben coincidir con los períodos donde el precio de bolsa alcanza su valor máximo, lo cual, teniendo en cuenta la curva típica de demanda de la Figura 9, ocurre generalmente entre los períodos 18 a 20.

En la presente evaluación se toma un precio de venta de energía promedio para todos los años determinado a partir de la información del mercado para los años recientes. De los reportes de transacciones y precios de XM se extrae el precio de bolsa promedio nacional, para los años 2019 a agosto de 2021. A su vez, estos precios se integran en un solo promedio trianual, que es utilizado para determinar el precio de venta de energía considerado en la evaluación. En la Figura 13 se ilustra la curva del precio de bolsa para los años en cuestión.

Figura 13. Precio de bolsa nacional – Promedio anual
La Figura 13 presentan cuatro curvas con el valor promedio anual del precio de bolsa, para cada uno de los años entre 2019 y 2021, así como una curva que promedia las tres anteriores. Visualmente se valida que en la curva promedio los valores máximos se presentan en los períodos 18 a 20. El precio promedio de la energía en los períodos 18 a 20 para los años contemplados es de 239 $/kWh. Este es el precio de venta de energía en bolsa considerado en la evaluación. Se aclara que, si bien una proyección a largo plazo del precio de energía debe ser más exhaustiva e incluir otros factores, las ganancias por arbitraje dependen de un diferencial de precios intradiarios entre los períodos de compra y venta, que se considera constante en el presente ejercicio.

En el análisis se supone que la totalidad de la energía disponible en cada período de descarga es vendida. Para reforzar este supuesto, se plantea una estrategia comercial a partir de la cual el 70% de la energía es suministrada a través de contratos bilaterales, mientras el 30% restante se vende al precio de bolsa promedio previamente indicado. El precio promedio de contratos entre el año 2019 y 2021 fue de 194 $/kWh. Sin embargo, este promedio es aplicable a contratos de suministro en todos los períodos. El contrato a suscribir tiene la particularidad de considerar suministro solo en los períodos 18 a 20, por lo que su valor puede acordarse superior. Este excedente se considera de 39 $/kWh, determinado como la diferencia entre el ya referenciado promedio de precio de bolsa en las horas pico (239 $/kWh) y el promedio general diario en bolsa (210 $/kWh). Con base en lo anterior, el precio del contrato de venta de energía usado en el análisis es de 223 $/kWh. El precio de compra de energía, aplicable a este y los demás esquemas de remuneración, se determina posteriormente en la sección 8.6.

La determinación de la energía disponible para venta bajo este esquema en cada ciclo descarga se resume en la Tabla 9. Se considera que el BESS se carga a su capacidad máxima diariamente en los períodos ya indicados.

<table>
<thead>
<tr>
<th>Condición</th>
<th>Capacidad disponible [%]</th>
<th>Energía disponible [MWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicial (Carga)</td>
<td>100</td>
<td>45</td>
</tr>
<tr>
<td>Eficiencia</td>
<td>85</td>
<td>38,25</td>
</tr>
<tr>
<td>DoD Máxima</td>
<td>95</td>
<td>36,34</td>
</tr>
<tr>
<td>Reserva para regulación primaria</td>
<td>97</td>
<td>35,25</td>
</tr>
<tr>
<td>Final (Venta)</td>
<td>78,33</td>
<td>35,25</td>
</tr>
</tbody>
</table>

Tabla 9. Energía disponible para venta en ciclo diario
Al inicio de los períodos de descarga se considera que el BESS ha sido cargado a su capacidad máxima de 45 MWh. Bajo las condiciones de la convocatoria UPME, la eficiencia mínima requerida es del 85%, lo que indica que al final del período de descarga el BESS ha suministrado máximo 38,25 MW, donde la diferencia son las pérdidas asociadas a los equipos y consumo de servicios auxiliares. La convocatoria también exige que el ciclo de descarga sea a una profundidad de descarga máxima del 95% para garantizar la vida útil del activo. Así mismo, se considera que, al participar en un rol de generador, al BESS le es exigido garantizar una reserva para regulación primaria del 3%, por lo que la disponibilidad para venta es del 97%. El producto de los porcentajes de disponibilidad por las condiciones descritas es 78,33%. Es decir, de los 45 MWh al inicio del ciclo de descarga, en total 35,25 MWh estarán disponibles para venta de energía diariamente. Bajo el supuesto de que toda la energía es vendida en los 365 ciclos anuales, esto representa un suministro de 12.865 MWh/año. De este total, se considera que el 30% (3.860 MWh/año) serán vendidos en bolsa, y el 70% restante (9.006 MWh/año) en contratos.

7.3.2.2 Ingresos por participación en mercado de AGC
Simplificando las ecuaciones para precio de AGC y reconciliaciones, contenidas en la Resolución CREG 027 de 2016, se obtiene una expresión aproximada para el beneficio de un generador por la prestación del servicio de AGC en cada período. Esta expresión considera el balance entre los pagos y cargos a los que está sujeta una planta que presta el servicio de AGC (PSR & Di-Avante, 2018).

\[Beneficio_{AGC} \approx 2 \times HO \times CERE \]

Ecuación 1: Beneficio por prestación de servicio de AGC según la Resolución CREG 027 de 2016, (CREG, 2016).

Donde \(HO \) es la potencia asociada a la holgura horaria asignada al generador por el CND y el \(CERE \) es el costo equivalente real de energía determinado cada mes por el operador del mercado. El valor promedio del CERE, a agosto de 2021, fue de 72,65 $/ kWh. Se observa una tendencia constante al alza en este valor en los últimos 7 años, desde los 30,25 $/ kWh en el 2014. Por este motivo, no se hace un promedio con años anteriores y se toma para la proyección únicamente el del último año, que se indexa para el horizonte del proyecto con el IPC.

Bajo la regulación vigente el beneficio del generador es un valor constante que no depende del precio de bolsa. De hecho, este esquema se implementó como respuesta a los elevados costos de AGC que se presentaron entre los años 2015 y 2016, por los períodos de sequía que incrementaron el precio de bolsa. En el presente trabajo se analiza también la viabilidad económica del proyecto considerando un esquema anterior, definido por la Resolución CREG 064 de 2000 (CREG, 2000) y con precio de reconciliación de la Resolución CREG 034 de 2001 (CREG, 2001), el cual resultaba más favorable económicamente para los generadores. La ecuación aproximada para el beneficio de AGC con este esquema es el siguiente:
Beneficio AGC \(\approx (2PB - CERE) \times HO \)

Ecuación 2: Beneficio por prestación de servicio de AGC con Resolución CREG 064 de 2000 (CREG, 2000).

Donde \(PB \) es el precio de bolsa.

En esta expresión, el factor que multiplica la holgura indica que el beneficio aumenta con el doble del precio de bolsa, el cual en la evaluación coincide con el precio de venta de energía en bolsa definido en el numeral anterior, de 239 $/kWh. El CERE es el mismo usado para la evaluación bajo el esquema actual.

Como se menciona en el capítulo 5, para la evaluación se plantea un escenario hipotético en el cual al BESS le es permitido participar en el servicio de AGC sin la obligación de una oferta de energía asociada. El activo dispone de la totalidad de su capacidad para regulación hacia arriba o hacia abajo, sin la simetría en la holgura requerida en esquema vigente.

Por la restricción de máximo un ciclo de carga y descarga diario, el servicio se oferta una vez al día, en una ventana de tiempo que puede tener incluir varios períodos de despacho. La estrategia de oferta de AGC se determina para salir despachado en los períodos de mayor requerimiento de AGC por parte del sistema para aumentar la probabilidad de prestación efectiva del servicio. Así mismo, dado que en el segundo escenario de análisis el beneficio depende del precio de bolsa se busca asignación del servicio en las horas donde dicho precio alcanza su máximo. En la Figura 14 se presenta el requerimiento diario de AGC en el SIN para el año 2020.

![Figura 14. Requerimiento promedio horario anual de holgura para AGC en el SIN](image)
El requerimiento de holgura diario máximo en el año 2020 fue de 400 MW, correspondiente a los períodos 19, 20 y 21. Se considera que la holgura se oferta entre los períodos 19 y 20, donde el precio de bolsa es el definido en el análisis de arbitraje de energía. Bajo este esquema se plantea que el BESS se encuentra cargado a su máxima capacidad al inicio de los períodos de descarga, y es asignado en toda su disponibilidad para suministrar RSF hacia arriba cuando se presenten eventos de frecuencia.

La RSF es un servicio basado en potencia, no en energía. A diferencia del arbitraje, ofertar la capacidad del BESS para el servicio de AGC por un período no se traduce en un suministro de energía continuo durante todo el período, solo mientras se mitiga el evento de frecuencia o por el tiempo que le sea exigido por regulación. En este sentido, el BESS puede ofertar su holgura máxima para AGC en varios períodos, en los cuales se distribuye la descarga de la batería de acuerdo con la activación del servicio.

El Acuerdo CNO 1023 del 2017 (CNO, 2017), que recoge los parámetros técnicos requeridos para prestación del servicio de AGC, exige un tiempo de recuperación de la frecuencia a su valor nominal de máximo 7 minutos, sin especificar por cuánto tiempo más debe mantenerse el nivel de potencia correspondiente a activar el servicio. Este tiempo está pendiente de actualización por parte del CND, según lo descrito en el Acuerdo 1365 de 2020 (CNO, 2020), que sustituyó el 1023 de 2017. Por otro lado, el Código de Redes exige mantener la holgura declarada por al menos 30 minutos (CREG, 1995). En la evaluación se considera que al BESS le es permitido ofertar su capacidad máxima como holgura de AGC en los períodos 19 y 20, siendo activado el servicio por un máximo de 30 minutos en cada uno de los períodos para cumplir el requerimiento del código de redes.

Para la prestación de servicio de AGC aplican las restricciones descritas en la Tabla 9, a excepción del requerimiento de reserva para regulación primaria de frecuencia. De acuerdo con esto, de los 45 MW nominales del BESS, la holgura máxima disponible para ofertar un servicio de RSF hacia arriba es de 36,34 MW en cada período. Lo anterior representa una holgura total diaria de 72,68 MW repartido en dos períodos, es decir, 26.528,2 MW/año, disponibles para prestación de AGC. Nótese que el cálculo del ingreso por el AGC se realiza sobre la base de la potencia asignada como holgura para el servicio, no sobre la energía suministrada con la activación de este.

7.3.3 Remuneración dividida entre ingresos de mercado e ingresos regulados
Este esquema considera que el BESS está habilitado tanto para recibir ingresos regulados por la prestación de servicios a nivel de transmisión, como ingresos no regulados asociados a la participación en servicios de mercado. Se adoptan y evalúan dos reglas de funcionamiento, basadas en ejemplos de California y Australia.

Bajo ambas reglas los ingresos por mercado son un dato de entrada del modelo, estimado para cada servicio y escenario en la sección 7.3.2, y los ingresos regulados son una salida, calculada como el ingreso anual fijo, complementario a los ingresos de mercado, requerido para que el proyecto alcance la tasa de retorno mínima de 11,5%. Lo anterior suponiendo
que solo con servicios de mercado no se alcanza el cierre financiero del proyecto, considerando que la disponibilidad para prestar servicios de transmisión reduce la energía suministrada en servicios de mercado, y por ende, los ingresos percibidos de los mismos.

7.3.3.1 **Regla California**

Se basa en el procedimiento propuesto por el CAISO en su propuesta regulatoria de SATA, para determinar cuándo el BESS presta servicios de transmisión o servicios de mercado. Bajo esta regla, el operador del sistema determina e informa con anticipación que dispondrá del BESS durante un día para el alivio de congestiones previamente identificadas. El BESS deberá estar cargado al inicio del día en cuestión, durante el cual no puede participar en servicios de mercado. En el modelo lo anterior se representa como un porcentaje de disponibilidad anual como activo de transmisión, que se deduce de la energía disponible para participación en cada uno de los servicios de mercado considerados previamente. En la Tabla 10 se presenta la energía disponible anual para participar en cada servicio de mercado, considerando dos índices de indisponibilidad por atención de servicios de red.

<table>
<thead>
<tr>
<th>Índice de indisponibilidad [%]</th>
<th>Días al mes para servicios de transmisión</th>
<th>Energía disponible arbitraje [MWh/año]</th>
<th>Holgura disponible AGC [MW/año]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>0</td>
<td>12.865</td>
<td>26.528,2</td>
</tr>
<tr>
<td>25%</td>
<td>7-8</td>
<td>10.292</td>
<td>21.222,6</td>
</tr>
<tr>
<td>50%</td>
<td>15</td>
<td>6.175,2</td>
<td>15.916,9</td>
</tr>
</tbody>
</table>

Tabla 10. Energía anual para servicios de mercado bajo regla California

7.3.3.2 **Regla Australia (ESCR1-SA)**

Se basa en el esquema de operación del proyecto ESCRI-SA, de Dalrymple, por el cual el BESS tiene un control automático que prioriza la atención a eventos de congestión de redes u operación en modo isla, servicios para los cuales está destinado, sobre los servicios de mercado. Para tal fin, el operador del BESS está obligado a mantener el nivel de carga de entre un 10 y un 90%, de manera que siempre tenga capacidad suficiente para responder a un evento de red.

Se considera en la evaluación dos agrupaciones de servicios. En una, el activo se utiliza para arbitraje de energía y para servicios de transmisión. En la otra, las aplicaciones como activo de transmisión se combinan con el servicio de AGC. En el análisis de los esquemas que involucren remuneración por vía ingresos regulados y de mercado se considera la aplicación de las reglas de California.
7.4 Conclusiones
Se resumen las agrupaciones de servicios, con sus correspondientes esquemas de remuneración, a partir de las cuales se generan los escenarios incluidos en la evaluación. El servicio de AGC se separa de acuerdo con los dos esquemas de remuneración bajo análisis (vigente y anterior), siguiendo los análisis desarrollados en este capítulo.

Remuneración regulada:

I. Solo servicios como activo de transmisión (alivio de restricciones, aplazamiento redes de T&D), remunerados con ingreso fijo regulado.

Remuneración por servicios de mercado

I. Solo arbitraje de energía, remunerado por ingresos de mercado con precio de venta de energía en bolsas y contratos
II. Solo servicio de AGC, remunerado por ingresos de mercado con precio de AGC dado por regulación vigente (2 x CERE)
III. Solo servicio de AGC, remunerado por ingresos de mercado con precio de AGC dado por regulación no vigente (2 x PB - CERE)

Remuneración regulada y por servicios de mercado

I. Arbitraje de energía el 75% de la operación, remunerado por ingresos de mercado con precio de venta de energía. Servicios como activo de transmisión el 25% de la operación, con ingresos fijos adicionales aprobados por el regulador.
II. Arbitraje de energía el 50% de la operación, remunerado por ingresos de mercado con precio de venta de energía. Servicios como activo de transmisión el 50% de la operación, con ingresos fijos adicionales aprobados por el regulador.
III. Servicio de AGC el 75% de la operación, remunerado por ingresos de mercado con precio de AGC de regulación actual. Servicios como activo de transmisión el 25% de la operación, con ingresos fijos adicionales aprobados por el regulador.
IV. Servicio de AGC el 75% de la operación, remunerado por ingresos de mercado con precio de AGC de regulación no vigente. Servicios como activo de transmisión el 25% de la operación, con ingresos fijos adicionales aprobados por el regulador.
V. Servicio de AGC el 50% de la operación, remunerado por ingresos de mercado con precio de AGC de regulación actual. Servicios como activo de transmisión el 50% de la operación, con ingresos fijos adicionales aprobados por el regulador. Servicio de AGC el 50% de la operación, remunerado por ingresos de mercado con precio de AGC de regulación no vigente. Servicios como activo de transmisión el 50% de la operación, con ingresos fijos adicionales aprobados por el regulador.

En este capítulo se definieron los esquemas de remuneración que serán incluidos en la evaluación económica, considerando la agrupación de servicios identificados en el capítulo 5 y la estimación de los ingresos anuales, bajo condiciones de mercado aplicables. En el capítulo siguiente se realiza la evaluación de los escenarios seleccionados.
8 Evaluación Financiera

8.1 Introducción del capítulo
En el presente capítulo se construye y ejecuta el modelo de evaluación financiera utilizado para definir el valor asociado a cada una de las agrupaciones de servicios y esquemas de remuneración definidos en el capítulo 7. A partir de la evaluación se identifican los esquemas más atractivos para implementación de BESS, desde la perspectiva del inversionista.

Inicialmente, se detalla el modelo de evaluación a utilizar y se explican las principales componentes de este para cada esquema, tales como la inversión inicial, los ingresos, los costos y gastos operativos y los impuestos. Luego se presentan los resultados de la evaluación para los escenarios planteados, concluyendo sobre la viabilidad de estos, y los factores relevantes para alcanzarla o no.

8.2 Modelo de evaluación
Para el análisis financiero se recurre a un método de evaluación de proyectos por flujo de caja descontado, a una tasa de retorno mínima esperada por la inversionista basada en la de la actividad de transmisión de energía en Colombia. El método de flujo descontado es utilizado en la mayoría de los trabajos referenciados en la revisión de literatura del capítulo 3 para realizar la evaluación económica a largo plazo de despachos del BESS, los cuales son construidos generalmente a partir de modelos de optimización.

A continuación, se listan los modelos desarrollados y las evaluaciones financieras realizadas con el fin de seleccionar desde el punto de vista financiero aquella que permita una rentabilidad adecuada para un inversionista privado y que sea favorable para el país.

- Inversiones: Estimación de las inversiones que tendrá que acometer el inversionista para el BESS del análisis.
- Proyecciones de ingresos y egresos: Proyecciones en valores constantes y en valores corrientes de la evaluación de los ingresos y egresos operativos y no operativos asociados con el proyecto.
- Estado de resultados del ejercicio: Cálculo de las pérdidas y ganancias anuales para el inversionista.
- Flujo de efectivo: Ejercicio para calcular y simular el flujo de ingresos y egresos en efectivo del inversionista y determinar la caja mínima y la evolución del capital de trabajo.
- Flujo de caja libre: Ejercicio para simular el flujo de caja libre del proyecto, que es el flujo de caja con destino a los socios del proyecto. Sobre este flujo de caja libre se determina el valor del proyecto y se identifica si se cumplen las condiciones de rentabilidad esperadas para el proyecto, el periodo de repago, entre otros.
- Indicadores financieros: Cálculo de los principales indicadores financieros necesarios para el análisis y evaluación del proyecto, correspondientes al valor presente neto (VPN), tasa interna de retorno (TIR) y años de retorno de la inversión.
8.3 Consideraciones y supuestos generales
La evaluación se realiza bajo las siguientes consideraciones y supuestos generales:

- Si bien algunos servicios bajo evaluación son comparables a los de una compañía de generación y otros a los de una compañía de transmisión, la tasa de rentabilidad esperada del negocio, a partir de la cual se calcula el valor presente de los flujos de caja proyectados, es la misma para todos los esquemas, e igual al 11,5%. Esta tasa corresponde con la regulada para la actividad de transmisión según la Resolución CREG 083 de 2008 (CREG, 2008), y fue la utilizada para calcular el VPN de los ingresos esperados por los oferentes de la convocatoria UPME 01-2021 (UPME, 2021b).

- Para los primeros 5 años de evaluación del proyecto, la inflación se determina a partir del informe de proyecciones económicas para 2021 a 2025, publicado por Bancolombia (Bancolombia, 2021). Para los años posteriores, se toma el promedio de los 5 años previos.

- Se asume que la inversión se realiza en su totalidad con capital propio. No se considera la obtención de capital en el mercado financiero para acometer las inversiones.

8.4 Inversión
Para determinar los costos de inversión del proyecto, aplicables a todos los esquemas y escenarios, se toma como fuente de información los datos publicados por la firma Lazard en su análisis del costo nivelado de almacenamiento para el año 2020 (Lazard, 2020), los cuales se resumen en la Tabla 11.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>176 – 271</td>
<td>50 – 65</td>
<td>2 – 5</td>
<td>2 – 4</td>
</tr>
</tbody>
</table>

Tabla 11. Costos del proyecto

Para cada uno de los componentes del costo inicial de inversión se toma el valor máximo del rango presentado en la Tabla 11. Considerando una TRM de $3.570, estimada como la tasa promedio para diciembre de 2021 en las proyecciones económicas realizadas por Bancolombia (Bancolombia, 2021), así como la potencia y energía nominales del BESS bajo análisis, la inversión inicial alcanza los 54.782 millones de pesos colombianos. En la evaluación se considera que dicha inversión será ejecutada por partes iguales en los dos primeros años del proyecto. Se considera que el activo se deprecia completamente a lo largo de los 15 años de vida útil del proyecto.

En aplicaciones reales o trabajos futuros, puede reducirse la carga impositiva del proyecto en sus primeros años de funcionamiento, a través de esquema de depreciación acelerada. Este esquema se definió bajo el marco de la Ley 2099 de 2021, que fija incentivos para el desarrollo de proyectos de tecnologías asociadas a la transición energética. La ley permite
que la tasa anual de depreciación sea de máximo el 20% global anual. Este esquema de depreciación acelerada no es usado en la evaluación para simplificación de cálculos.

8.5 Ingresos

Los ingresos para cada esquema corresponden a la remuneración anual que puede obtener el BESS, de acuerdo con el análisis realizado en el capítulo 8. En las Tabla 12 y 13 se resumen los ingresos anuales por la prestación de servicios de mercado considerados en el modelo.

<table>
<thead>
<tr>
<th>Servicio</th>
<th>Criterio</th>
<th>Ingreso [COP/kWh]</th>
<th>Energía [MWh/año]</th>
<th>Ingresos Anuales [Millones COP]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbitraje</td>
<td>Venta de energía en bolsa</td>
<td>239</td>
<td>3.860</td>
<td>922,5</td>
</tr>
<tr>
<td></td>
<td>Venta de energía en contratos</td>
<td>223</td>
<td>9.006</td>
<td>2.008,3</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>-</td>
<td>12.866</td>
<td>2.930,9</td>
</tr>
</tbody>
</table>

Tabla 12. Ingresos anuales por arbitraje de energía

<table>
<thead>
<tr>
<th>Servicio</th>
<th>Criterio</th>
<th>Ingreso [COP/kW]</th>
<th>Holgura [MW/año]</th>
<th>Ingresos Anuales [Millones COP]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGC Precio Bajo</td>
<td>Regulación vigente (2 x CERE)</td>
<td>145</td>
<td>26.528,2</td>
<td>3.846,6</td>
</tr>
<tr>
<td>AGC Precio Alto</td>
<td>Regulación anterior (2PB - CERE)</td>
<td>405,5</td>
<td>26.528,2</td>
<td>10.757,2</td>
</tr>
</tbody>
</table>

Tabla 13. Ingresos anuales por AGC

Para los esquemas que involucran prestación de servicios como activo de transmisión, el ingreso regulado es calculado como el requerido para dar un cierre financiero al proyecto con la tasa de retorno mínima, por lo cual no es un dato de entrada del modelo de evaluación, sino que integra los resultados de mismo. En los esquemas con remuneración mixta, la energía y holgura disponibles de las Tablas 12 y 13 se reducen a los valores de la Tabla 10, de acuerdo con el índice de disponibilidad considerado para servicios de transmisión. Lo anterior reduce los ingresos de mercado de cada uno de los casos planteados en la proporción determinada por el índice de disponibilidad.
8.6 Egresos

8.6.1 Compra de energía para carga
El valor asociado a la compra de energía para carga se calcula considerando dos escenarios, uno por el cual el BESS se abastece como una demanda en el mercado no regulado y otro por el cual la energía se adquiere al precio de mercado de un generador. Los egresos por compra de energía aplican por igual para todos los esquemas bajo evaluación que involucran servicios de mercado. Lo anterior incluso para aquellos que requieren disponibilidad del BESS como activo de transmisión, ya que, bajo las reglas planteadas, la carga de energía para prestar servicios de transmisión es responsabilidad del BESS y no del operador del sistema.

No aplica de la misma forma para el esquema de remuneración completa por ingresos regulados sin servicios de mercado. Bajo este esquema el proceso de carga del BESS es responsabilidad del operador del sistema, y los costos asumidos por la demanda dentro del componente de las restricciones. Por lo tanto, para el esquema de ingresos regulados únicamente no se consideran egresos por carga de energía.

8.6.1.1 Precio de mercado no regulado
En los esquemas que involucran prestación de servicios de mercado, la etapa de carga de energía diaria se realiza considerando el BESS como un usuario no regulado. La tarifa para un usuario no regulado está determinada por la suma de los componentes regulados de transmisión, distribución, restricciones y pérdidas, y componentes que pueden negociarse con un comercializador, correspondientes a la generación y el margen de comercialización.

La Superintendencia de Servicios Públicos Domiciliarios de Colombia publica trimestralmente un boletín de energía (Superintendencia de Servicios Públicos Domiciliarios, 2021), en el cual caracteriza el costo mínimo en promedio para la tarifa de usuarios no regulados de diferentes áreas de distribución y niveles de tensión de la conexión, con base en la información comercial reportada por los agentes. Para la determinación de la tarifa aplicable al BESS este se considera un usuario no regulado, ubicado en la región Caribe según la referencia de la convocatoria UPME, y conectado al SIN en una subestación de nivel de tensión 4, es decir, mayor a 57,5 kV y menor a 220 kV. Si bien el BESS de la convocatoria UPME está conectado a una subestación de 34.5 kV, correspondiente a nivel de tensión 3, se anticipa que la tarifa bajo estas condiciones de conexión tiene un componente de distribución y pérdidas mayor, que imposibilita la viabilidad financiera del proyecto. Elevar la tensión de conexión a nivel 4, si bien representa una inversión mayor en equipos, reduce el valor de la tarifa de largo plazo a la que está sujeto el BESS, permitiendo mayor flexibilidad en el análisis de viabilidad. Con base en lo anterior, costo mínimo de tarifa y su desagregación por componentes, para un usuario de la región Caribe que se conecta al nivel de tensión 4, se presenta en la Tabla 14.
En cada trimestre el costo mínimo se calcula como la suma de cada uno de los componentes. El valor de los componentes regulados (T, R, P+D) se determina como el promedio de los reportados por cada agente, en la zona y nivel de tensión en cuestión. El valor del componente G es el precio de bolsa diario más bajo durante el semestre. El valor de la C es un margen de comercialización fijo estimado por la Superintendencia.

Para la definición de la tarifa proyectada que debe pagar el BESS por energía, se toman de la Tabla 14 el valor promedio de los componentes regulados. El componente de comercialización corresponde a los 3 $/kWh estimados para los últimos tres años. El componente de generación se determina a partir de un análisis similar al realizado para el precio de venta de energía en el capítulo 7 De la Figura 13 se valida visualmente que los valores mínimos de las curvas promedio de precio de bolsa, se presentan en los períodos 2 a 4. El precio promedio en bolsa general (210 $/kWh) y el de las horas 2 a 4 (175 $/kWh). En este sentido, el precio del contrato de compra de energía, y por ende el componente G de la tarifa usada en el análisis es de 159 $/kWh. En la Tabla 15 se resume la estructuración de la tarifa de compra de energía del BESS.
Para todos los esquemas se evalúa el caso crítico en que la totalidad de las reservas son consumidas para prestación de los servicios especificados. Por lo cual al final de cada día, el BESS se encontrará en su nivel mínimo técnico, determinado por la profundidad máxima de descarga exigida. En este sentido, la energía adquirida diariamente para la carga del BESS, corresponde a los 45 MWh de capacidad de este, reducidos en un 5% correspondiente a la profundidad máxima de descarga. Es decir, se compran 42,75 MWh diarios, que se traducen en 15.603,75 MWh/año.

En la Tabla 16 se resumen los egresos por compra de energía en mercado no regulado.

<table>
<thead>
<tr>
<th>Transacción</th>
<th>Criterio</th>
<th>Tarifa [COP/kW]</th>
<th>Energía [MWh/año]</th>
<th>Egresos Anuales [Millones COP]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compra energía</td>
<td>Tarifa Mercado No Regulado</td>
<td>241,9</td>
<td>15.603,75</td>
<td>3.775</td>
</tr>
</tbody>
</table>

Tabla 16. Egresos anuales por compra de energía en mercado no regulado

8.6.1.2 Precio de mercado de generación
En este escenario el BESS accede a la energía a un precio definido únicamente por el componente de generación, sin estar sujeto a los cargos regulados adicionales asociados al mercado no regulado. Un caso básico en el que este escenario es aplicable corresponde al de un BESS conectado directamente a la misma barra de un generador propiedad de otro agente, y cargado exclusivamente con energía proveniente de este. También puede ser aplicable en otros casos que consideren conexión a redes del STN, dependiendo de la definición o categorización especial de agente que se realice a futuro para los BESS. En todo caso, para el análisis de este trabajo, se considera el valor igual a la suma de los componentes de generación y comercialización determinados en la tarifa del numeral anterior, es decir, 162 $/kWh. En la Tabla 17 se resumen los egresos por compra de energía directamente a un generador.
<table>
<thead>
<tr>
<th>Transacción</th>
<th>Criterio</th>
<th>Tarifa [COP/kW]</th>
<th>Energía [MWh/año]</th>
<th>Egresos Anuales [Millones COP]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compra energía</td>
<td>Precio de generador</td>
<td>162</td>
<td>15.603,75</td>
<td>2.528</td>
</tr>
</tbody>
</table>

Tabla 17. Egresos anuales por compra de energía en mercado generadores

8.6.2 Impuestos y cargos

8.6.2.1 Cargos de generación

Por su potencia nominal, el BESS está sometido a despacho centralizado cuando funciona como generador. Un agente sometido a este despacho está sujeto a la aplicación de cargos e impuestos sobre el precio al cual suministra la energía. En general, el precio de oferta en generación tiene los componentes descritos en la expresión:

\[G = G_n + CERE + AGC + CAP + FAZNI + Ley \ 99 \]

Ecuación 3: Cargos asociados al componente de Generación

En la expresión, \(G \) es el precio de venta de energía generada, \(G_n \) es el valor neto de dicha generación, antes de los otros cargos variables. Los demás son recaudos repartidos entre todos los generadores. Se aplica un cargo igual al \(CERE \) como recaudo del cargo por confiabilidad. \(AGC \) es un recaudo a partir del cual se remunera dicho servicio. \(CAP \) son los costos de arranque y parada de la planta. \(FAZNI \) es un recaudo para el fondo de zonas no interconectadas, y \(Ley \ 99 \) corresponde al impuesto fijado en dicha ley del año 1993.

En la evaluación no se considera ninguno de estos recaudos, cargos e impuestos. Se asume que al ser una tecnología diferenciada de almacenamiento y no de generación o transformación de energía, se concede al BESS una categorización especial que no requiere aplicar los cargos mencionados.

8.6.2.2 Impuestos de renta, CREE e IVA

Se considera que la empresa propietaria del BESS está sujeta al régimen contributivo para personas jurídicas, por tanto el impuesto aplicable sobre la renta es del 30% a partir del año 2022. Sin embargo, el proyecto aplica para los incentivos sobre dicho impuesto estipulados en el artículo 8 de la Ley 2099 de 2021:

- Se tiene derecho a deducir anualmente de la renta el cincuenta por ciento (50%) del valor total de la inversión realizada por los 15 años siguientes al año gravable en que hayan realizado la inversión.
- El valor a deducir por este concepto en ningún caso podrá ser superior al 50% de la renta líquida del contribuyente, determinada antes de restar el valor de la inversión.

En concordancia con lo anterior, para cada año de evaluación del proyecto el cálculo del impuesto de renta se hace sobre el 50% de la utilidad operacional, hasta que la deducción acumulada alcance el 50% de la inversión inicial del proyecto.
Adicionalmente, la ley determina exención de IVA para todos los suministros, obras y servicios asociados al proyecto. Por este motivo, no se considera el IVA en la evaluación. El impuesto sobre la renta para la equidad, conocido como CREE y tasado en un 9%, es considerado y aplicado sin deducciones sobre las utilidades de cada año en la evaluación.

Otros impuestos como el de industria y comercio (ICA) y el predial, son aplicables al proyecto y a la empresa propietaria del BESS, pero no son considerados en la evaluación.

8.7 Análisis de resultados

Se presentan los resultados obtenidos al aplicar el modelo financiero de evaluación de proyectos sobre cada uno de los esquemas definidos en el capítulo 7 bajo los escenarios de ingresos y egresos recogidos en el presente capítulo. Para los esquemas que involucran únicamente servicios de mercado, la evaluación se hace a partir de los resultados de los indicadores financieros de VPN, TIR y años de recuperación de la inversión del proyecto. Se determinan como viables los proyectos con una TIR mayor a la tasa de retorno mínima del proyecto definida en el capítulo 7, de 11,5%.

En los esquemas que involucran servicios como activo de transmisión, la TIR es un dato de entrada del modelo, aproximado a la tasa de descuento mínima definida en el capítulo 7. En estos casos, el análisis comparativo entre esquemas se realiza sobre el ingreso regulado anual fijo requerido para alcanzar la TIR mencionada. De dicho ingreso anual se analiza también el valor presente neto. La proporción entre dicho valor presente respecto al costo de inversión inicial del proyecto da una idea del porcentaje de la inversión total que requeriría el BESS solicitar al operador o regulador del sistema para prestar servicios de transmisión.

El cierre financiero del proyecto, en estos casos, depende de que el ingreso regulado obtenido sea aprobado o no por parte del regulador. Por lo anterior, se concluye sobre la viabilidad del proyecto dependiendo de lo razonable que resulte la relación entre el porcentaje de disponibilidad del BESS para servicios de transmisión, y la proporción que representa el VPN del ingreso regulado respecto de la inversión inicial. Un proyecto viable de entrada es aquel donde la proporción del ingreso solicitado respecto a la inversión total es menor a la disponibilidad porcentual requerida del BESS como activo de transmisión. Los casos donde no se presente esta condición se evalúan en detalle para concluir sobre la viabilidad.

8.7.1 Remuneración total por ingresos regulados

Los resultados obtenidos para el esquema de remuneración total por ingresos regulados se presentan en la Tabla 18.
Bajo este esquema, aplicable, por ejemplo, a la asignación del proyecto BESS bajo una convocatoria UPME, el propietario presenta en su oferta un valor presente del ingreso regulado anual esperado de 56.855 millones de pesos, que se traducen en quince pagos anuales fijos de 8.125 millones de pesos. En este escenario, el BESS tiene una disponibilidad del 100% para la prestación de servicios como activo de transmisión. El VPN del ingreso anual es levemente superior al costo de inversión inicial del proyecto. Esto se debe a que, al realizarse en dos años, por efecto de la inflación la inversión en pesos reales es superior al costo inicial sobre el que se calcula el porcentaje mostrado en la Tabla 18. Por su parte, el VPN del proyecto es de 18 millones de pesos, que en la escala de los ingresos e inversión del proyecto (miles de millones de pesos) puede entenderse como un valor positivo cercano a cero. Teniendo en cuenta errores de aproximación por decimales al momento del cálculo, este es un resultado esperado, por cuanto el escenario se plantea para calcular los ingresos que igualen la TIR a la tasa mínima del inversionista con la que se descuentan los flujos. Es decir, los ingresos a partir de los cuales el VPN del proyecto es positivo. En resumen, el proyecto resulta viable para el inversionista bajo un esquema de remuneración total por ingreso regulado, siempre que el mismo sea aprobado por el regulador.

El proyecto de almacenamiento que se ejecutará bajo la convocatoria UPME STR 01-2021, fue adjudicado por un VPN del ingreso anual de 72.066 millones de pesos, correspondientes a 15 anualidades de 10.300 millones de pesos. El valor superior del ingreso esperado en el caso real respecto a lo observado en la presente evaluación puede asociarse a distintos factores.

Algunos factores de los cuales no se tiene una estimación estricta en la presente evaluación son: las restricciones ambientales y sociales del proyecto, los riesgos asociados a la volatilidad en la tasa de cambio, la inclusión de deuda para financiar la inversión, así como la consideración de un margen de rentabilidad esperada por los accionistas mayor al usado en este ejercicio.

<table>
<thead>
<tr>
<th>Servicio de transmisión</th>
<th>Indicador</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPN [MCOP real]</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>TIR [%]</td>
<td>11,5%</td>
<td></td>
</tr>
<tr>
<td>Recuperación inversión</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>[Años]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingreso regulado anual</td>
<td>$ 8.125,99</td>
<td></td>
</tr>
<tr>
<td>(IRA) [MCOP real]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VPN IRA [MCOP real]</td>
<td>$ 56.855,14</td>
<td></td>
</tr>
<tr>
<td>IRA/Inversión [%]</td>
<td>104%</td>
<td></td>
</tr>
<tr>
<td>Inversión [MCOP]</td>
<td>54.782</td>
<td></td>
</tr>
<tr>
<td>Egresos AOM [MCOP/año]</td>
<td>639</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 18. Resumen resultados – Solo ingresos regulados
8.7.2 Remuneración total por prestación de servicios de mercado

8.7.2.1 Arbitraje de Energía

Los resultados obtenidos para el esquema de remuneración total por ingresos de mercado asociados a la aplicación del BESS únicamente en arbitraje de energía se presentan en la Tabla 19. Las celdas que no aplican -N/A-, representan indicadores que no se pueden calcular con los flujos de caja proyectados para el horizonte de evaluación, es decir, son un indicador de inviabilidad del escenario en cuestión.

<table>
<thead>
<tr>
<th>Servicio</th>
<th>Indicador</th>
<th>Mercado compra de energía</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No regulado</td>
</tr>
<tr>
<td>Arbitraje de energía</td>
<td>VPN [MCOP real]</td>
<td>$ 63.390</td>
</tr>
<tr>
<td></td>
<td>TIR [%]</td>
<td>N/A (I)</td>
</tr>
<tr>
<td></td>
<td>recuperación inversión [Años]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Tabla 19. Resumen resultados – Solo ingresos por arbitraje

En la Tabla 19 se presenta el valor de los indicadores financieros bajo análisis para dos escenarios. Los escenarios están definidos por los precios de compra de energía para la carga estimados en el numeral 9.5.1. El precio de venta de energía en ambos casos es el definido en el capítulo 7.

I. Arbitraje de energía con compra de energía en mercado no regulado
II. Arbitraje de energía con compra de energía a precio de generador

En el escenario de compra en mercado regulado esto se debe a que el valor de compra de energía (241,9 $/kWh) es mayor al de venta, tanto en contratos (223 $/kWh) como en bolsa (239 $/kWh), por lo cual de entrada la utilidad bruta es negativa para todos los años. En el segundo escenario, si bien la energía se compra a un precio menor (159 $/kWh), la energía vendida es menor a la comprada, por los factores de pérdidas, restricciones operativas y reservas operativas descritas en la Tabla 9. El diferencial de precios de compra y venta, aplicable solo sobre la energía disponible para venta, no compensa el costo de las pérdidas, las reservas obligatorias y la inversión inicial. Para ambos escenarios, el VPN es negativo, por lo que un esquema de remuneración considerando solo arbitraje de energía se traduce en la inviabilidad del proyecto.

8.7.2.2 AGC

Los resultados obtenidos para el esquema de remuneración total por ingresos de mercado, asociados a la aplicación del BESS únicamente en servicio de AGC, se presentan en la Tabla 20. Se evalúan en total 4 casos, definidos por los precios a los cuales se asigna el servicio de AGC y los precios de compra de energía, estimados en los numerales 8.5 y 8.6.

I. AGC a precio alto (regulación anterior) con compra de energía en mercado no regulado
II. AGC a precio alto (regulación anterior) con compra de energía a precio de generador
III. AGC a precio bajo (regulación actual) con compra de energía en mercado no regulado

IV. AGC a precio bajo (regulación actual) con compra de energía a precio de generador

<table>
<thead>
<tr>
<th>Servicio</th>
<th>Escenario</th>
<th>Indicador</th>
<th>Mercado compra de energía</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>No regulado</td>
<td>Generación</td>
</tr>
<tr>
<td>AGC</td>
<td>Precio alto (2 x PB-CERE)</td>
<td>VPN [MCOP real]</td>
<td>$ 3.501</td>
<td>$ 15.391</td>
</tr>
<tr>
<td></td>
<td>Regulación anterior</td>
<td>TIR [%]</td>
<td>13% (I)</td>
<td>16% (II)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recuperación inversión [Años]</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Precio bajo (2 x CERE)</td>
<td>VPN [MCOP real]</td>
<td>-$ 56.051</td>
<td>-$ 44.809</td>
</tr>
<tr>
<td></td>
<td>Regulación actual</td>
<td>TIR [%]</td>
<td>N/A (III)</td>
<td>-10% (IV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recuperación inversión [Años]</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Tabla 20. Resumen resultados – Solo ingresos por AGC

Los resultados del modelo indican que los dos escenarios con precio de AGC según regulación actual son inviables. Aunque es mayor en magnitud la potencia disponible vendida que la energía consumida, el precio del AGC bajo el esquema actual (145 $/kWh) es menor al precio de compra de energía en ambos escenarios.

Por otro lado, los escenarios con precio de AGC dado por regulación anterior resultan en viabilidad del proyecto, ya que para ambos la TIR obtenida es superior a la tasa de retorno mínima definida para el ejercicio. El precio de AGC alto asociado a este esquema (405 $/kW) y la potencia total disponible, permiten obtener una utilidad tal sobre los costos de carga de energía y de inversión inicial, que se supera el margen mínimo requerido sobre la actividad. La inversión inicial se recupera entre 6 y 7 años, dependiendo del escenario.

8.7.2.2.1 Caso adicional: Más ciclos de carga/descarga diarios

Del caso IV se evalúa un escenario adicional, considerando que no existe la restricción de un ciclo de carga diario, asignada al proyecto UPME STR 01-2021. Esto con el objetivo de determinar si una mayor disponibilidad diaria de capacidad de servicio de AGC viabiliza el proyecto. En el nuevo caso se consideran dos ciclos de carga y descarga diarios, lo cual limita la vida útil a 7,5 años y por ende el horizonte de evaluación del proyecto a 8 años. En las Tablas 21 a 23 se resumen los ingresos, egresos y resultados de la evaluación para este esquema.
Tabla 21. Resumen ingresos – AGC con dos ciclos de carga/descarga

<table>
<thead>
<tr>
<th>Servicio</th>
<th>Criterio</th>
<th>Ingreso [COP/kW]</th>
<th>Holgura [MW/año]</th>
<th>Ingresos Anuales [Millones COP]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGC Precio Bajo</td>
<td>Regulación vigente (2 x CERE)</td>
<td>145</td>
<td>53.053</td>
<td>7.693</td>
</tr>
</tbody>
</table>

Tabla 22. Resumen egresos compra energía – AGC con dos ciclos de carga/descarga

<table>
<thead>
<tr>
<th>Transacción</th>
<th>Criterio</th>
<th>Tarifa [COP/kW]</th>
<th>Energía [MWh/año]</th>
<th>Egresos Anuales [Millones COP]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compra energía</td>
<td>Precio de generador</td>
<td>162</td>
<td>31.208</td>
<td>4.962</td>
</tr>
</tbody>
</table>

Tabla 23. Resumen evaluación – AGC con dos ciclos de carga/descarga

<table>
<thead>
<tr>
<th>Servicio</th>
<th>Escenario</th>
<th>Indicador</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGC</td>
<td>Precio bajo (2 x CERE) Regulación actual</td>
<td>VPN [MCOP real]</td>
<td>-$ 39.607</td>
</tr>
<tr>
<td></td>
<td>Dos ciclos de carga por día</td>
<td>TIR [%]</td>
<td>-16%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recuperación inversión [Años]</td>
<td>12</td>
</tr>
</tbody>
</table>

Los resultados de la evaluación del caso adicional son mejores respecto al caso de referencia (IV), sin embargo, esta condición tampoco viabiliza el proyecto. Lo anterior dado que el VPN es negativo, y el tiempo de recuperación de la inversión excede el horizonte de evaluación del proyecto.

8.7.3 Remuneración dividida entre ingresos de mercado e ingresos regulados

8.7.3.1 Activo de Transmisión + Arbitraje de Energía

Los resultados obtenidos para el esquema de remuneración dividida entre ingresos por arbitraje de energía e ingresos regulados por servicios de transmisión se presentan en la Tabla 24.
<table>
<thead>
<tr>
<th>Servicio</th>
<th>Índice activo transmisión [%]</th>
<th>Indicador</th>
<th>Mercado compra de energía</th>
<th>Generación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbitraje</td>
<td>25%</td>
<td>VPN [MCOP real]</td>
<td>$ 278</td>
<td>$ 262</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIR [%]</td>
<td>11,6%</td>
<td>11,6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recuperación inversión [Años]</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ingreso regulado anual [MCOP real]</td>
<td>$ 12.318,05</td>
<td>$ 10.790,24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VPN IRA [MCOP real]</td>
<td>$ 86.185,83</td>
<td>$ 75.496,14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IRA/Inversión [%]</td>
<td>157% (I)</td>
<td>138% (II)</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>VPN [MCOP real]</td>
<td>$ 458</td>
<td>$ 125,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIR [%]</td>
<td>11,7%</td>
<td>11,5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recuperación inversión [Años]</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ingreso regulado anual [MCOP real]</td>
<td>$ 12.441,23</td>
<td>$ 10.873,74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VPN IRA [MCOP real]</td>
<td>$ 87.047,69</td>
<td>$ 76.080,40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IRA/Inversión [%]</td>
<td>159% (III)</td>
<td>139% (IV)</td>
</tr>
</tbody>
</table>

Tabla 24. Resumen resultados – Arbitraje + Activo de Transmisión

Se evaluaron 4 casos definidos por la disponibilidad del BESS para servicios de transmisión y los precios de compra de energía estimados en el numeral 8.6.

I. Disponibilidad como activo de transmisión del 25% del tiempo, el restante participa en arbitraje con compra de energía en mercado no regulado.

II. Disponibilidad como activo de transmisión del 25% del tiempo, el restante participa en arbitraje con compra de energía a precio de generador.

III. Disponibilidad como activo de transmisión del 50% del tiempo, el restante participa en arbitraje con compra de energía en mercado no regulado.

IV. Disponibilidad como activo de transmisión del 50% del tiempo, el restante participa en arbitraje con compra de energía a precio de generador.

Para los cuatro escenarios el VPN del ingreso regulado resulta superior al costo de inversión inicial por lo menos en un 38%. Este factor determina la inviabilidad del proyecto en todos los escenarios, ya que además de recuperar el costo de inversión se requiere de una compensación por las pérdidas anuales asociadas a la operación de compra y venta de energía. De hecho, la energía disponible para venta tiene poco peso en la evaluación cuando se compara con el ingreso regulado. Al reducir en un 25% la energía disponible para venta, como es el caso de los escenarios I y II, los indicadores de evaluación son cercanos a los obtenidos para los escenarios III y IV, donde se reduce un 25% adicional.

8.7.3.2 Activo de Transmisión + AGC

Los resultados obtenidos para el esquema de remuneración dividida entre ingresos por AGC e ingresos regulados por servicios de transmisión, se presentan en la Tabla 25.
<table>
<thead>
<tr>
<th>Escenario</th>
<th>Índice activo transmisión [%]</th>
<th>Indicador</th>
<th>Mercado compra de energía</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>No regulado</td>
</tr>
<tr>
<td>Precio AGC alto</td>
<td>25%</td>
<td>VPN [MCOP real]</td>
<td>$ 287</td>
</tr>
<tr>
<td>(2PB-CERE)</td>
<td></td>
<td>TIR [%]</td>
<td>11,6%</td>
</tr>
<tr>
<td>Regulación Anterior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recuperación inversión [Años]</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ingreso regulado anual [MCOP real]</td>
<td>$ 2,843,70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VPN IRA [MCOP real]</td>
<td>$ 19,896,53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IRA/Inversión [%]</td>
<td>36% (I)</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>VPN [MCOP real]</td>
<td>$ 279</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIR [%]</td>
<td>11,6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recuperación inversión [Años]</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ingreso regulado anual [MCOP real]</td>
<td>$ 6,092,44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VPN IRA [MCOP real]</td>
<td>$ 42,627,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IRA/Inversión [%]</td>
<td>78% (III)</td>
</tr>
<tr>
<td>Precio AGC bajo</td>
<td>25%</td>
<td>VPN [MCOP real]</td>
<td>$ 157</td>
</tr>
<tr>
<td>(2 x CERE)</td>
<td></td>
<td>TIR [%]</td>
<td>11,6%</td>
</tr>
<tr>
<td>Regulación actual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recuperación inversión [Años]</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ingreso regulado anual [MCOP real]</td>
<td>$ 9,106,99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VPN IRA [MCOP real]</td>
<td>$ 63,718,91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IRA/Inversión [%]</td>
<td>116% (V)</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>VPN [MCOP real]</td>
<td>$ 305</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIR [%]</td>
<td>11,6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recuperación inversión [Años]</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ingreso regulado anual [MCOP real]</td>
<td>$ 10,288,67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VPN IRA [MCOP real]</td>
<td>$ 71,986,83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IRA/Inversión [%]</td>
<td>131% (VII)</td>
</tr>
</tbody>
</table>

| Tabla 25. Resumen resultados – AGC + Activo de Transmisión |

Se evalúan en total 8 casos, definidos por los precios a los cuales se asigna el servicio de AGC del numeral 9.4, la disponibilidad del BESS para servicios de transmisión y los precios de compra de energía estimados en el numeral 9.5.

I. Disponibilidad como activo de transmisión del 25% del tiempo, el restante participa en AGC con precio alto y compra de energía en mercado no regulado.

II. Disponibilidad como activo de transmisión del 25% del tiempo, el restante participa en AGC con precio alto y compra de energía a precio de generador.
III. Disponibilidad como activo de transmisión del 50% del tiempo, el restante participa en AGC con precio alto y compra de energía en mercado no regulado.

IV. Disponibilidad como activo de transmisión del 50% del tiempo, el restante participa en AGC con precio alto y compra de energía en mercado no regulado.

V. Disponibilidad como activo de transmisión del 25% del tiempo, el restante participa en AGC con precio bajo y compra de energía en mercado no regulado.

VI. Disponibilidad como activo de transmisión del 25% del tiempo, el restante participa en AGC con precio bajo y compra de energía a precio de generador.

VII. Disponibilidad como activo de transmisión del 50% del tiempo, el restante participa en AGC con precio bajo y compra de energía en mercado no regulado.

VIII. Disponibilidad como activo de transmisión del 50% del tiempo, el restante participa en AGC con precio bajo y compra de energía en mercado no regulado.

De los cuatro escenarios donde el precio de AGC es el definido por la regulación actual, solo en el VI el VPN del ingreso regulado está por debajo de la inversión inicial del proyecto. Esta relación, da al regulador la señal de estar cargando al sistema un valor cercano a la inversión total del proyecto, a cambio de 7 a 8 días de disponibilidad al mes del BESS como activo de transmisión para alivio de congestiones, más los beneficios derivados de la participación del BESS en el servicio de AGC.

Este sexto escenario se considera viable bajo ciertas condiciones, las cuales son sensibles a las particularidades de cada proyecto:

- Se desarrolla un análisis de congestión de red del área de influencia donde se conecta el BESS, en el cual se identifica que se presentan condiciones críticas por hasta 7 días al mes, que pueden ser aliviadas por el BESS con una relación beneficio/inversión mayor a 1.
- Se identifican beneficios asociados a la prestación de AGC por parte del BESS, mayores a los de una planta de generación existente, ya sea por su ubicación o por la velocidad asociada a la tecnología.
- El propietario del BESS logra argumentar que, al asumir el costo de la energía que se utilizará cuando el equipo funcione como activo de transmisión, el ingreso regulado recibido debe remunerar no solo un porcentaje de la inversión, sino la energía comprada que no es utilizada para servicios de mercado. De esta forma justifica que el ingreso regulado solicitado, si bien representa un 97% de la inversión inicial, no se utiliza en su totalidad para compensar solo dicha inversión, sino que representa una transferencia que se hace al sistema de la energía comprada para cargar el BESS el día que este va a ser utilizado como activo de transmisión.

Los escenarios V, VII, VIII no se consideran viables económicamente.

El escenario II se considera viable por el criterio directo definido al inicio de la sección 8.7. Bajo este esquema, el sistema asume aproximadamente el 17% del costo inicial del proyecto, a cambio de contar con disponibilidad por parte del BESS el 25% del tiempo para funcionamiento como activo de transmisión. Se considera que este acuerdo es favorable para el regulador. Sin embargo, su aprobación está igualmente sujeta a la realización de un
análisis beneficio/costo sobre el porcentaje de la inversión asumida por el sistema. Los supuestos y criterios de dicho análisis dependerán de las particularidades de cada proyecto.

En los escenarios I y IV, si bien el porcentaje de la inversión inicial solicitado en el ingreso regulado (36% y 58%) es mayor a la disponibilidad del BESS como activo de transmisión (25% y 50%), la diferencia se encuentra en un rango que se considera justificable ante el regulador, dependiendo de la cuantificación de los argumentos utilizados, que pueden ser los mismos descritos anteriormente para el escenario VI. Por tal motivo se consideran viables.

Una apreciación similar aplica para el escenario III. Sin embargo, al requerirse un porcentaje de la inversión de casi el 80% en ingresos regulados, se considera que la viabilidad está condicionada a análisis más detallados, igual al caso del escenario IV.

8.7.3.2.1 Caso adicional: Más ciclos de carga/descarga diarios
Del caso VI se evalúa un escenario adicional, similar al analizado en el numeral 8.7.2.2.1, en el que se consideran dos ciclos de carga y descarga diarios. Bajo este esquema, el BESS mantiene un porcentaje de disponibilidad diaria del 25% como activo de transmisión. Por la reducción de la vida útil del proyecto a 7,5 años, se considera que el ingreso regulado será recibido en siete anualidades y un pago por el último semestre de funcionamiento del activo. En las Tablas 26 a 28 se resumen los ingresos, egresos y resultados de la evaluación para este esquema.

<table>
<thead>
<tr>
<th>Servicio</th>
<th>Criterio</th>
<th>Ingreso [COP/kW]</th>
<th>Holgura [MW/año]</th>
<th>Ingresos Anuales [Millones COP]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGC Precio Bajo</td>
<td>Regulación vigente (2 x CERE)</td>
<td>145</td>
<td>39.790</td>
<td>5.769</td>
</tr>
</tbody>
</table>

Tabla 26. Resumen ingresos AGC – AGC+AT25% con dos ciclos de carga/descarga

<table>
<thead>
<tr>
<th>Transacción</th>
<th>Criterio</th>
<th>Tarifa [COP/kW]</th>
<th>Energía [MWh/año]</th>
<th>Egresos Anuales [Millones COP]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compra energía</td>
<td>Precio de generador</td>
<td>162</td>
<td>31.208</td>
<td>4.962</td>
</tr>
</tbody>
</table>

Tabla 27. Resumen egresos compra energía – AGC+AT25% con dos ciclos de carga/descarga
8.7.4 Resumen y conclusiones

Se analizó la viabilidad financiera de 21 escenarios posibles de agrupaciones de servicios de BESS con sus correspondientes esquemas de remuneración bajo condiciones de mercado aplicables al sistema eléctrico colombiano. Los resultados se presentan en la Tabla 29. A continuación se muestran las abreviaturas usadas en la tabla:

- **AT**: Activo de transmisión.
- **Arb**: Arbitraje de energía.
- **RPF**: Regulación primaria de frecuencia.
- **RV**: Regulación de voltaje.
- **AT**: Activo de transmisión, considera los servicios de alivio de restricciones eléctricas y operativas, confiabilidad de redes y aplazamiento de infraestructura de T&D.
- **AT X%**: Disponibilidad como AT en un X% del tiempo de operación.
- **PAGC Alto**: Precio del AGC alto, dado por regulación no vigente.
- **PAGC Bajo**: Precio de AGC bajo, dado por la regulación actual.
- **Compra MNR**: La energía para carga se adquiere en mercado no regulado.
- **Compra G**: La energía para carga se adquiere a precio de generación.
- **A-X**: Escenario adicional para el caso X.
<table>
<thead>
<tr>
<th>Esquema</th>
<th>Caso</th>
<th>Descripción</th>
<th>Servicios y aplicaciones</th>
<th>Viabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solo ingreso regulado</td>
<td>I</td>
<td>AT 100%</td>
<td>X X</td>
<td>SI</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Compra MNR</td>
<td>X X X</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Compra G</td>
<td>X X X</td>
<td>NO</td>
</tr>
<tr>
<td>Solo ARBITRAJE</td>
<td>I</td>
<td>PAGC Alto, Compra MNR</td>
<td>X X</td>
<td>SI</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>PAGC Alto, Compra G</td>
<td>X X</td>
<td>SI</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>PAGC Bajo, Compra MNR</td>
<td>X X</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>PAGC Bajo, Compra G</td>
<td>X X</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>A-IV</td>
<td>PAGC Bajo, Compra G</td>
<td>X X</td>
<td>NO</td>
</tr>
<tr>
<td>Arb + Activo de transmisión</td>
<td>I</td>
<td>AT 25%, Compra MNR</td>
<td>X X X X</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>AT 25%, Compra G</td>
<td>X X X X</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>AT 50%, Compra MNR</td>
<td>X X X X</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>AT 50%, Compra G</td>
<td>X X X X</td>
<td>NO</td>
</tr>
<tr>
<td>Arb + Activo de transmisión</td>
<td>I</td>
<td>AT 25%, PAGC Alto, Compra MNR</td>
<td>X X X</td>
<td>SI</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>AT 25%, PAGC Alto, Compra G</td>
<td>X X X</td>
<td>SI</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>AT 50%, PAGC Alto, Compra MNR</td>
<td>X X X</td>
<td>SI, condicionada</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>AT 50%, PAGC Alto, Compra G</td>
<td>X X X</td>
<td>SI</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>AT 25%, PAGC Bajo, Compra MNR</td>
<td>X X X</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>VI</td>
<td>AT 25%, PAGC Bajo, Compra G</td>
<td>X X X</td>
<td>SI, condicionada</td>
</tr>
<tr>
<td></td>
<td>VII</td>
<td>AT 50%, PAGC Bajo, Compra MNR</td>
<td>X X X</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>VIII</td>
<td>AT 50%, PAGC Bajo, Compra G</td>
<td>X X X</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>A-VI</td>
<td>AT 25%, PAGC Bajo, Compra G</td>
<td>X X</td>
<td>SI, condicionada</td>
</tr>
</tbody>
</table>

Tabla 29. Resumen de agrupaciones de servicios y esquemas de remuneración

De los 21 escenarios evaluados 6 resultaron con viabilidad financiera del proyecto, 3 tienen una viabilidad condicionada que depende de una mejor argumentación del requerimiento de ingresos regulados, y 11 no son viables. Los esquemas que involucran servicios intensivos en energía, como es el caso del arbitraje, no resultaron viables en ninguno de...
los escenarios evaluados. En contraste, los esquemas que resultaron viables están asociados a la prestación de un servicio intensivo en potencia, correspondiente al AGC.

Los diferenciales de precio de generación intradiarios no son suficientes para que el margen bruto sobre la energía vendida compense la inversión inicial y la energía destinada para reservas obligatorias, en el horizonte de evaluación del proyecto. Esto puede deberse a que el precio de bolsa en Colombia es un promedio horario, aplicable a todo el país. La implementación de un mercado intradiario y de precios nodales puede hacer más sensible el precio de bolsa a variaciones de demanda, aumentando los diferenciales diarios aprovechables para hacer arbitraje de energía.

Así mismo, la entrada masiva en operación de FERNC desde la demanda, como proyectos solares o de almacenamiento a pequeña escala, puede modificar en el largo plazo el perfil de demanda del país, creando diferentes y mayores diferenciales de precio que pueden ser explotados por un BESS. El anterior análisis aplica para el caso de compra de energía a precio de generación. La compra en el mercado no regulado involucra cargos adicionales que se considera no pueden ser cubiertos solo por el precio de venta de energía en el largo plazo, incluso considerando una conexión del proyecto directamente en la red de transmisión.

Aun con un diferencial de precios mayor, la restricción de máximo un ciclo diario de carga/descarga limita las ventas de energía y por ende las ganancias del proyecto. Si bien es claro que la restricción busca garantizar la vida útil del equipo, se sugiere la realización de análisis detallados para cada proyecto específico, que permitan determinar un despacho que optimice los diferenciales de precios durante el día, teniendo en cuenta la degradación real asociada al BESS.

Por otro lado, las ventas por AGC se determinan sobre unidades de potencia aplicables a varias horas del día, totalizando una magnitud superior a la energía adquirida para cumplir con la obligación en caso de activarse el servicio. Es decir, mientras en arbitraje se vende una cantidad de energía similar a la que se compra, en AGC la misma energía sirve para prestar el servicio a plena carga durante dos periodos, por lo que se vende cerca del doble en disponibilidad de potencia.

Igual al caso de arbitraje, las ganancias en la prestación de servicio de AGC pueden ser mayores en ausencia de la restricción para los ciclos de carga y descarga. Los mismos 5500 ciclos de carga y descarga de vida útil del proyecto, pueden repartirse en 7,5 años, resultado en 2 ciclos diarios, como se analizó en los casos adicionales. Esta consideración aumenta las ventas y mejora la evaluación económica del proyecto respecto a los casos de referencia. Sin embargo, los años requeridos para la recuperación de la inversión superan la vida útil del proyecto, que podría ya ser menor a, lo que mantiene la inviabilidad.

Se hizo un análisis de sensibilidad en el modelo en el cual se calculó el número de ciclos diarios mínimo requerido para obtener una TIR mayor a 11,6% en el escenario de servicio de AGC a precio bajo, con compra de energía a precio de generación. Se obtuvieron 7 ciclos diarios, que se traducen en prestación de servicio de AGC en 14 períodos del día. Lo
anterior representa reducir la vida útil del proyecto a 2 años aproximadamente, considerando que se activa el servicio de AGC para entrega de energía en su máxima holgura declarada en todos los períodos. Sin embargo, se obtuvo un tiempo de recuperación de la inversión de 5 años, por lo que aún bajo este escenario el proyecto sigue siendo inviable económicamente. Se sugiere un estudio detallado que analice la vida útil del BESS considerando la energía real que podría suministrar cuando se activa el servicio de AGC, de acuerdo con despachos históricos de este servicio, de manera que se optimicen los ciclos de carga diarios.

Una última opción consiste en acotar la reserva máxima de energía requerida en caso de activación de AGC. Es decir, que en lugar de requerirse mantener por 30 minutos el nivel de carga, se exijan por ejemplo 10 minutos. Esto implicaría de nuevo participar en más períodos de AGC con una misma carga. Esto puede lograrse a través de la implementación de un despacho intradíario que mejore el pronóstico de demanda de AGC en cada período y acote el tiempo de activación del servicio al realmente requerido.

Resultaron viables los 6 escenarios que contemplan la remuneración del servicio de AGC bajo la regulación no vigente, donde el precio depende del precio de bolsa. En oposición, solo 2 de 7 escenarios con remuneración bajo la regulación actual lograron un cierre financiero de manera condicionada.

La regulación actual que rige la remuneración de AGC desincentiva la inversión en BESS “stand-alone” para prestar servicios de mercado. Como se observó, no se alcanzó viabilidad ni con arbitraje, ni con AGC, que son los servicios que se pueden monetizar en el marco vigente.

Cabe aclarar que el esquema actual se fijó en un contexto en el cual el precio de bolsa rozaba el precio de escasez, causando un aumento en el precio del AGC que encareció la operación del sistema de cara a los usuarios. Se requiere definir un precio de balance, que incentive la participación en el servicio al tiempo que protege la demanda ante subidas del precio de bolsa.

Una sugerencia consiste en desligar la oferta de energía y la de AGC, de manera que permita reflejar en el precio de AGC los costos reales asociados a la prestación de ese servicio independiente. Por ejemplo, la propuesta regulatoria de servicios complementarios realizada por el consorcio PSR & Di Avante, sugiere la realización de una oferta en unidades del CERE (PSR & Di-Avante, 2018).

La implementación de un nuevo esquema regulatorio para remunerar el AGC puede darse también como consecuencia de la entrada masiva en operación de FERNC. Se ha observado en los referentes internacionales estudiados que este fenómeno aumenta los requerimientos de reservas generales del sistema, elevando la demanda de AGC y por ende su precio.

De los 8 escenarios viables con ingresos de mercado 3 consideran compra de energía en mercado no regulado y 5 compra directamente a precio de generación. Si bien los proyectos
que compran a precio de generación tienen un mayor margen de ganancia, el precio de compra no es un factor tan determinante como el precio de venta de AGC en la viabilidad del proyecto, en cuanto este último es mayor para todos los escenarios. En resumen, se puede generar un efecto mayor en el incentivo a la inversión aumentando el precio de venta del AGC que permitiendo a los BESS acceder a la energía a precio de generación.

Se comprueba la pertinencia de unir ingresos regulados y de mercado para viabilizar los proyectos BESS, al tiempo que el sistema se beneficia de sus servicios y aplicaciones. De acuerdo con los criterios definidos en el presente trabajo solo es posible viabilizar estos esquemas en los casos en que el proyecto es viable solo con ingresos de mercado asociados.

Se obtuvo de la evaluación qué los escenarios viables de servicios combinados están asociados al único servicio de mercado que resultó viable por sí solo (AGC a precio alto). El que los servicios de mercado tengan un valor mayor, incrementa la flexibilidad a la hora de proponer esquemas compartidos del BESS entre servicios de transmisión y de mercado, permitiendo inclusive plantear escenarios donde parte de la remuneración es acreditada a los contribuyentes para reducir el costo de operación del sistema, tal como se plantea en las propuestas regulatorias de California.
9 Conclusiones y trabajos futuros

9.1 Conclusiones sobre el cumplimiento de los objetivos

9.1.1 Objetivo específico 1
“Identificar los potenciales servicios asociados a un sistema de almacenamiento de energía con baterías a gran escala conectado a redes de transmisión y distribución en el mercado eléctrico de Colombia.”

En el capítulo 5, sección 5.5, se resumieron los servicios asociados a BESS que son aplicables al sistema eléctrico colombiano bajo las condiciones de mercado actuales o a través de diseños regulatorios posteriores. Los servicios se extrajeron de una variedad de aplicaciones identificadas en proyectos BESS a nivel global.

De acuerdo con los criterios de análisis definidos en el trabajo, en Colombia un BESS puede participar en arbitraje de energía o en servicio de AGC para acceder a ingresos de mercado. Así mismo, puede brindar alivio de restricciones eléctricas y operativas a la red, funcionando como activo de transmisión, para aspirar a ingresos regulados. Igualmente, servicios como la RPF y RV deben suministrarse sin estar sujetos a remuneración, de acuerdo con el esquema de operación del BESS.

Se identificó la necesidad de implementación de mercados específicos para servicios exclusivos de las tecnologías de respuesta rápida basadas en electrónica de potencia, como la respuesta rápida en frecuencia (FFR) y la flexibilidad de rampa. Esto permitiría incentivar la inversión sobre estas tecnologías, entre las cuales se encuentran los BESS, al tiempo que permitiría beneficiarse al sistema de los servicios mencionados, los cuales impactan positivamente la confiabilidad en la operación y el desempeño general del mercado y la red.

Otros servicios asociados a la resiliencia del sistema, como la recuperación del servicio (arranque en negro) o la operación en modo isla no son considerados en la evaluación. Sin embargo, pueden adquirir mayor relevancia en el mediano a largo plazo con el desarrollo de la tecnología de almacenamiento, específicamente de inversores formadores de red, y con la penetración masiva de FERNC.

9.1.2 Objetivo específico 2
“Revisar esquemas de remuneración aplicables a los servicios identificados en el Objetivo 1 de acuerdo con el marco regulatorio de mercados internacionales de referencia.”

Si bien no existe un tratamiento regulatorio totalmente definido y aplicable universalmente a los BESS, los referentes de Australia y California poseen elementos que permitieron viabilizar algunos proyectos, estructurarlos y hacerlos sostenibles en el tiempo. Parte de estos elementos podrían ser aplicables al mercado eléctrico colombiano para viabilizar esquemas de remuneración que se propongan para la participación de BESS. Entre estos elementos se encuentra la diferenciación de productos de mercado asociados a RF y la implementación de precios nodales.
Sin embargo, el desarrollo de los BESS en estas regiones ha obedecido a un requerimiento urgente por incorporar tecnologías que aporten confiabilidad al sistema. Al considerarse urgente, este requerimiento promueve la generación de mecanismos para incentivar la inversión e implementación de dichas tecnologías, entre los que se incluye la propuesta y materialización de los diseños regulatorios y reglas comerciales para permitirles participar en el mercado.

El requerimiento urgente derivó principalmente de la rápida adopción de grandes cantidades de generación con FERNC en reemplazo de plantas convencionales, que se ha presentado en estos países. Este fenómeno no es igual de latente en Colombia, en donde el requerimiento de BESS ha surgido principalmente de la necesidad de aliviar restricciones en áreas específicas del sistema, no para mitigar la variabilidad de la generación con FERNC. Por lo que se esperaría que se presente del mediano al largo plazo la estructuración de un marco regulatorio robusto que mitigue incertidumbres sobre la inversión y viabilice los proyectos.

Se destaca el interés por desarrollar iniciativas para permitir la remuneración de BESS combinando ingresos regulados y de mercado. Para las dos regiones analizadas la aprobación de ingresos regulados estuvo sujeta a la realización de un análisis beneficio/costo de la implementación de un BESS como activo de transmisión, en lugar de una expansión de red convencional. Estos BESS tienen como función principal servicios de la red de transmisión, como el alivio de congestiones y el SIPS australiano. Por lo que se determinan esquemas de operación que priorizan estos servicios sobre las aplicaciones de mercado, ya sea en tiempo real (Australia) o en una ventana previa al despacho de cada día (California).

9.1.3 Objetivo específico 3

“Proponer agrupaciones de servicios con sus respectivos esquemas de remuneración, aplicables a un sistema de almacenamiento de energía con baterías, instalado en Colombia.”

En el capítulo 7, sección 7.3, se definieron tres esquemas de remuneración, en los que se enmarcaron 10 propuestas de agrupaciones de servicios asociados a BESS. Estas agrupaciones contemplan la operación y remuneración del BESS solo como activo de transmisión, solo con servicios de mercado por arbitraje o AGC, y con una operación combinada para prestar servicios de transmisión y de mercado.

Del cálculo de los ingresos por cada servicio de mercado se identificó que son mayores los de AGC respecto a la energía requerida para prestar el servicio. El esquema de operación y coordinación considerado para las aplicaciones con ambos tipos de servicios se basó en las reglas de la propuesta regulatoria SATA de California, donde el operador del sistema solicita la disponibilidad completa del BESS durante un día, en el cual no se puede participar en servicios de mercado y solo se tiene funcionamiento como activo de transmisión.
9.1.4 Objetivo general

“Evaluar esquemas de remuneración de sistemas de almacenamiento de energía con baterías a gran escala, conectados a redes de transmisión y distribución, bajo el marco regulatorio colombiano.”

Desde la perspectiva del inversionista, los esquemas que representan mayor valor para un proyecto BESS en Colombia son los que involucran servicios intensivos en potencia, específicamente el servicio de AGC al precio dado por la regulación CREG 064 de 2001 y con precio de reconciliación de la Resolución CREG 034 de 2001. Los diferenciales de precios de energía durante el día no representan un margen suficiente para viabilizar el arbitraje de energía. Por otro lado, el precio de AGC dado por la regulación vigente (Resolución CREG 027 de 2016), resulta bajo para viabilizar el proyecto con las condiciones de la evaluación. Aumentar los ciclos de carga/descarga diarios permitidos, incrementa las ganancias del proyecto respecto a los casos de referencia, pero disminuye su vida útil, que para los casos analizados resultó menor a los años requeridos para recuperar la inversión. Se requieren análisis más detallados que consideren las condiciones de activación real del servicio de AGC, para optimizar la vida útil del proyecto y viabilizarlo bajo esquemas de múltiples ciclos diarios de carga/descarga.

La viabilidad de los esquemas de AGC depende de la modificación de las condiciones comerciales del servicio. Específicamente, se requiere:

- Separar el despacho de energía del de AGC, permitiendo que una fuente participe en AGC únicamente sin tener un despacho de energía asociado.
- Definir un mecanismo de fijación de precios que refleje el costo de oportunidad de no utilizar las reservas de AGC en el mercado de energía y que incentive la inversión en proyectos destinados a la prestación de este servicio.
- Diferenciar productos de AGC que permitan participar suministrando solo regulación hacia arriba o hacia abajo, y no una holgura simétrica.

Estos cambios pueden darse motivados por un incremento futuro en la demanda de AGC, asociado a una mayor participación de fuentes variables, que derive en la necesidad de definir los mecanismos para ampliar la participación en el servicio a nuevas tecnologías como los BESS.

Los ingresos regulados pueden incorporarse en el modelo financiero para dar viabilidad al proyecto. Debe considerarse que la asignación de dichos ingresos obedece a criterios de optimización de costos de operación del sistema, por lo que representan una inversión, no un subsidio. En este sentido, los ingresos regulados no deben estar destinados a recuperar proyectos BESS que no son viables por sí solos con ingresos de mercado. Por el contrario, deben complementar aquellos originalmente viables, cuyos ingresos de mercado se reducen por la indisponibilidad forzada que implica disponer el BESS como activo de transmisión solo una porción del tiempo de operación comercial.

De acuerdo con lo anterior, no resulta viable implementar bajo las condiciones de mercado actuales esquemas que combinan servicios de transmisión con arbitraje de energía o con
servicio de AGC a precio vigente, dado que el ingreso regulado requerido para el cierre financiero del proyecto sería superior a la inversión total, por lo que no sería justificable esta asignación de costos para el sistema. Bajo estos escenarios es una mejor opción remunerar la totalidad de la inversión a cambio de una disponibilidad total sobre el activo, que es el esquema vigente actualmente en Colombia con las convocatorias UPME.

En contraste, los esquemas que involucran servicios de transmisión y AGC remunerado a un precio más alto resultan en escenarios en los que además de viabilizar los proyectos para el inversionista, se puede proponer la estructuración de esquemas que permitan distribuir las ganancias del proyecto entre inversionista y sistema. Esto como una forma de mitigar los costos de operación percibidos por los usuarios.

9.2 Trabajos futuros
Realizar un análisis similar al planteado en este trabajo, pero desde la perspectiva del sistema. El objetivo sería la maximización de los beneficios del sistema derivados de la prestación de servicios por parte del BESS bajo las agrupaciones evaluadas en este trabajo. Se debería incluir el análisis de costo/beneficio realizado por el planeador para aprobar ingresos regulados en los esquemas que los involucren.

Realizar un análisis que considere el efecto de la implementación en masa de nuevas tecnologías, que pueden incluir FERNC, EV y los mismos BESS, sobre la valoración realizada, tanto en el mediano como en el largo plazo. Lo anterior entendiendo el impacto que dichas tecnologías tienen sobre factores respecto a los cuales es sensible la valoración realizada. Específicamente, el precio de la energía, la curva de carga y los requerimientos de reservas.

Realizar un análisis que profundice sobre el modelo de negocio para la aplicación de BESS como fuente de reserva adicional para plantas térmicas en períodos de demanda pico, especialmente las ubicadas en la Costa Atlántica. De la revisión de literatura e identificación del estado actual de la tecnología en el país, se reconoce el potencial de esta aplicación de los BESS, que pueden asumir los cambios en la potencia de salida a los cuales están sujetas las plantas térmicas y que afectan su vida útil.
Bibliografía

AusNet. (2020). Ballarat Battery Energy Storage System OPERATIONAL REPORT #1 AND #2 (KNOWLEDGE SHARING DELIVERABLE 3) FIRST 12 MONTHS OF OPERATION.

– Hoja de ruta regulatoria para un desarrollo más eficiente de los recursos distribuidos.

https://doi.org/10.1109/PESGM.2018.8586088

CNO. (2017). Acuerdo 1023 Por el cual se establecen los requisitos y procedimientos necesarios para la prestación del servicio de AGC por las unidades conectadas al SIN (pp. 1–42). Consejo Nacional de Operación. https://www.cno.org.co/content/acuerdo-1023-por-el-cual-se-establecen-los-requisitos-y-procedimientos-necesarios-para-la

CNO. (2020). *Acuerdo 1365 Por el cual se establecen los requisitos y procedimientos necesarios para la prestación del servicio de AGC por las unidades conectadas al SIN* (p. 17). Consejo Nacional de Operación. https://www.cno.org.co/content/acuerdo-1365-por-el-cual-se-establecen-los-requisitos-y-procedimientos-necesarios-para-la

CPUC. (2013). *Decision 13-10-040: Decision adoptin energy storage procurement framework and design program.* California Public Utilities Comission. https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M079/K533/79533378.PDF

CPUC. (2018a). *Decision 18-05-024: DECISION APPROVING THE RESULTS OF SAN DIEGO GAS & ELECTRIC COMPANY’S 2016 TRACK IV LOCAL CAPACITY REQUIREMENT PREFERRED RESOURCES PROCUREMENT.* California Public Utilities Comission. https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M215/K724/215724114.PDF

CREG. (1995). *Resolución 025 de 1995 “Por la cual se establece el Código de Redes, como parte del Relamento de Operación del Sistema Interconectado Nacional.”* http://apolo.creg.gov.co/Publicac.nsf/2b8fb06f012cc9c245256b7b00789b0c/3a940408d14bf2e80525785a007a653b/$FILE/Cr025-95.pdf

Comisión de Regulación de Energía y Gas.
http://apolo.creg.gov.co/Publicac.nsf/2b8fb06f012cc9c245256b7b00789b0c/7b287847240e0d9a0525785a007a5fe3/$FILE/Creg034-2001.pdf

http://apolo.creg.gov.co/Publicac.nsf/2b8fb06f012cc9c245256b7b00789b0c/d95444c179bee5f80525785a007a7073/$FILE/Creg083-2008.pdf

CREG. (2010). TASA DE DESCUENTO Y PERFIL DE PAGOS PARA LAS CONVOCATORIAS DEL STN.
http://apolo.creg.gov.co/Publicac.nsf/2b8fb06f012cc9c245256b7b00789b0c/a4d0b9e4bd7297d90525785a007a726d/$FILE/D-031-10 TASA DE DESCUENTO Y PERFIL DE PAGOS PARA LAS CONVOCATORIAS DEL STN.pdf

CREG. (2012). Análisis de las restricciones en el SIN.
http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffbf5b05256ee00709c02/fdca0527bdc10b6505257ad40071db0f/$FILE/D-078-12 ANÁLISIS DE LAS RESTRICCIONES EN EL SIN.pdf

http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffbf5b05256ee00709c02/792c4a55a37df73205257f0b000cd83c/$FILE/D-137-15 ASPECTOS COMERCIALES DEL SERVICIO DE LA RESERVA DE REGULACIÓN (AGC).pdf

CREG. (2016). Resolución 027 De 2016. Por la cual se modifica el artículo 4 de la Resolucion CREG 064 de 2000 y se define procedimiento transitorio para la asignación de la reserva de regulación. (pp. 1–8). Comisión de Regulación de Energía y Gas.
http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffbf5b05256ee00709c02/be7bd893910e7e9505257f70004d636d/$FILE/Creg027-2016.pdf

http://apolo.creg.gov.co/Publicac.nsf/52188526a7290f8505256ee0072eba7/9548e4f02d52edab0525363a007ac38?OpenDocument

https://www.energy.gov/oe/downloads/electricity-advisory-committee-meeting-presentations-october-2018-

IHA. (2018). The world’s water battery: Pumped hydropower storage and the clean energy transition. https://www.hydropower.org/sites/default/files/publications-docs/the_worlds_water_battery_-_pumped_storage_and_the_clean_energy_transition_2.pdf

