Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributorLarrañaga, Alexis
dc.contributor.authorCárdenas Avendaño, Alejandro
dc.date.accessioned2019-07-02T11:25:45Z
dc.date.available2019-07-02T11:25:45Z
dc.date.issued2015-09-02
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/55696
dc.description.abstractIn the following years Very Long Baseline Interferometry (VLBI) facilities will be able to directly image the accretion flow around the supermassive black hole candidate at the center of the Milky Way, Sgr A*. They will also be able to observe its shadow: an optical property which appears as a consequence of the strong gravitational field around it and which thus depends only on the physical parameters of the black hole. While there is no definitive evidence of the nature of the spacetime geometry around Sgr A*, it has been usually modeled by a Kerr black hole, by virtue of the no-hair theorem, which asserts that all uncharged black holes in 4-dimensional general relativity are described by this metric and thus completely specified by two parameters, the mass M and the spin parameter a. As a consequence, testing the no-hair theorem in nature with future observations allows us to not only verify that black holes in our universe are Kerr black holes, but to test the strong field predictions of general relativity In this work I investigate if the shadow, image and spectrum of a non-Kerr regular black hole inspired by noncommutative geometry may provide a measurement of the parameters characterizing Kerr and non-Kerr regular black holes to distinguish one from the other. Specifically, the non-Kerr solution studied here is the rotating black hole found by Smailagic and Spallucci in 2010 and known as the “Kerrr” black hole, where the third “r” stands for regular, in the sense of a pathology-free rotating black hole. The general strategy to derive this generalized solution consists of prescribing an improved form of the energy-momentum tensor, which accounts, at least phenomenologically, for the noncommutative fluctuations of the manifold at the origin and which vanishes for large distances with respect to the noncommutative geometry scale, l_{0}. Abstract The image and spectrum of Sgr A*, as the case of study, was modeled using the relativistic ray-tracing code GYOTO, assuming an optically thin, constant angular momentum torus in hydrodynamic equilibrium around the Kerr and "Kerrr" geometries. The model used includes a toroidal magnetic field and radiative cooling by bremsstrahlung, synchrotron, and inverse Compton processes. The assumptions provided here, for drawing the shadow and to model the accretion disk, do not provide a realistic scenario, but an easily accessible yet powerful analytical analogy. Then comparisons with the Kerr geometry are calculated by using the observables defined by Hioki and Maeda and the distortion parameter introduced by Tsukamoto, Li and Bambi. This work confirms that it is definitely challenging to test this kind of regular metric solely from observations of the shadow or accretion structures in the near future.
dc.description.abstractResumen. En los próximos años las estaciones de interferometría de base ancha, Very Long Baseline Interferometry (VLBI), serán capaces de obtener imágenes de la acreción alrededor del candidato a agujero negro supermasivo en el centro de la Vía Láctea, Sgr A*. Los resultados de estas campañas de observación permitirán observar también su sombra: un propiedad óptica que se genera como consecuencia del fuerte campo gravitacional alrededor del agujero negro y que depende solamente de los parámetros físicos del agujero negro. Actualmente no hay evidencia definitiva sobre la naturaleza del espacio-tiempo alrededor de Sgr A* y usualmente ha sido modelado como un agujero negro de Kerr en virtud de los teoremas del no pelo, los cuales afirman que todos los agujeros negros sin carga, en cuatro dimensiones descritos por la relatividad general, dependen únicamente de los dos parámetros de esa métrica; la masa y el parámetro de rotación. Por tal razón, probar la validez de este teorema en la naturaleza a través de observaciones nos permitirá, no solamente verificar si los agujeros negros del Universo están descritos por la métrica de Kerr, sino además probar las predicciones de la relatividad general en el campo fuerte. En este trabajo investigo si la sombra, imagen y espectro de un agujero negro regular diferente de Kerr, inspirado de la geometría no conmutativa, permite medir los parámetros que caracterizan los agujeros negros y distinguir sus diferencias. Específicamente, la solución estudiada acá es la rotante encontrada por Smailagic y Spallucci en 2010 conocida como el agujero negro de "Kerrr", en donde la tercera "r" simboliza la naturaleza regular de esa solución. La forma general de obtener ese tipo de soluciones consiste en modificar el tensor de momento y energía de tal manera que codifique, al menos de forma fenomenológica, las fluctuaciones no conmutativas de la variedad en el origen y que desaparecen a grandes distancias, con respecto a la escala de la geometría no conmutativa. La imagen y el espectro de Sgr A*, como caso de estudio, fueron modeladas usando el código de trazado de rayos GYOTO, asumiendo un toro ópticamente delgado con momento angular constante en equilibrio hidrodinámico, alrededor de las geometrías de Kerr y "Kerrr". El modelo usado incluye un campo magnético toroidal y enfriamientos radiativos por bremsstrahlung, synchroton y procesos de Compton inverso. Las simplificaciones hechas acá, para dibujar la sombre y modelar el disco de acreción, no representan un escenario real, pero son buenas analogías analíticas. Las comparaciones son hechas a través de los observables definidos por Hioki y Maeda y el parámetro de distorsión de Tsukamoto, Li y Bambi. Este trabajo confirma la complejidad y dificultad de probar este tipo de soluciones a través de únicamente mediciones de la sombra y estructura de acreción en el futuro próximo.
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Observatorio Astronómico
dc.relation.ispartofObservatorio Astronómico
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc52 Astronomía y ciencias afines / Astronomy
dc.subject.ddc53 Física / Physics
dc.titleProbing the regular nature of the spacetime by direct measurement of black hole properties
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.identifier.eprintshttp://bdigital.unal.edu.co/51140/
dc.description.degreelevelMaestría
dc.relation.referencesCárdenas Avendaño, Alejandro (2015) Probing the regular nature of the spacetime by direct measurement of black hole properties. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalBlack hole physics
dc.subject.proposalNoncommutative geometries
dc.subject.proposalFísica de agujeros Negros
dc.subject.proposalDiscos de Acreción
dc.subject.proposalGeometrías no conmutativas
dc.subject.proposalAccretion Disks,
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito