Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributorSand, Wolfgang
dc.contributor.advisorArévalo Ferro, Catalina (Thesis advisor)
dc.contributor.authorAguirre Morales, Mauricio
dc.date.accessioned2019-06-25T18:25:34Z
dc.date.available2019-06-25T18:25:34Z
dc.date.issued2012-11
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/20225
dc.description.abstractAbstract. Retrieving metals from sulphide minerals has been a key step for the mining industry through many years. There are microorganisms that colonize mining areas and ore deposits and are able to use some of the compounds of the ores to obtain energy, precipitating some other components. The use of acidophilic leaching bacteria, in a process known as biohydrometallurgy, has become an alternative way to traditional mining allowing the recovery of metals. Biohydrometallurgy has shown to be environmentally friendly and it has shown to be cheaper compared to conventional mining (pyrometallurgy). In nature, microorganisms are able to build structures such as biofilms that confer resistance to microorganisms under adverse environmental conditions. Those are communities of microorganisms, embedded in extracellular polymeric substances (EPS). The EPS also enhances a reaction space by extracellular biochemical reaction; in leaching organisms it has been observed that biofilms composed of EPS play a key role in degradation of ores. Sulfobacillus thermosulfidooxidans is a moderate thermophile used in bioleaching, nevertheless little is known about S. thermosulfidooxidans and the nature and composition of its EPS. The use of S. thermosulfidooxidans in biomining is promising because it is an exothermal reaction and it reaches high temperatures. With the idea of using this bacterium in the future for biomining process, its growth was studied in the presence of different energy substrates, the composition of its EPS and by bioinformatics, some genes potentially involved in the process of EPS production. The growth of S. thermosulfidooxidans changes according to the energy source used in the medium, the maximum cell concentration was achieved in medium with iron sulphate as energy source. S. thermosulfidooxidans is able to grow under heterotrophic and mixotrofic conditions, nevertheless growth under mixotrophic conditions is higher than under heterotrophic conditions. Attachment to sulfur and pyrite surfaces was followed by Confocal Laser Scaning Microscope (CLSM) along time. Attachment to piryte surfaces seems to be faster since cell agglomeration over reduced spaces can be seen earlier than in sulfur surfaces. The EPS produced by S. thermosulfidooxidans grown in different energy sources, sulfur, pyrite and iron sulphate was extracted and analyzed. The EPS composition was determined, the proportion of its components changed according to the energy source and humic acids were found to be one of the major components. It was observed that EPS production diminishes in the planktonic culture and it was not detectable in some cases. Staining with labeled lectins was made in order to visualize and identify some components of its EPS; it was observed that also the components of the EPS changes not only depending on the energy source tested, pyrite and sulfur, but also in the planktonic and sessile state of the cells. Only concanavalin A had a positive interaction under all the conditions tested. Genes previously reported to be involved in EPS synthesis and biofilm formation, were searched on S. thermosulfidooxidans DSM 9293 genome but no meaningful matches were found. Thus, sequences coding for proteins related to the mechanisms of production and exportation of EPS were searched on the genome and ABC transporters were found and selected for amplification. However, no successful amplification or measurement of level of expression of these genes was achieved.
dc.description.abstractLa extracción de metales a partir de minerales azufrados ha sido un paso importante para la industria minera a través de los años. Hay microorganismos capaces de crecer en zonas mineras y depósitos de menas, utilizando compuestos presentes en la menas para obtener energía, precipitando de esta forma otros compuestos presentes en las mismas. El Uso de microorganismos biolixiviadores acidofilos en un proceso llamado biohydrometalurgia, se ha convertido en una alternativa a la minería convencional que permite la extracción de metales a partir de menas. La biohydrometalurgia se ha mostrado como una alternativa amigable al medio ambiente y más económica en comparación con la minería convencional. En la naturaleza los microorganismos son capaces de construir estructuras como los biofilms, los cuales les confieren a los microorganismos resistencia a diferentes condiciones ambientales adversas. Estos son comunidades de microorganismos embebidos en sustancias poliméricas extracelulares (EPS). El EPS permite un espacio de reacción bioquímica; en microorganismos lixiviadores se ha observado que el biofilm compuesto por EPS juega un papel fundamental en la degradación de menas. Sulfobacillus thermosulfidooxidans es un microorganismo termófilo moderado utilizado en biolixiviacion, sin embargo poco se sabe sobre S. thermosulfidooxidans y la naturaleza y composición del EPS producido por el mismo. La implementación de S. thermosulfidooxidans en procesos de biominería, es prometedora debido a que la biominería es un proceso exotérmico donde se alcanzan altas temperaturas. Con el objetivo de utilizar S. thermosulfidooxidans en procesos de biominería se estudio su crecimiento en presencia de diferentes fuentes de energía, la composición de EPS y mediante métodos bioinformaticos, algunos genes potencialmente involucrados en el proceso de producción de EPS. El crecimiento de S. thermosulfidooxidans cambia de acuerdo a la fuente de energía que se implemente en el medio, la máxima concentración celular que se alcanzo fue con el medio con sulfato de hierro como única fuente de energía. S. thermosulfidooxidans es capaz de crecer bajo condiciones mixotroficas y heterotróficas, sin embargo su crecimiento bajo condiciones mixotroficas es más alto en comparación con condiciones heterotróficas. Adhesión directa a pirita y azufre se siguió a través del tiempo mediante microscopia confocal (CLSM). La adhesión a pirita parece ocurrir de manera más rápida puesto que sobre esta superficie se puede observar aglomeración celular sobre espacios reducidos, en tiempos más tempranos en comparación con la adhesión al azufre donde se observo en tiempos posteriores. Se extrajo y analizo el EPS producido por células de S. thermosulfidooxidans crecidas en presencia de azufre, pirita y sulfato de hierro. Se determinaron algunos de los componentes del EPS, la proporción de los componentes cambia de acuerdo a la fuente de energía que se utilice para crecer el microorganismo y los ácidos húmicos se encontraron en mayor proporción. Se observo también que la producción de EPS se ve disminuida en el caso de las células en estado planctónico en términos de peso seco del EPS y en algunos casos fue inclusive indetectable. Con el objetivo de visualizar e identificar algunos de los componentes del EPS, se realizaron tinciones con lectinas; se observo que la composición del EPS no solo cambia dependiendo de la fuente de energía que se utilizo, azufre o pirita, para crecer el microorganismo sino también del estado celular en el que se encuentre, sésil o planctónico. Solamente con concanavalina A se obtuvo una interacción positiva bajo todas las condiciones probadas. Genes previamente reportados involucrados en la síntesis de EPS y formación de biofilm, fueron buscados en el genoma de S. thermosulfidooxidans DSM 9293, sin embargo no se obtuvieron asignaciones verdaderas. Por lo tanto, secuencias de proteínas relacionadas con los mecanismos de producción y exportación de EPS fueron buscados en el genoma y se encontraron secuencias relacionadas con transportadores ABC las cuales se seleccionaron para su posible amplificación. Sin embargo no se obtuvo amplificación satisfactoria que permitiera medir los niveles de expresión de estos genes mediante PCR en tiempo real.
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias
dc.relation.ispartofFacultad de Ciencias
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc54 Química y ciencias afines / Chemistry
dc.subject.ddc57 Ciencias de la vida; Biología / Life sciences; biology
dc.subject.ddc66 Ingeniería química y Tecnologías relacionadas/ Chemical engineering
dc.titleExtracellular polymeric substances (EPS) production in sulfobacillus thermosulfidooxidans and its relevance on attachment to metal sulfides
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.identifier.eprintshttp://bdigital.unal.edu.co/10705/
dc.description.degreelevelMaestría
dc.relation.referencesAguirre Morales, Mauricio (2012) Extracellular polymeric substances (EPS) production in sulfobacillus thermosulfidooxidans and its relevance on attachment to metal sulfides. Maestría thesis, Universidad Nacional de Colombia.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalBioleaching
dc.subject.proposalExtracellular polymeric substances
dc.subject.proposalBiofilm
dc.subject.proposalSulfobacillus thermosulfidooxidans.
dc.subject.proposalBiolixiviacion
dc.subject.proposalSustancias poliméricas extracelulares
dc.subject.proposalSulfobacillus thermosulfidooxidans
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito